Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of BAE_vr3honeycomb1_christmas by
Diff: ACS.cpp
- Revision:
- 0:ebdf4f859dca
- Child:
- 2:edd107ea4740
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ACS.cpp Fri Dec 19 06:47:25 2014 +0000 @@ -0,0 +1,587 @@ +#include "ACS.h" +#include "MPU3300.h" +#include "pin_config.h" + +//PwmOut PWM1(PTD4); //Functions used to generate PWM signal + //PWM output comes from pins p6 +Serial pc1(USBTX, USBRX); +SPI spi_acs (PIN16, PIN17, PIN15); // mosi, miso, sclk PTE18,19,17 +DigitalOut SSN_MAG (PIN61); // ssn for magnetometer PTB11 +DigitalIn DRDY (PIN47); // drdy for magnetometer PTA17 +DigitalOut ssn_gyr (PIN62); //Slave Select pin of gyroscope PTB16 +InterruptIn dr(PIN81); //Interrupt pin for gyro PTC5 +PwmOut PWM1(A3); //Functions used to generate PWM signal +PwmOut PWM2(A4); +PwmOut PWM3(A5); //PWM output comes from pins p6 +Ticker tr; //Ticker function to give values for limited amount of time for gyro +Timeout tr_mag; +uint8_t trflag_mag; +uint8_t trFlag; //ticker Flag for gyro +uint8_t drFlag; //data-ready interrupt flag for gyro + +//--------------------------------TORQUE ROD--------------------------------------------------------------------------------------------------------------// + +void FUNC_ACS_GENPWM(float M[3]) + { + + + printf("\nEnterd PWMGEN function\n"); + float DCx = 0; //Duty cycle of Moment in x, y, z directions + float ix = 0; //Current sent in x, y, z TR's + float timep = 0.02 ; + float Mx=M[0]; //Time period is set to 0.02s + //Moment in x, y, z directions + + + ix = Mx * 0.3 ; //Moment and Current always have the linear relationship + + if( ix>0&& ix < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + DCx = 6*1000000*pow(ix,4) - 377291*pow(ix,3) + 4689.6*pow(ix,2) + 149.19*ix - 0.0008; + PWM1.period(timep); + PWM1 = DCx/100 ; + } + else if( ix >= 0.006&& ix < 0.0116) + { + DCx = 1*100000000*pow(ix,4) - 5*1000000*pow(ix,3) + 62603*pow(ix,2) - 199.29*ix + 0.7648; + PWM1.period(timep); + PWM1 = DCx/100 ; + } + else if (ix >= 0.0116&& ix < 0.0624) + { + + DCx = 212444*pow(ix,4) - 33244*pow(ix,3) + 1778.4*pow(ix,2) + 120.91*ix + 0.3878; + PWM1.period(timep); + PWM1 = DCx/100 ; + } + else if(ix >= 0.0624&& ix < 0.555) + { + printf("\nACS entered if\n"); + DCx = 331.15*pow(ix,4) - 368.09*pow(ix,3) + 140.43*pow(ix,2) + 158.59*ix + 0.0338; + PWM1.period(timep); + PWM1 = DCx/100 ; + } + else if(ix==0) + { + DCx = 0; + PWM1.period(timep); + PWM1 = DCx/100 ; + } + else + { + // printf("!!!!!!!!!!Error!!!!!!!!!"); + } + float DCy = 0; //Duty cycle of Moment in x, y, z directions + float iy = 0; //Current sent in x, y, z TR's + + float My=M[1]; //Time period is set to 0.2s + //Moment in x, y, z directions + + + iy = My * 0.3 ; //Moment and Current always have the linear relationship + + if( iy>0&& iy < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + DCy = 6*1000000*pow(iy,4) - 377291*pow(iy,3) + 4689.6*pow(iy,2) + 149.19*iy - 0.0008; + PWM2.period(timep); + PWM2 = DCy/100 ; + } + else if( iy >= 0.006&& iy < 0.0116) + { + DCy = 1*100000000*pow(iy,4) - 5*1000000*pow(iy,3) + 62603*pow(iy,2) - 199.29*iy + 0.7648; + PWM2.period(timep); + PWM2 = DCy/100 ; + } + else if (iy >= 0.0116&& iy < 0.0624) + { + + DCy = 212444*pow(iy,4) - 33244*pow(iy,3) + 1778.4*pow(iy,2) + 120.91*iy + 