Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
arm_rfft_fast_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_rfft_f32.c 00004 * Description: RFFT & RIFFT Floating point process function 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 void stage_rfft_f32( 00032 arm_rfft_fast_instance_f32 * S, 00033 float32_t * p, float32_t * pOut) 00034 { 00035 uint32_t k; /* Loop Counter */ 00036 float32_t twR, twI; /* RFFT Twiddle coefficients */ 00037 float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ 00038 float32_t *pA = p; /* increasing pointer */ 00039 float32_t *pB = p; /* decreasing pointer */ 00040 float32_t xAR, xAI, xBR, xBI; /* temporary variables */ 00041 float32_t t1a, t1b; /* temporary variables */ 00042 float32_t p0, p1, p2, p3; /* temporary variables */ 00043 00044 00045 k = (S->Sint).fftLen - 1; 00046 00047 /* Pack first and last sample of the frequency domain together */ 00048 00049 xBR = pB[0]; 00050 xBI = pB[1]; 00051 xAR = pA[0]; 00052 xAI = pA[1]; 00053 00054 twR = *pCoeff++ ; 00055 twI = *pCoeff++ ; 00056 00057 // U1 = XA(1) + XB(1); % It is real 00058 t1a = xBR + xAR ; 00059 00060 // U2 = XB(1) - XA(1); % It is imaginary 00061 t1b = xBI + xAI ; 00062 00063 // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); 00064 // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); 00065 *pOut++ = 0.5f * ( t1a + t1b ); 00066 *pOut++ = 0.5f * ( t1a - t1b ); 00067 00068 // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); 00069 pB = p + 2*k; 00070 pA += 2; 00071 00072 do 00073 { 00074 /* 00075 function X = my_split_rfft(X, ifftFlag) 00076 % X is a series of real numbers 00077 L = length(X); 00078 XC = X(1:2:end) +i*X(2:2:end); 00079 XA = fft(XC); 00080 XB = conj(XA([1 end:-1:2])); 00081 TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; 00082 for l = 2:L/2 00083 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); 00084 end 00085 XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); 00086 X = XA; 00087 */ 00088 00089 xBI = pB[1]; 00090 xBR = pB[0]; 00091 xAR = pA[0]; 00092 xAI = pA[1]; 00093 00094 twR = *pCoeff++; 00095 twI = *pCoeff++; 00096 00097 t1a = xBR - xAR ; 00098 t1b = xBI + xAI ; 00099 00100 // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); 00101 // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); 00102 p0 = twR * t1a; 00103 p1 = twI * t1a; 00104 p2 = twR * t1b; 00105 p3 = twI * t1b; 00106 00107 *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR 00108 *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI 00109 00110 pA += 2; 00111 pB -= 2; 00112 k--; 00113 } while (k > 0U); 00114 } 00115 00116 /* Prepares data for inverse cfft */ 00117 void merge_rfft_f32( 00118 arm_rfft_fast_instance_f32 * S, 00119 float32_t * p, float32_t * pOut) 00120 { 00121 uint32_t k; /* Loop Counter */ 00122 float32_t twR, twI; /* RFFT Twiddle coefficients */ 00123 float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ 00124 float32_t *pA = p; /* increasing pointer */ 00125 float32_t *pB = p; /* decreasing pointer */ 00126 float32_t xAR, xAI, xBR, xBI; /* temporary variables */ 00127 float32_t t1a, t1b, r, s, t, u; /* temporary variables */ 00128 00129 k = (S->Sint).fftLen - 1; 00130 00131 xAR = pA[0]; 00132 xAI = pA[1]; 00133 00134 pCoeff += 2 ; 00135 00136 *pOut++ = 0.5f * ( xAR + xAI ); 00137 *pOut++ = 0.5f * ( xAR - xAI ); 00138 00139 pB = p + 2*k ; 00140 pA += 2 ; 00141 00142 while (k > 0U) 00143 { 00144 /* G is half of the frequency complex spectrum */ 00145 //for k = 2:N 00146 // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); 00147 xBI = pB[1] ; 00148 xBR = pB[0] ; 00149 xAR = pA[0]; 00150 xAI = pA[1]; 00151 00152 twR = *pCoeff++; 00153 twI = *pCoeff++; 00154 00155 t1a = xAR - xBR ; 00156 t1b = xAI + xBI ; 00157 00158 r = twR * t1a; 00159 s = twI * t1b; 00160 t = twI * t1a; 00161 u = twR * t1b; 00162 00163 // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); 00164 // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); 00165 *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR 00166 *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI 00167 00168 pA += 2; 00169 pB -= 2; 00170 k--; 00171 } 00172 00173 } 00174 00175 /** 00176 * @ingroup groupTransforms 00177 */ 00178 00179 /** 00180 * @defgroup RealFFT Real FFT Functions 00181 * 00182 * \par 00183 * The CMSIS DSP library includes specialized algorithms for computing the 00184 * FFT of real data sequences. The FFT is defined over complex data but 00185 * in many applications the input is real. Real FFT algorithms take advantage 00186 * of the symmetry properties of the FFT and have a speed advantage over complex 00187 * algorithms of the same length. 00188 * \par 00189 * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. 00190 * \par 00191 * The real length N forward FFT of a sequence is computed using the steps shown below. 00192 * \par 00193 * \image html RFFT.gif "Real Fast Fourier Transform" 00194 * \par 00195 * The real sequence is initially treated as if it were complex to perform a CFFT. 00196 * Later, a processing stage reshapes the data to obtain half of the frequency spectrum 00197 * in complex format. Except the first complex number that contains the two real numbers 00198 * X[0] and X[N/2] all the data is complex. In other words, the first complex sample 00199 * contains two real values packed. 