Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
arm_biquad_cascade_df1_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Project: CMSIS DSP Library 00003 * Title: arm_biquad_cascade_df1_f32.c 00004 * Description: Processing function for the floating-point Biquad cascade DirectFormI(DF1) filter 00005 * 00006 * $Date: 27. January 2017 00007 * $Revision: V.1.5.1 00008 * 00009 * Target Processor: Cortex-M cores 00010 * -------------------------------------------------------------------- */ 00011 /* 00012 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. 00013 * 00014 * SPDX-License-Identifier: Apache-2.0 00015 * 00016 * Licensed under the Apache License, Version 2.0 (the License); you may 00017 * not use this file except in compliance with the License. 00018 * You may obtain a copy of the License at 00019 * 00020 * www.apache.org/licenses/LICENSE-2.0 00021 * 00022 * Unless required by applicable law or agreed to in writing, software 00023 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00024 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00025 * See the License for the specific language governing permissions and 00026 * limitations under the License. 00027 */ 00028 00029 #include "arm_math.h" 00030 00031 /** 00032 * @ingroup groupFilters 00033 */ 00034 00035 /** 00036 * @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure 00037 * 00038 * This set of functions implements arbitrary order recursive (IIR) filters. 00039 * The filters are implemented as a cascade of second order Biquad sections. 00040 * The functions support Q15, Q31 and floating-point data types. 00041 * Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3. 00042 * 00043 * The functions operate on blocks of input and output data and each call to the function 00044 * processes <code>blockSize</code> samples through the filter. 00045 * <code>pSrc</code> points to the array of input data and 00046 * <code>pDst</code> points to the array of output data. 00047 * Both arrays contain <code>blockSize</code> values. 00048 * 00049 * \par Algorithm 00050 * Each Biquad stage implements a second order filter using the difference equation: 00051 * <pre> 00052 * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00053 * </pre> 00054 * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage. 00055 * \image html Biquad.gif "Single Biquad filter stage" 00056 * Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. 00057 * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. 00058 * Pay careful attention to the sign of the feedback coefficients. 00059 * Some design tools use the difference equation 00060 * <pre> 00061 * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2] 00062 * </pre> 00063 * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. 00064 * 00065 * \par 00066 * Higher order filters are realized as a cascade of second order sections. 00067 * <code>numStages</code> refers to the number of second order stages used. 00068 * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. 00069 * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages" 00070 * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). 00071 * 00072 * \par 00073 * The <code>pState</code> points to state variables array. 00074 * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. 00075 * The state variables are arranged in the <code>pState</code> array as: 00076 * <pre> 00077 * {x[n-1], x[n-2], y[n-1], y[n-2]} 00078 * </pre> 00079 * 00080 * \par 00081 * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. 00082 * The state array has a total length of <code>4*numStages</code> values. 00083 * The state variables are updated after each block of data is processed, the coefficients are untouched. 00084 * 00085 * \par Instance Structure 00086 * The coefficients and state variables for a filter are stored together in an instance data structure. 00087 * A separate instance structure must be defined for each filter. 00088 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. 00089 * There are separate instance structure declarations for each of the 3 supported data types. 00090 * 00091 * \par Init Functions 00092 * There is also an associated initialization function for each data type. 00093 * The initialization function performs following operations: 00094 * - Sets the values of the internal structure fields. 00095 * - Zeros out the values in the state buffer. 00096 * To do this manually without calling the init function, assign the follow subfields of the instance structure: 00097 * numStages, pCoeffs, pState. Also set all of the values in pState to zero. 00098 * 00099 * \par 00100 * Use of the initialization function is optional. 00101 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. 00102 * To place an instance structure into a const data section, the instance structure must be manually initialized. 