0.3878; + PWM2.period(timep); + PWM2 = DCy/100 ; + } + else if(iy >= 0.0624&& iy < 0.555) + { + printf("\nACS entered if\n"); + DCy = 331.15*pow(iy,4) - 368.09*pow(iy,3) + 140.43*pow(iy,2) + 158.59*iy + 0.0338; + PWM2.period(timep); + PWM2 = DCy/100 ; + } + else if(iy==0) + { + DCy = 0; + PWM2.period(timep); + PWM2 = DCy/100 ; + } + else + { + // printf("!!!!!!!!!!Error!!!!!!!!!"); + } + float DCz = 0; //Duty cycle of Moment in x, y, z directions + float iz = 0; //Current sent in x, y, z TR's + + float Mz=M[2]; //Time period is set to 0.2s + //Moment in x, y, z directions + + + iz = Mz * 0.3 ; //Moment and Current always have the linear relationship + + if( iz>0&& iz < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + DCz = 6*1000000*pow(iz,4) - 377291*pow(iz,3) + 4689.6*pow(iz,2) + 149.19*iz - 0.0008; + PWM3.period(timep); + PWM3 = DCz/100 ; + } + else if( iz >= 0.006&& iz < 0.0116) + { + DCz = 1*100000000*pow(iz,4) - 5*1000000*pow(iz,3) + 62603*pow(iz,2) - 199.29*iz + 0.7648; + PWM3.period(timep); + PWM3 = DCz/100 ; + } + else if (iz >= 0.0116&& iz < 0.0624) + { + + DCz = 212444*pow(iz,4) - 33244*pow(iz,3) + 1778.4*pow(iz,2) + 120.91*iz + 0.3878; + PWM3.period(timep); + PWM3 = DCz/100 ; + } + else if(iz >= 0.0624&& iz < 0.555) + { + printf("\nACS entered if\n"); + DCz = 331.15*pow(iz,4) - 368.09*pow(iz,3) + 140.43*pow(iz,2) + 158.59*iz + 0.0338; + PWM3.period(timep); + PWM3 = DCz/100 ; + } + else if(iz==0) + { + DCz = 0; + PWM3.period(timep); + PWM3 = DCz/100 ; + } + else + { + // printf("!!!!!!!!!!Error!!!!!!!!!"); + } + +printf("\nExited PWMGEN function\n"); +} +/*------------------------------------------------------------------------------------------------------------------------------------------------------- +-------------------------------------------MAGNETOMETER-------------------------------------------------------------------------------------------------*/ + +void trsub_mag() +{ + trflag_mag=0; +} + +void FUNC_ACS_MAG_INIT() + { + + SSN_MAG=1; //pin is disabled + spi_acs.format(8,0); // 8bits,Mode 0 + spi_acs.frequency(100000); //clock frequency + + SSN_MAG=0; // Selecting pin + wait_ms(10); //accounts for delay.can be minimised. + + spi_acs.write(0x83); // + + wait_ms(10); + + unsigned char i; + for(i=0;i<3;i++)//initialising values. + { + spi_acs.write(0x00); //MSB of X,y,Z + spi_acs.write(0xc8); //LSB of X,Y,z;pointer increases automatically. + } + SSN_MAG=1; + +} + +float* FUNC_ACS_MAG_EXEC() +{ + printf("\nEntered magnetometer function\n"); + SSN_MAG=0; //enabling slave to measure the values + wait_ms(10); + spi_acs.write(0x82); //initiates measurement + wait_ms(10); + spi_acs.write(0x01); //selecting x,y and z axes, measurement starts now + SSN_MAG=1; + wait_ms(10); + + trflag_mag=1; + tr_mag.attach(&trsub_mag,1); //runs in background,makes trflag_mag=0 after 1s + + while(trflag_mag) /*initially flag is 1,so loop is executed,if DRDY is high,then data is retrieved and programme ends,else + loop runs for at the max 1s and if still DRDY is zero,the flag becomes 0 and loop is not executed and + programme is terminated*/ + { + wait_ms(5); + if(DRDY==1) + { + SSN_MAG=0; + spi_acs.write(0xc9); //command byte for retrieving data + + unsigned char axis; + float Bnewvalue[3]={0.0,0.0,0.0}; + int32_t Bvalue[3]={0,0,0}; + int32_t