Robert Lopez / CMSIS5
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_convolve_HWC_q7_fast.c Source File

arm_convolve_HWC_q7_fast.c

00001 /*
00002  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
00003  *
00004  * SPDX-License-Identifier: Apache-2.0
00005  *
00006  * Licensed under the Apache License, Version 2.0 (the License); you may
00007  * not use this file except in compliance with the License.
00008  * You may obtain a copy of the License at
00009  *
00010  * www.apache.org/licenses/LICENSE-2.0
00011  *
00012  * Unless required by applicable law or agreed to in writing, software
00013  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
00014  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00015  * See the License for the specific language governing permissions and
00016  * limitations under the License.
00017  */
00018 
00019 /* ----------------------------------------------------------------------
00020  * Project:      CMSIS NN Library
00021  * Title:        arm_convolve_HWC_q7_fast.c
00022  * Description:  Fast Q7 version of convolution
00023  *
00024  * $Date:        17. January 2018
00025  * $Revision:    V.1.0.0
00026  *
00027  * Target Processor:  Cortex-M cores
00028  *
00029  * -------------------------------------------------------------------- */
00030 
00031 #include "arm_math.h"
00032 #include "arm_nnfunctions.h"
00033 
00034 /**
00035  *  @ingroup groupNN
00036  */
00037 
00038 /**
00039  * @addtogroup NNConv
00040  * @{
00041  */
00042 
00043   /**
00044    * @brief Fast Q7 convolution function
00045    * @param[in]       Im_in       pointer to input tensor
00046    * @param[in]       dim_im_in   input tensor dimention
00047    * @param[in]       ch_im_in    number of input tensor channels
00048    * @param[in]       wt          pointer to kernel weights
00049    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
00050    * @param[in]       dim_kernel  filter kernel size
00051    * @param[in]       padding     padding sizes
00052    * @param[in]       stride      convolution stride
00053    * @param[in]       bias        pointer to bias
00054    * @param[in]       bias_shift  amount of left-shift for bias
00055    * @param[in]       out_shift   amount of right-shift for output
00056    * @param[in,out]   Im_out      pointer to output tensor
00057    * @param[in]       dim_im_out  output tensor dimension
00058    * @param[in,out]   bufferA     pointer to buffer space for input 
00059    * @param[in,out]   bufferB     pointer to buffer space for output
00060    * @return     The function returns either
00061    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
00062    *
00063    * @details
00064    *
00065    * <b>Buffer size:</b>
00066    *
00067    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
00068    *
00069    * bufferB size: 0
00070    *
00071    * <b>Input dimension constraints:</b>
00072    *
00073    * ch_im_in is multiple of 4    ( because of the SIMD32 read and swap )
00074    *
00075    * ch_im_out is multipe of 2    ( bacause 2x2 mat_mult kernel )
00076    *
00077    * The im2col converts the Q7 tensor input into Q15 column, which is stored in
00078    * bufferA. There is reordering happenning during this im2col process with
00079    * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
00080    * third elements are swapped. 
00081    *
00082    * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
00083    * GEMM computation with the reordered columns.
00084    *
00085    * To speed-up the determination of the padding condition, we split the
00086    * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
00087    * This reduces the total number of boundary condition checks and improves
00088    * the data copying performance.
00089    */
00090 
00091 arm_status
00092 arm_convolve_HWC_q7_fast(const q7_t * Im_in,
00093                          const uint16_t dim_im_in,
00094                          const uint16_t ch_im_in,
00095                          const q7_t * wt,
00096                          const uint16_t ch_im_out,
00097                          const uint16_t dim_kernel,
00098                          const uint16_t padding,
00099                          const uint16_t stride,
00100                          const q7_t * bias,
00101                          const uint16_t bias_shift,
00102                          const uint16_t out_shift,
00103                          q7_t * Im_out, 
00104                          const uint16_t dim_im_out, 
00105                          q15_t * bufferA, 
00106                          q7_t * bufferB)
00107 {
00108 
00109 #if defined (ARM_MATH_DSP)
00110     /* Run the following code for Cortex-M4 and Cortex-M7 */
00111 
00112     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
00113 
00114     /*
00115      *  Here we use bufferA as q15_t internally as computation are done with q15_t level
00116      *  im2col are done to output in q15_t format from q7_t input
00117      */
00118 
00119     q15_t    *pBuffer = bufferA;
00120     q7_t     *pOut = Im_out;
00121 
00122     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
00123     {
00124         /* check if the input dimension meets the constraints */
00125         return ARM_MATH_SIZE_MISMATCH;
00126     }
00127 
00128     /*
00129      *  Here we split the entire matrix into three regions depending on the padding situation
00130      *    Top: i_out_y from 0 to padding - 1
00131      * Middle: i_out_y from padding to dim_im_out-padding-1
00132      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
00133      */
00134 
00135     /* top part */
00136     for (i_out_y = 0; i_out_y < padding; i_out_y++)
00137     {
00138         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
00139         {
00140             /* This part implements the im2col function */
00141             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
00142             {
00143                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
00144                 {
00145                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
00146                     {
00147                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
00148                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
00149                     } else
00150                     {
00151                         arm_q7_to_q15_reordered_no_shift
00152                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
00153                     }
00154                     pBuffer += ch_im_in;
00155                 }
00156             }
00157 
00158             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
00159             {
00160                 pOut =
00161                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
00162                                                             bufferA,
00163                                                             ch_im_out,
00164                                                             ch_im_in
00165                                                             *
00166                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
00167                 /* counter reset */
00168                 pBuffer = bufferA;
00169             }
00170         }
00171     }
00172 
00173     /* middle part, here we also divide the x into left, mid and right */
00174     for (; i_out_y < dim_im_out - padding; i_out_y++)
00175     {
00176 
00177         /* left part */
00178         for (i_out_x = 0; i_out_x < padding; i_out_x++)
00179         {
00180             /* This part implements the im2col function */
00181             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
00182             {
00183                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
00184                 {
00185                     if (i_ker_x < 0 || i_ker_x >= dim_im_in)
00186                     {
00187                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
00188                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
00189                     } else
00190                     {
00191                         arm_q7_to_q15_reordered_no_shift
00192                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
00193                     }
00194                     pBuffer += ch_im_in;
00195                 }
00196             }
00197 
00198             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
00199             {
00200                 pOut =
00201                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
00202                                                             bufferA,
