Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
arm_rms_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_rms_q15.c 00004 * Description: Root Mean Square of the elements of a Q15 vector 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 /** 00032 * @addtogroup RMS 00033 * @{ 00034 */ 00035 00036 /** 00037 * @brief Root Mean Square of the elements of a Q15 vector. 00038 * @param[in] *pSrc points to the input vector 00039 * @param[in] blockSize length of the input vector 00040 * @param[out] *pResult rms value returned here 00041 * @return none. 00042 * 00043 * @details 00044 * <b>Scaling and Overflow Behavior:</b> 00045 * 00046 * \par 00047 * The function is implemented using a 64-bit internal accumulator. 00048 * The input is represented in 1.15 format. 00049 * Intermediate multiplication yields a 2.30 format, and this 00050 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00051 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00052 * full precision of the intermediate multiplication is preserved. 00053 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower 00054 * 15 bits, and then saturated to yield a result in 1.15 format. 00055 * 00056 */ 00057 00058 void arm_rms_q15( 00059 q15_t * pSrc, 00060 uint32_t blockSize, 00061 q15_t * pResult) 00062 { 00063 q63_t sum = 0; /* accumulator */ 00064 00065 #if defined (ARM_MATH_DSP) 00066 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00067 00068 q31_t in; /* temporary variable to store the input value */ 00069 q15_t in1; /* temporary variable to store the input value */ 00070 uint32_t blkCnt; /* loop counter */ 00071 00072 /* loop Unrolling */ 00073 blkCnt = blockSize >> 2U; 00074 00075 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00076 ** a second loop below computes the remaining 1 to 3 samples. */ 00077 while (blkCnt > 0U) 00078 { 00079 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00080 /* Compute sum of the squares and then store the results in a temporary variable, sum */ 00081 in = *__SIMD32(pSrc)++; 00082 sum = __SMLALD(in, in, sum); 00083 in = *__SIMD32(pSrc)++; 00084 sum = __SMLALD(in, in, sum); 00085 00086 /* Decrement the loop counter */ 00087 blkCnt--; 00088 } 00089 00090 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00091 ** No loop unrolling is used. */ 00092 blkCnt = blockSize % 0x4U; 00093 00094 while (blkCnt > 0U) 00095 { 00096 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00097 /* Compute sum of the squares and then store the results in a temporary variable, sum */ 00098 in1 = *pSrc++; 00099 sum = __SMLALD(in1, in1, sum); 00100 00101 /* Decrement the loop counter */ 00102 blkCnt--; 00103 } 00104 00105 /* Truncating and saturating the accumulator to 1.15 format */ 00106 /* Store the result in the destination */ 00107 arm_sqrt_q15(__SSAT((sum / (q63_t)blockSize) >> 15, 16), pResult); 00108 00109 #else 00110 /* Run the below code for Cortex-M0 */ 00111 00112 q15_t in; /* temporary variable to store the input value */ 00113 uint32_t blkCnt; /* loop counter */ 00114 00115 /* Loop over blockSize number of values */ 00116 blkCnt = blockSize; 00117 00118 while (blkCnt > 0U) 00119 { 00120 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00121 /* Compute sum of the squares and then store the results in a temporary variable, sum */ 00122 in = *pSrc++; 00123 sum += ((q31_t) in * in); 00124 00125 /* Decrement the loop counter */ 00126 blkCnt--; 00127 } 00128 00129 /* Truncating and saturating the accumulator to 1.15 format */ 00130 /* Store the result in the destination */ 00131 arm_sqrt_q15(__SSAT((sum / (q63_t)blockSize) >> 15, 16), pResult); 00132 00133 #endif /* #if defined (ARM_MATH_DSP) */ 00134 00135 } 00136 00137 /** 00138 * @} end of RMS group 00139 */ 00140
Generated on Tue Jul 12 2022 16:47:28 by
 1.7.2
 1.7.2