a= pow(2.0,24.0); + int32_t b= pow(2.0,23.0); + + for(axis=0;axis<3;axis++) + { + Bvalue[axis]=spi_acs.write(0x00)<<16; //MSB 1 is send first + wait_ms(10); + Bvalue[axis]|=spi_acs.write(0x00)<<8; //MSB 2 is send next + wait_ms(10); + Bvalue[axis]|=spi_acs.write(0x00); //LSB is send.....total length is 24 bits(3*8bits)...which are appended to get actual bit configuration + + + if((Bvalue[axis]&b)==b) + { + Bvalue[axis]=Bvalue[axis]-a; //converting 2s complement to signed decimal + + } + Bnewvalue[axis]=(float)Bvalue[axis]*22.0*pow(10.0,-3.0); //1 LSB=(22nT)...final value of field obtained in micro tesla + + wait_ms(10); + printf("\t%lf\n",Bnewvalue[axis]); + + } + SSN_MAG=1; + + return Bnewvalue; //return here? doubt.. + break; + } + + } + +} +/*------------------------------------------------------------------------------------------------------------------------------------------------------ +-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/ + +float * FUNC_ACS_CNTRLALGO(float b[3],float omega[3]) +{ + float db[3]; /// inputs +//initialization + float bb[3] = {0, 0, 0}; + float d[3] = {0, 0, 0}; + float Jm[3][3] = {{0.2730, 0, 0}, {0, 0.3018, 0}, {0, 0, 0.3031}}; + float den = 0; + float den2; + int i, j; //temporary variables + float Mu[2], z[2], dv[2], v[2], u[2], tauc[3] = {0, 0, 0}; //outputs + float invJm[3][3]; + float kmu2 = 0.07, gamma2 = 1.9e4, kz2 = 0.4e-2, kmu = 0.003, gamma = 5.6e4, kz = 0.1e-4; + printf("Entered cntrl algo\n"); + //structure parameters + + void inverse (float mat[3][3], float inv[3][3]); + void getInput (float x[9]); + //functions + +////////// Input from Matlab ////////////// + while(1) + { + + /*getInput(inputs); +//while(1) + b[0] = inputs[0]; + b[1] = inputs[1]; + b[2] = inputs[2]; + db[0] = inputs[3]; + db[1] = inputs[4]; + db[2] = inputs[5]; + omega[0] = inputs[6]; + omega[1] = inputs[7]; + omega[2] = inputs[8];*/ +/////////// Control Algorithm ////////////////////// +// calculate norm b, norm db + den = sqrt((b[0]*b[0]) + (b[1]*b[1]) + (b[2]*b[2])); + den2 = (b[0]*db[0]) + (b[1]*db[1]) + (b[2]*db[2]); + + for(i=0;i<3;i++) + { + db[i] = (db[i]*den*den-b[i]*den2) / (pow(den,3)); +//db[i]/=den*den*den; + } + + for(i=0;i<3;i++) + { + printf("\nreached here\n"); + if(den!=0) + //b[i]=b[i]/den; //there is a problem here. The code gets stuck here. Maf value is required + ; + } + +// select kz, kmu, gamma + if(b[0]>0.9 || b[0]<-0.9) + { + kz = kz2; + kmu = kmu2; + gamma = gamma2; + } +// calculate Mu, v, dv, z, u + for(i=0;i<2;i++) + { + Mu[i] = b[i+1]; + v[i] = -kmu*Mu[i]; + dv[i] = -kmu*db[i+1]; + z[i] = db[i+1] - v[i]; + u[i] = -kz*z[i] + dv[i]-(Mu[i] / gamma); + } + inverse(Jm, invJm); +// calculate cross(omega,J*omega)for(i=0;i<3;i++) + + for(j=0;j<3;j++) + bb[i] += omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j] - omega[(i+2)%3]*Jm[(i+1)%3][j]); + +// calculate invJm*cross(omega,J*omega) store in d + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + d[i] += bb[j]*invJm[i][j]; + } +// calculate d = cross(invJm*cross(omega,J*omega),b) -cross(omega,db) +// bb =[0;u-d(2:3)] +// store in bb + bb[1] = u[0] + (d[0]*b[2])-(d[2]*b[0])-(omega[0]*db[2]) + (omega[2]*db[0]); + bb[2] = u[1]-(d[0]*b[1]) + (d[1]*b[0]) + (omega[0]*db[1])-(omega[1]*db[0]); + bb[0] = 0; +// calculate N +// reusing invJm as