Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
arm_cmplx_mag_squared_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_cmplx_mag_squared_f32.c 00004 * Description: Floating-point complex magnitude squared 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 /** 00032 * @ingroup groupCmplxMath 00033 */ 00034 00035 /** 00036 * @defgroup cmplx_mag_squared Complex Magnitude Squared 00037 * 00038 * Computes the magnitude squared of the elements of a complex data vector. 00039 * 00040 * The <code>pSrc</code> points to the source data and 00041 * <code>pDst</code> points to the where the result should be written. 00042 * <code>numSamples</code> specifies the number of complex samples 00043 * in the input array and the data is stored in an interleaved fashion 00044 * (real, imag, real, imag, ...). 00045 * The input array has a total of <code>2*numSamples</code> values; 00046 * the output array has a total of <code>numSamples</code> values. 00047 * 00048 * The underlying algorithm is used: 00049 * 00050 * <pre> 00051 * for(n=0; n<numSamples; n++) { 00052 * pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2; 00053 * } 00054 * </pre> 00055 * 00056 * There are separate functions for floating-point, Q15, and Q31 data types. 00057 */ 00058 00059 /** 00060 * @addtogroup cmplx_mag_squared 00061 * @{ 00062 */ 00063 00064 00065 /** 00066 * @brief Floating-point complex magnitude squared 00067 * @param[in] *pSrc points to the complex input vector 00068 * @param[out] *pDst points to the real output vector 00069 * @param[in] numSamples number of complex samples in the input vector 00070 * @return none. 00071 */ 00072 00073 void arm_cmplx_mag_squared_f32( 00074 float32_t * pSrc, 00075 float32_t * pDst, 00076 uint32_t numSamples) 00077 { 00078 float32_t real, imag; /* Temporary variables to store real and imaginary values */ 00079 uint32_t blkCnt; /* loop counter */ 00080 00081 #if defined (ARM_MATH_DSP) 00082 float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */ 00083 float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */ 00084 float32_t mul1, mul2, mul3, mul4; /* Temporary variables */ 00085 float32_t mul5, mul6, mul7, mul8; /* Temporary variables */ 00086 float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */ 00087 00088 /*loop Unrolling */ 00089 blkCnt = numSamples >> 2U; 00090 00091 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00092 ** a second loop below computes the remaining 1 to 3 samples. */ 00093 while (blkCnt > 0U) 00094 { 00095 /* C[0] = (A[0] * A[0] + A[1] * A[1]) */ 00096 /* read real input sample from source buffer */ 00097 real1 = pSrc[0]; 00098 /* read imaginary input sample from source buffer */ 00099 imag1 = pSrc[1]; 00100 00101 /* calculate power of real value */ 00102 mul1 = real1 * real1; 00103 00104 /* read real input sample from source buffer */ 00105 real2 = pSrc[2]; 00106 00107 /* calculate power of imaginary value */ 00108 mul2 = imag1 * imag1; 00109 00110 /* read imaginary input sample from source buffer */ 00111 imag2 = pSrc[3]; 00112 00113 /* calculate power of real value */ 00114 mul3 = real2 * real2; 00115 00116 /* read real input sample from source buffer */ 00117 real3 = pSrc[4]; 00118 00119 /* calculate power of imaginary value */ 00120 mul4 = imag2 * imag2; 00121 00122 /* read imaginary input sample from source buffer */ 00123 imag3 = pSrc[5]; 00124 00125 /* calculate power of real value */ 00126 mul5 = real3 * real3; 00127 /* calculate power of imaginary value */ 00128 mul6 = imag3 * imag3; 00129 00130 /* read real input sample from source buffer */ 00131 real4 = pSrc[6]; 00132 00133 /* accumulate real and imaginary powers */ 00134 out1 = mul1 + mul2; 00135 00136 /* read imaginary input sample from source buffer */ 00137 imag4 = pSrc[7]; 00138 00139 /* accumulate real and imaginary powers */ 00140 out2 = mul3 + mul4; 00141 00142 /* calculate power of real value */ 00143 mul7 = real4 * real4; 00144 /* calculate power of imaginary value */ 00145 mul8 = imag4 * imag4; 00146 00147 /* store output to destination */ 00148 pDst[0] = out1; 00149 00150 /* accumulate real and imaginary powers */ 00151 out3 = mul5 + mul6; 00152 00153 /* store output to destination */ 00154 pDst[1] = out2; 00155 00156 /* accumulate real and imaginary powers */ 00157 out4 = mul7 + mul8; 00158 00159 /* store output to destination */ 00160 pDst[2] = out3; 00161 00162 /* increment destination pointer by 8 to process next samples */ 00163 pSrc += 8U; 00164 00165 /* store output to destination */ 00166 pDst[3] = out4; 00167 00168 /* increment destination pointer by 4 to process next samples */ 00169 pDst += 4U; 00170 00171 /* Decrement the loop counter */ 00172 blkCnt--; 00173 } 00174 00175 /* If the numSamples is not a multiple of 4, compute any remaining output samples here. 00176 ** No loop unrolling is used. */ 00177 blkCnt = numSamples % 0x4U; 00178 00179 #else 00180 00181 /* Run the below code for Cortex-M0 */ 00182 00183 blkCnt = numSamples; 00184 00185 #endif /* #if defined (ARM_MATH_DSP) */ 00186 00187 while (blkCnt > 0U) 00188 { 00189 /* C[0] = (A[0] * A[0] + A[1] * A[1]) */ 00190 real = *pSrc++; 00191 imag = *pSrc++; 00192 00193 /* out = (real * real) + (imag * imag) */ 00194 /* store the result in the destination buffer. */ 00195 *pDst++ = (real * real) + (imag * imag); 00196 00197 /* Decrement the loop counter */ 00198 blkCnt--; 00199 } 00200 } 00201 00202 /** 00203 * @} end of cmplx_mag_squared group 00204 */ 00205
Generated on Tue Jul 12 2022 16:46:23 by
 1.7.2
 1.7.2