00200 * \par 00201 * The input for the inverse RFFT should keep the same format as the output of the 00202 * forward RFFT. A first processing stage pre-process the data to later perform an 00203 * inverse CFFT. 00204 * \par 00205 * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" 00206 * \par 00207 * The algorithms for floating-point, Q15, and Q31 data are slightly different 00208 * and we describe each algorithm in turn. 00209 * \par Floating-point 00210 * The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32(). 00211 * The older functions arm_rfft_f32() and arm_rfft_init_f32() have been 00212 * deprecated but are still documented. 00213 * \par 00214 * The FFT of a real N-point sequence has even symmetry in the frequency 00215 * domain. The second half of the data equals the conjugate of the first 00216 * half flipped in frequency. Looking at the data, we see that we can 00217 * uniquely represent the FFT using only N/2 complex numbers. These are 00218 * packed into the output array in alternating real and imaginary 00219 * components: 00220 * \par 00221 * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ... 00222 * real[(N/2)-1], imag[(N/2)-1 } 00223 * \par 00224 * It happens that the first complex number (real[0], imag[0]) is actually 00225 * all real. real[0] represents the DC offset, and imag[0] should be 0. 00226 * (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is 00227 * the first harmonic and so on. 00228 * \par 00229 * The real FFT functions pack the frequency domain data in this fashion. 00230 * The forward transform outputs the data in this form and the inverse 00231 * transform expects input data in this form. The function always performs 00232 * the needed bitreversal so that the input and output data is always in 00233 * normal order. The functions support lengths of [32, 64, 128, ..., 4096] 00234 * samples. 00235 * \par Q15 and Q31 00236 * The real algorithms are defined in a similar manner and utilize N/2 complex 00237 * transforms behind the scenes. 00238 * \par 00239 * The complex transforms used internally include scaling to prevent fixed-point 00240 * overflows. The overall scaling equals 1/(fftLen/2). 00241 * \par 00242 * A separate instance structure must be defined for each transform used but 00243 * twiddle factor and bit reversal tables can be reused. 00244 * \par 00245 * There is also an associated initialization function for each data type. 00246 * The initialization function performs the following operations: 00247 * - Sets the values of the internal structure fields. 00248 * - Initializes twiddle factor table and bit reversal table pointers. 00249 * - Initializes the internal complex FFT data structure. 00250 * \par 00251 * Use of the initialization function is optional. 00252 * However, if the initialization function is used, then the instance structure 00253 * cannot be placed into a const data section. To place an instance structure 00254 * into a const data section, the instance structure should be manually 00255 * initialized as follows: 00256 * <pre> 00257 *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; 00258 *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; 00259 * </pre> 00260 * where <code>fftLenReal</code> is the length of the real transform; 00261 * <code>fftLenBy2</code> length of the internal complex transform. 00262 * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform. 00263 * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order 00264 * output (=1). 00265 * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table. 00266 * The value is based on the FFT length; 00267 * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; 00268 * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients; 00269 * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure 00270 * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding 00271 * static initialization of the complex FFT instance structure. 00272 */ 00273 00274 /** 00275 * @addtogroup RealFFT 00276 * @{ 00277 */ 00278 00279 /** 00280 * @brief Processing function for the floating-point real FFT. 00281 * @param[in] *S points to an arm_rfft_fast_instance_f32 structure. 00282 * @param[in] *p points to the input buffer. 00283 * @param[in] *pOut points to the output buffer. 00284 * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 00285 * @return none. 00286 */ 00287 00288 void arm_rfft_fast_f32( 00289 arm_rfft_fast_instance_f32 * S, 00290 float32_t * p, float32_t * pOut, 00291 uint8_t ifftFlag) 00292 { 00293 arm_cfft_instance_f32 * Sint = &(S->Sint); 00294 Sint->fftLen = S->fftLenRFFT / 2; 00295 00296 /* Calculation of Real FFT */ 00297 if (ifftFlag) 00298 { 00299 /* Real FFT compression */ 00300 merge_rfft_f32(S, p, pOut); 00301 00302 /* Complex radix-4 IFFT process */ 00303 arm_cfft_f32( Sint, pOut, ifftFlag, 1); 00304 } 00305 else 00306 { 00307 /* Calculation of RFFT of input */ 00308 arm_cfft_f32( Sint, p, ifftFlag, 1); 00309 00310 /* Real FFT extraction */ 00311 stage_rfft_f32(S, p, pOut); 00312 } 00313 } 00314 00315 /** 00316 * @} end of RealFFT group 00317 */ 00318
Generated on Tue Jul 12 2022 16:47:28 by