00203                                                             ch_im_out,
00204                                                             ch_im_in
00205                                                             *
00206                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
00207                 /* counter reset */
00208                 pBuffer = bufferA;
00209             }
00210         }
00211 
00212         /* mid part */
00213         for (; i_out_x < dim_im_out - padding; i_out_x++)
00214         {
00215             /* This part implements the im2col function */
00216             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
00217             {
00218                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
00219                                                  +
00220                                                  (i_ker_y *
00221                                                   dim_im_in +
00222                                                   i_out_x *
00223                                                   stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
00224                 pBuffer += ch_im_in * dim_kernel;
00225             }
00226 
00227             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
00228             {
00229                 pOut =
00230                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
00231                                                             bufferA,
00232                                                             ch_im_out,
00233                                                             ch_im_in
00234                                                             *
00235                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
00236                 /* counter reset */
00237                 pBuffer = bufferA;
00238             }
00239         }
00240 
00241         /* right part */
00242         for (; i_out_x < dim_im_out; i_out_x++)
00243         {
00244             /* This part implements the im2col function */
00245             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
00246             {
00247                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
00248                 {
00249                     if (i_ker_x < 0 || i_ker_x >= dim_im_in)
00250                     {
00251                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
00252                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
00253                     } else
00254                     {
00255                         arm_q7_to_q15_reordered_no_shift
00256                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
00257                     }
00258                     pBuffer += ch_im_in;
00259                 }
00260             }
00261 
00262             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
00263             {
00264                 pOut =
00265                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
00266                                                             bufferA,
00267                                                             ch_im_out,
00268                                                             ch_im_in
00269                                                             *
00270                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
00271                 /* counter reset */
00272                 pBuffer = bufferA;
00273             }
00274         }
00275     }
00276 
00277     for (; i_out_y < dim_im_out; i_out_y++)
00278     {
00279         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
00280         {
00281             /* This part implements the im2col function */
00282             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
00283             {
00284                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
00285                 {
00286                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
00287                     {
00288                         /* arm_fill_q15(0, pBuffer, ch_im_in); */
00289                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
00290                     } else
00291                     {
00292                         arm_q7_to_q15_reordered_no_shift
00293                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
00294                     }
00295                     pBuffer += ch_im_in;
00296                 }
00297             }
00298 
00299             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
00300             {
00301                 pOut =
00302                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
00303                                                             bufferA,
00304                                                             ch_im_out,
00305                                                             ch_im_in
00306                                                             *
00307                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
00308                 /* counter reset */
00309                 pBuffer = bufferA;
00310             }
00311         }
00312     }
00313 
00314     /* check if there is left-over for compute */
00315     if (pBuffer != bufferA)
00316     {
00317         const q7_t *pA = wt;
00318         int       i;
00319 
00320         for (i = 0; i < ch_im_out; i++)
00321         {
00322             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
00323             q15_t    *pB = bufferA;
00324             /* each time it process 4 entries */
00325             uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
00326 
00327             while (colCnt)
00328             {
00329 
00330                 q31_t     inA1, inA2;
00331                 q31_t     inB1, inB2;
00332 
00333                 pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
00334 
00335                 inB1 = *__SIMD32(pB)++;
00336                 sum = __SMLAD(inA1, inB1, sum);
00337                 inB2 = *__SIMD32(pB)++;
00338                 sum = __SMLAD(inA2, inB2, sum);
00339 
00340                 colCnt--;
00341             }
00342             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
00343             while (colCnt)
00344             {
00345                 q7_t      inA1 = *pA++;
00346                 q15_t     inB1 = *pB++;
00347                 sum += inA1 * inB1;
00348                 colCnt--;
00349             }
00350             *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
00351             pOut++;
00352 
00353         }
00354 
00355     }
00356 #else
00357     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
00358 
00359     uint16_t  i, j, k, l, m, n;
00360     int       conv_out;
00361     signed char in_row, in_col;
00362 
00363     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
00364     {
00365         /* check if the input dimension meets the constraints */
00366         return ARM_MATH_SIZE_MISMATCH;
00367     }
00368 
00369     for (i = 0; i < ch_im_out; i++)
00370     {
00371         for (j = 0; j < dim_im_out; j++)
00372         {
00373             for (k = 0; k < dim_im_out; k++)
00374             {
00375                 conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
00376                 for (m = 0; m < dim_kernel; m++)
00377                 {
00378                     for (n = 0; n < dim_kernel; n++)
00379                     {
00380                         // if-for implementation
00381                         in_row = stride * j + m - padding;
00382                         in_col = stride * k + n - padding;
00383                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
00384                         {
00385                             for (l = 0; l < ch_im_in; l++)
00386                             {
00387                                 conv_out +=
00388                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
00389                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
00390                                                                                             n) * ch_im_in + l];
00391                             }
00392                         }
00393                     }
00394                 }
00395                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
00396             }
00397         }
00398     }
00399 
00400 #endif                          /* ARM_MATH_DSP */
00401 
00402     /* Return to application */
00403     return ARM_MATH_SUCCESS;
00404 }
00405 
00406 /**
00407  * @} end of NNConv group
00408  */
00409