N + + for(i=0;i<3;i++) + { + d[i] = invJm[1][i]; + invJm[ 1][i] = b[2]*invJm[0][i] - b[0]*invJm[2][i]; + invJm[2][i] = -b[1]*invJm[0][i] + b[0]*d[i]; + invJm[0][i] = b[i]; + } +// calculate inv(N) store in Jm + inverse(invJm, Jm); +// calculate tauc + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + tauc[i] += Jm[i][j]*bb[j]; + } + + return(tauc); + } +} +/////////// Output to Matlab ////////////////// +/* for(i=0;i<3;i++) { + printf("%f\n",tauc[i]*10000000); + wait_ms(10); + } + } + +}*/ + void inverse(float mat[3][3], float inv[3][3]) +{ +int i, j; +float det = 0; +for(i=0;i<3;i++) +{ for(j=0;j<3;j++) +inv[j][i] = (mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3]) - (mat[(i+2)%3] +[(j+1)%3]*mat[(i+1)%3][(j+2)%3]); +} +det += (mat[0][0]*inv[0][0]) + (mat[0][1]*inv[1][0]) + (mat[0][2]*inv[2][0]); +for(i=0;i<3;i++) +{ for(j=0;j<3;j++) +inv[i][j] /= det; +} +}/* +void getInput (float x[9]) { + //Functions used to generate PWM signal + //PWM output comes from pins p6 +Serial pc1(USBTX, USBRX); + char c[10]; + char tempchar[8]; + int i, j; + //float f[9]; + long n = 0; + float flval = 0; + for(j=0;j<9;j++) { + for(i=0;i<9;i++) { + c[i] = pc1.getc(); if(i<8) { + tempchar[i] = c[i]; + } + } + sscanf (tempchar, "%8x", &n); + memcpy(&flval, &n, sizeof(long)); + printf("%f\n", flval); + x[j] = flval; + } +}*/ + +void trSub(); +void drSub(); +void init_gyro(); +float * FUNC_ACS_EXEC_GYR(); + +void drSub() //In this function we setting data-ready flag to 1 +{ + drFlag=1; +} +void trSub() //In this function we are setting ticker flag to 0 +{ + trFlag=0; +} +void FUNC_ACS_INIT_GYR() +{ + uint8_t response; + ssn_gyr=1; //Deselecting the chip + spi_acs.format(8,3); // Spi format is 8 bits, and clock mode 3 + spi_acs.frequency(1000000); //frequency to be set as 1MHz + drFlag=0; //Intially defining data-ready flag to be 0 + dr.mode(PullDown); + dr.rise(&drSub); + __disable_irq(); + +/*Following the above mentioned algorithm for initializing the register and changing its configuration*/ + ssn_gyr=0; //Selecting chip(Mpu-3300) + spi_acs.write(USER_CTRL|READFLAG); //sending USER_CTRL address with read bit + response=spi_acs.write(DUMMYBIT); //sending dummy bit to get default values of the register + + ssn_gyr=1; //Deselecting the chip + wait(0.1); //waiting according the product specifications + + ssn_gyr=0; //again selecting the chip + spi_acs.write(USER_CTRL); //sending USER_CTRL address without read bit + spi_acs.write(response|BIT_I2C_IF_DIS); //disabling the I2C mode in the register + ssn_gyr=1; //deselecting the chip + wait(0.1); // waiting for 100ms before going for another register + + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1|READFLAG); //Power Management register-1 + response=spi_acs.write(DUMMYBIT); + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1); + response=spi_acs.write(response|BIT_CLKSEL_X); //Selecting the X axis gyroscope as clock as mentioned above + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(GYRO_CONFIG|READFLAG); //sending GYRO_CONFIG address with read bit + response=spi_acs.write(DUMMYBIT); + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(GYRO_CONFIG); //sending GYRO_CONFIG address to write to register + spi_acs.write(response&(~(BITS_FS_SEL_3|BITS_FS_SEL_4))); //selecting a full scale mode of +/=225 deg/sec + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(CONFIG|READFLAG); //sending CONFIG address with read bit + response=spi_acs.write(DUMMYBIT); + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(CONFIG); //sending CONFIG address to write to register + spi_acs.write(response|BITS_DLPF_CFG); //selecting a bandwidth of 42 hz and delay of 4.8ms + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(SMPLRT_DIV|READFLAG); //sending SMPLRT_DIV address with read bit + response=spi_acs.write(DUMMYBIT); + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(SMPLRT_DIV); //sending SMPLRT_DIV address to write to register + spi_acs.write(response&BITS_SMPLRT_DIV); //setting the sampling rate division to be 0 to make sample rate = gyroscopic output rate + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(INT_ENABLE|READFLAG); //sending address of INT_ENABLE with readflag + response=spi_acs.write(DUMMYBIT); //sending dummy byte to get the default values of the + // regiser + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(INT_ENABLE); //sending INT_ENABLE address to write to register + spi_acs.write(response|BIT_DATA_RDY_ENABLE); //Enbling data ready interrupt + ssn_gyr=1; + wait(0.1); + + __enable_irq(); +} + +float * FUNC_ACS_EXEC_GYR() +{ + printf("\nEntered gyro\n"); + uint8_t response; + uint8_t MSB,LSB; + int16_t bit_data; + float data[3],error[3]={0,0,0}; //declaring error array to add to the values when required + float senstivity = 145.6; //senstivity is 145.6 for full scale mode of +/-225 deg/sec + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1|READFLAG); //sending address of INT_ENABLE with readflag + response=spi_acs.write(DUMMYBIT); // + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1); //sending PWR_MGMT_1 address to write to register + response=spi_acs.write(response&(~(BIT_SLEEP))); //waking up the gyroscope from sleep + ssn_gyr=1; + wait(0.1); + + trFlag=1; + tr.attach(&trSub,1); //executes the function trSub afer 1sec + + while(trFlag) + { + wait_ms(5); //This is required for this while loop to exit. I don't know why. + if(drFlag==1) + { + ssn_gyr=0; + spi_acs.write(GYRO_XOUT_H|READFLAG); //sending address of PWR_MGMT_1 with readflag + for(int i=0;i<3;i++) + { + MSB = spi_acs.write(DUMMYBIT); //reading the MSB values of x,y and z respectively + LSB = spi_acs.write(DUMMYBIT); //reading the LSB values of x,y and z respectively + bit_data= ((int16_t)MSB<<8)|LSB; //concatenating to get 16 bit 2's complement of the required gyroscope values + data[i]=(float)bit_data; + data[i]=data[i]/senstivity; //dividing with senstivity to get the readings in deg/sec + data[i]+=error[i]; //adding with error to remove offset errors + } + ssn_gyr=1; + for (int i=0;i<3;i++) + { + printf("%f\t",data[i]); //printing the angular velocity values + } + printf("\n"); + break; + } + drFlag=0; + } + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1|READFLAG); //sending address of PWR_MGMT_1 with readflag + response=spi_acs.write(DUMMYBIT); + ssn_gyr=1; + wait(0.1); + + ssn_gyr=0; + spi_acs.write(PWR_MGMT_1); //sending PWR_MGMT_1 address to write to register + response=spi_acs.write(response|BIT_SLEEP); //setting the gyroscope in sleep mode + ssn_gyr=1; + wait(0.1); + printf("\nExited gyro\n"); + return data; +} + + + + + +