00103 * Set the values in the state buffer to zeros before static initialization. 00104 * The code below statically initializes each of the 3 different data type filter instance structures 00105 * <pre> 00106 * arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs}; 00107 * arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift}; 00108 * arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift}; 00109 * </pre> 00110 * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer; 00111 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied. 00112 * 00113 * \par Fixed-Point Behavior 00114 * Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions. 00115 * Following issues must be considered: 00116 * - Scaling of coefficients 00117 * - Filter gain 00118 * - Overflow and saturation 00119 * 00120 * \par 00121 * <b>Scaling of coefficients: </b> 00122 * Filter coefficients are represented as fractional values and 00123 * coefficients are restricted to lie in the range <code>[-1 +1)</code>. 00124 * The fixed-point functions have an additional scaling parameter <code>postShift</code> 00125 * which allow the filter coefficients to exceed the range <code>[+1 -1)</code>. 00126 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. 00127 * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator" 00128 * This essentially scales the filter coefficients by <code>2^postShift</code>. 00129 * For example, to realize the coefficients 00130 * <pre> 00131 * {1.5, -0.8, 1.2, 1.6, -0.9} 00132 * </pre> 00133 * set the pCoeffs array to: 00134 * <pre> 00135 * {0.75, -0.4, 0.6, 0.8, -0.45} 00136 * </pre> 00137 * and set <code>postShift=1</code> 00138 * 00139 * \par 00140 * <b>Filter gain: </b> 00141 * The frequency response of a Biquad filter is a function of its coefficients. 00142 * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies. 00143 * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter. 00144 * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed. 00145 * 00146 * \par 00147 * <b>Overflow and saturation: </b> 00148 * For Q15 and Q31 versions, it is described separately as part of the function specific documentation below. 00149 */ 00150 00151 /** 00152 * @addtogroup BiquadCascadeDF1 00153 * @{ 00154 */ 00155 00156 /** 00157 * @param[in] *S points to an instance of the floating-point Biquad cascade structure. 00158 * @param[in] *pSrc points to the block of input data. 00159 * @param[out] *pDst points to the block of output data. 00160 * @param[in] blockSize number of samples to process per call. 00161 * @return none. 00162 * 00163 */ 00164 00165 void arm_biquad_cascade_df1_f32( 00166 const arm_biquad_casd_df1_inst_f32 * S, 00167 float32_t * pSrc, 00168 float32_t * pDst, 00169 uint32_t blockSize) 00170 { 00171 float32_t *pIn = pSrc; /* source pointer */ 00172 float32_t *pOut = pDst; /* destination pointer */ 00173 float32_t *pState = S->pState; /* pState pointer */ 00174 float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ 00175 float32_t acc; /* Simulates the accumulator */ 00176 float32_t b0, b1, b2, a1, a2; /* Filter coefficients */ 00177 float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */ 00178 float32_t Xn; /* temporary input */ 00179 uint32_t sample, stage = S->numStages; /* loop counters */ 00180 00181 00182 #if defined (ARM_MATH_DSP) 00183 00184 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00185 00186 do 00187 { 00188 /* Reading the coefficients */ 00189 b0 = *pCoeffs++; 00190 b1 = *pCoeffs++; 00191 b2 = *pCoeffs++; 00192 a1 = *pCoeffs++; 00193 a2 = *pCoeffs++; 00194 00195 /* Reading the pState values */ 00196 Xn1 = pState[0]; 00197 Xn2 = pState[1]; 00198 Yn1 = pState[2]; 00199 Yn2 = pState[3]; 00200 00201 /* Apply loop unrolling and compute 4 output values simultaneously. */ 00202 /* The variable acc hold output values that are being computed: 00203 * 00204 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00205 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00206 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00207 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00208 */ 00209 00210 sample = blockSize >> 2U; 00211 00212 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00213 ** a second loop below computes the remaining 1 to 3 samples. */ 00214 while (sample > 0U) 00215 { 00216 /* Read the first input */ 00217 Xn = *pIn++; 00218 00219 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00220 Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00221 00222 /* Store the result in the accumulator in the destination buffer. */ 00223 *pOut++ = Yn2; 00224 00225 /* Every time after the output is computed state should be updated. */ 00226 /* The states should be updated as: */ 00227 /* Xn2 = Xn1 */ 00228 /* Xn1 = Xn */ 00229 /* Yn2 = Yn1 */ 00230 /* Yn1 = acc */ 00231 