Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
arm_fir_decimate_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_fir_decimate_q31.c 00004 * Description: Q31 FIR Decimator 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 /** 00032 * @ingroup groupFilters 00033 */ 00034 00035 /** 00036 * @addtogroup FIR_decimate 00037 * @{ 00038 */ 00039 00040 /** 00041 * @brief Processing function for the Q31 FIR decimator. 00042 * @param[in] *S points to an instance of the Q31 FIR decimator structure. 00043 * @param[in] *pSrc points to the block of input data. 00044 * @param[out] *pDst points to the block of output data 00045 * @param[in] blockSize number of input samples to process per call. 00046 * @return none 00047 * 00048 * <b>Scaling and Overflow Behavior:</b> 00049 * \par 00050 * The function is implemented using an internal 64-bit accumulator. 00051 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00052 * Thus, if the accumulator result overflows it wraps around rather than clip. 00053 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). 00054 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. 00055 * 00056 * \par 00057 * Refer to the function <code>arm_fir_decimate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. 00058 */ 00059 00060 void arm_fir_decimate_q31( 00061 const arm_fir_decimate_instance_q31 * S, 00062 q31_t * pSrc, 00063 q31_t * pDst, 00064 uint32_t blockSize) 00065 { 00066 q31_t *pState = S->pState; /* State pointer */ 00067 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00068 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00069 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00070 q31_t *px; /* Temporary pointers for state buffer */ 00071 q31_t *pb; /* Temporary pointers for coefficient buffer */ 00072 q63_t sum0; /* Accumulator */ 00073 uint32_t numTaps = S->numTaps; /* Number of taps */ 00074 uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00075 00076 00077 #if defined (ARM_MATH_DSP) 00078 00079 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00080 00081 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00082 /* pStateCurnt points to the location where the new input data should be written */ 00083 pStateCurnt = S->pState + (numTaps - 1U); 00084 00085 /* Total number of output samples to be computed */ 00086 blkCnt = outBlockSize; 00087 00088 while (blkCnt > 0U) 00089 { 00090 /* Copy decimation factor number of new input samples into the state buffer */ 00091 i = S->M; 00092 00093 do 00094 { 00095 *pStateCurnt++ = *pSrc++; 00096 00097 } while (--i); 00098 00099 /* Set accumulator to zero */ 00100 sum0 = 0; 00101 00102 /* Initialize state pointer */ 00103 px = pState; 00104 00105 /* Initialize coeff pointer */ 00106 pb = pCoeffs; 00107 00108 /* Loop unrolling. Process 4 taps at a time. */ 00109 tapCnt = numTaps >> 2; 00110 00111 /* Loop over the number of taps. Unroll by a factor of 4. 00112 ** Repeat until we've computed numTaps-4 coefficients. */ 00113 while (tapCnt > 0U) 00114 { 00115 /* Read the b[numTaps-1] coefficient */ 00116 c0 = *(pb++); 00117 00118 /* Read x[n-numTaps-1] sample */ 00119 x0 = *(px++); 00120 00121 /* Perform the multiply-accumulate */ 00122 sum0 += (q63_t) x0 *c0; 00123 00124 /* Read the b[numTaps-2] coefficient */ 00125 c0 = *(pb++); 00126 00127 /* Read x[n-numTaps-2] sample */ 00128 x0 = *(px++); 00129 00130 /* Perform the multiply-accumulate */ 00131 sum0 += (q63_t) x0 *c0; 00132 00133 /* Read the b[numTaps-3] coefficient */ 00134 c0 = *(pb++); 00135 00136 /* Read x[n-numTaps-3] sample */ 00137 x0 = *(px++); 00138 00139 /* Perform the multiply-accumulate */ 00140 sum0 += (q63_t) x0 *c0; 00141 00142 /* Read the b[numTaps-4] coefficient */ 00143 c0 = *(pb++); 00144 00145 /* Read x[n-numTaps-4] sample */ 00146 x0 = *(px++); 00147 00148 /* Perform the multiply-accumulate */ 00149 sum0 += (q63_t) x0 *c0; 00150 00151 /* Decrement the loop counter */ 00152 tapCnt--; 00153 } 00154 00155 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00156 tapCnt = numTaps % 0x4U; 00157 00158 while (tapCnt > 0U) 00159 { 00160 /* Read coefficients */ 00161 c0 = *(pb++); 00162 00163 /* Fetch 1 state variable */ 00164 x0 = *(px++); 00165 00166 /* Perform the multiply-accumulate */ 00167 sum0 += (q63_t) x0 *c0; 00168 00169 /* Decrement the loop counter */ 00170 tapCnt--; 00171 } 00172 00173 /* Advance the state pointer by the decimation factor 00174 * to process the next group of decimation factor number samples */ 00175 pState = pState + S->M; 00176 00177 /* The result is in the accumulator, store in the destination buffer. */ 00178 *pDst++ = (q31_t) (sum0 >> 31); 00179 00180 /* Decrement the loop counter */ 00181 blkCnt--; 00182 } 00183 00184 /* Processing is complete. 00185 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00186 ** This prepares the state buffer for the next function call. */ 00187 00188 /* Points to the start of the state buffer */ 00189 pStateCurnt = S->pState; 00190 00191 i = (numTaps - 1U) >> 2U; 00192 00193 /* copy data */ 00194 while (i > 0U) 00195 { 00196 *pStateCurnt++ = *pState++; 00197 *pStateCurnt++ = *pState++; 00198 *pStateCurnt++ = *pState++; 00199 *pStateCurnt++ = *pState++; 00200 00201 /* Decrement the loop counter */ 00202 i--; 00203 } 00204 00205 i = (numTaps - 1U) % 0x04U; 00206 00207 /* copy data */ 00208 while (i > 0U) 00209 { 00210 *pStateCurnt++ = *pState++; 00211 00212 /* Decrement the loop counter */ 00213 i--; 00214 } 00215 00216 #else 00217 00218 /* Run the below code for Cortex-M0 */ 00219 00220 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00221 /* pStateCurnt points to the location where the new input data should be written */ 00222 pStateCurnt = S->pState + (numTaps - 1U); 00223 00224 /* Total number of output samples to be computed */ 00225 blkCnt = outBlockSize; 00226 00227 while (blkCnt > 0U) 00228 { 00229 /* Copy decimation factor number of new input samples into the state buffer */ 00230 i = S->M; 00231 00232 do 00233 { 00234 *pStateCurnt++ = *pSrc++; 00235 00236 } while (--i); 00237 00238 /* Set accumulator to zero */ 00239 sum0 = 0; 00240 00241 /* Initialize state pointer */ 00242 px = pState; 00243 00244 /* Initialize coeff pointer */ 00245 pb = pCoeffs; 00246 00247 tapCnt = numTaps; 00248 00249 while (tapCnt > 0U) 00250 { 00251 /* Read coefficients */ 00252 c0 = *pb++; 00253 00254 /* Fetch 1 state variable */ 00255 x0 = *px++; 00256 00257 /* Perform the multiply-accumulate */ 00258 sum0 += (q63_t) x0 *c0; 00259 00260 /* Decrement the loop counter */ 00261 tapCnt--; 00262 } 00263 00264 /* Advance the state pointer by the decimation factor 00265 * to process the next group of decimation factor number samples */ 00266 pState = pState + S->M; 00267 00268 /* The result is in the accumulator, store in the destination buffer. */ 00269 *pDst++ = (q31_t) (sum0 >> 31); 00270 00271 /* Decrement the loop counter */ 00272 blkCnt--; 00273 } 00274 00275 /* Processing is complete. 00276 ** Now copy the last numTaps - 1 samples to the start of the state buffer. 00277 ** This prepares the state buffer for the next function call. */ 00278 00279 /* Points to the start of the state buffer */ 00280 pStateCurnt = S->pState; 00281 00282 i = numTaps - 1U; 00283 00284 /* copy data */ 00285 while (i > 0U) 00286 { 00287 *pStateCurnt++ = *pState++; 00288 00289 /* Decrement the loop counter */ 00290 i--; 00291 } 00292 00293 #endif /* #if defined (ARM_MATH_DSP) */ 00294 00295 } 00296 00297 /** 00298 * @} end of FIR_decimate group 00299 */ 00300
Generated on Tue Jul 12 2022 16:47:27 by
 1.7.2
 1.7.2