00232 /* Read the second input */ 00233 Xn2 = *pIn++; 00234 00235 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00236 Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1); 00237 00238 /* Store the result in the accumulator in the destination buffer. */ 00239 *pOut++ = Yn1; 00240 00241 /* Every time after the output is computed state should be updated. */ 00242 /* The states should be updated as: */ 00243 /* Xn2 = Xn1 */ 00244 /* Xn1 = Xn */ 00245 /* Yn2 = Yn1 */ 00246 /* Yn1 = acc */ 00247 00248 /* Read the third input */ 00249 Xn1 = *pIn++; 00250 00251 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00252 Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2); 00253 00254 /* Store the result in the accumulator in the destination buffer. */ 00255 *pOut++ = Yn2; 00256 00257 /* Every time after the output is computed state should be updated. */ 00258 /* The states should be updated as: */ 00259 /* Xn2 = Xn1 */ 00260 /* Xn1 = Xn */ 00261 /* Yn2 = Yn1 */ 00262 /* Yn1 = acc */ 00263 00264 /* Read the forth input */ 00265 Xn = *pIn++; 00266 00267 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00268 Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1); 00269 00270 /* Store the result in the accumulator in the destination buffer. */ 00271 *pOut++ = Yn1; 00272 00273 /* Every time after the output is computed state should be updated. */ 00274 /* The states should be updated as: */ 00275 /* Xn2 = Xn1 */ 00276 /* Xn1 = Xn */ 00277 /* Yn2 = Yn1 */ 00278 /* Yn1 = acc */ 00279 Xn2 = Xn1; 00280 Xn1 = Xn; 00281 00282 /* decrement the loop counter */ 00283 sample--; 00284 00285 } 00286 00287 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00288 ** No loop unrolling is used. */ 00289 sample = blockSize & 0x3U; 00290 00291 while (sample > 0U) 00292 { 00293 /* Read the input */ 00294 Xn = *pIn++; 00295 00296 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00297 acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00298 00299 /* Store the result in the accumulator in the destination buffer. */ 00300 *pOut++ = acc; 00301 00302 /* Every time after the output is computed state should be updated. */ 00303 /* The states should be updated as: */ 00304 /* Xn2 = Xn1 */ 00305 /* Xn1 = Xn */ 00306 /* Yn2 = Yn1 */ 00307 /* Yn1 = acc */ 00308 Xn2 = Xn1; 00309 Xn1 = Xn; 00310 Yn2 = Yn1; 00311 Yn1 = acc; 00312 00313 /* decrement the loop counter */ 00314 sample--; 00315 00316 } 00317 00318 /* Store the updated state variables back into the pState array */ 00319 *pState++ = Xn1; 00320 *pState++ = Xn2; 00321 *pState++ = Yn1; 00322 *pState++ = Yn2; 00323 00324 /* The first stage goes from the input buffer to the output buffer. */ 00325 /* Subsequent numStages occur in-place in the output buffer */ 00326 pIn = pDst; 00327 00328 /* Reset the output pointer */ 00329 pOut = pDst; 00330 00331 /* decrement the loop counter */ 00332 stage--; 00333 00334 } while (stage > 0U); 00335 00336 #else 00337 00338 /* Run the below code for Cortex-M0 */ 00339 00340 do 00341 { 00342 /* Reading the coefficients */ 00343 b0 = *pCoeffs++; 00344 b1 = *pCoeffs++; 00345 b2 = *pCoeffs++; 00346 a1 = *pCoeffs++; 00347 a2 = *pCoeffs++; 00348 00349 /* Reading the pState values */ 00350 Xn1 = pState[0]; 00351 Xn2 = pState[1]; 00352 Yn1 = pState[2]; 00353 Yn2 = pState[3]; 00354 00355 /* The variables acc holds the output value that is computed: 00356 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00357 */ 00358 00359 sample = blockSize; 00360 00361 while (sample > 0U) 00362 { 00363 /* Read the input */ 00364 Xn = *pIn++; 00365 00366 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00367 acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00368 00369 /* Store the result in the accumulator in the destination buffer. */ 00370 *pOut++ = acc; 00371 00372 /* Every time after the output is computed state should be updated. */ 00373 /* The states should be updated as: */ 00374 /* Xn2 = Xn1 */ 00375 /* Xn1 = Xn */ 00376 /* Yn2 = Yn1 */ 00377 /* Yn1 = acc */ 00378 Xn2 = Xn1; 00379 Xn1 = Xn; 00380 Yn2 = Yn1; 00381 Yn1 = acc; 00382 00383 /* decrement the loop counter */ 00384 sample--; 00385 } 00386 00387 /* Store the updated state variables back into the pState array */ 00388 *pState++ = Xn1; 00389 *pState++ = Xn2; 00390 *pState++ = Yn1; 00391 *pState++ = Yn2; 00392 00393 /* The first stage goes from the input buffer to the output buffer. */ 00394 /* Subsequent numStages occur in-place in the output buffer */ 00395 pIn = pDst; 00396 00397 /* Reset the output pointer */ 00398 pOut = pDst; 00399 00400 /* decrement the loop counter */ 00401 stage--; 00402 00403 } while (stage > 0U); 00404 00405 #endif /* #if defined (ARM_MATH_DSP) */ 00406 00407 } 00408 00409 00410 /** 00411 * @} end of BiquadCascadeDF1 group 00412 */ 00413
Generated on Tue Jul 12 2022 16:46:22 by
