Reem M / Mbed OS http-server-example1
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers NanostackRfPhyMcr20a.cpp Source File

NanostackRfPhyMcr20a.cpp

00001 /*
00002  * Copyright (c) 2014-2015 ARM Limited. All rights reserved.
00003  * SPDX-License-Identifier: Apache-2.0
00004  * Licensed under the Apache License, Version 2.0 (the License); you may
00005  * not use this file except in compliance with the License.
00006  * You may obtain a copy of the License at
00007  *
00008  * http://www.apache.org/licenses/LICENSE-2.0
00009  *
00010  * Unless required by applicable law or agreed to in writing, software
00011  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
00012  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00013  * See the License for the specific language governing permissions and
00014  * limitations under the License.
00015  */
00016 #include "NanostackRfPhyMcr20a.h"
00017 #include "ns_types.h"
00018 #include "platform/arm_hal_interrupt.h"
00019 #include "nanostack/platform/arm_hal_phy.h"
00020 #include <string.h>
00021 #include "rtos.h"
00022 
00023 /* Freescale headers which are for C files */
00024 extern "C" {
00025 #include "MCR20Drv.h "
00026 #include "MCR20Reg.h"
00027 #include "MCR20Overwrites.h "
00028 }
00029 
00030 
00031 #define RF_BUFFER_SIZE 128
00032 
00033 /*Radio RX and TX state definitions*/
00034 #define RFF_ON 0x01
00035 #define RFF_RX 0x02
00036 #define RFF_TX 0x04
00037 #define RFF_CCA 0x08
00038 
00039 #define RF_MODE_NORMAL  0
00040 #define RF_MODE_SNIFFER 1
00041 
00042 #define RF_CCA_THRESHOLD 75 /* -75 dBm */
00043 
00044 #define RF_TX_POWER_MAX 0
00045 
00046 /* PHY constants in symbols */
00047 #define gPhyWarmUpTime_c       9
00048 #define gPhySHRDuration_c     10
00049 #define gPhySymbolsPerOctet_c  2
00050 #define gPhyAckWaitDuration_c 54
00051 
00052 #define gCcaED_c               0
00053 #define gCcaCCA_MODE1_c        1
00054 
00055 #define gXcvrRunState_d       gXcvrPwrAutodoze_c
00056 #if !defined(TARGET_KW24D)
00057   #define gXcvrLowPowerState_d  gXcvrPwrHibernate_c
00058 #else 
00059   #define gXcvrLowPowerState_d  gXcvrPwrAutodoze_c
00060 #endif
00061 
00062 /* MCR20A XCVR states */
00063 typedef enum xcvrState_tag{
00064   gIdle_c,
00065   gRX_c,
00066   gTX_c,
00067   gCCA_c,
00068   gTR_c,
00069   gCCCA_c,
00070 }xcvrState_t;
00071 
00072 /* MCR20A XCVR low power states */
00073 typedef enum xcvrPwrMode_tag{
00074     gXcvrPwrIdle_c,
00075     gXcvrPwrAutodoze_c,
00076     gXcvrPwrDoze_c,
00077     gXcvrPwrHibernate_c
00078 }xcvrPwrMode_t;
00079 
00080 
00081 /*RF Part Type*/
00082 typedef enum
00083 {
00084     FREESCALE_UNKNOW_DEV = 0,
00085     FREESCALE_MCR20A
00086 }rf_trx_part_e;
00087 
00088 /*Atmel RF states*/
00089 typedef enum
00090 {
00091     NOP = 0x00,
00092     BUSY_RX = 0x01,
00093     RF_TX_START = 0x02,
00094     FORCE_TRX_OFF = 0x03,
00095     FORCE_PLL_ON = 0x04,
00096     RX_ON = 0x06,
00097     TRX_OFF = 0x08,
00098     PLL_ON = 0x09,
00099     BUSY_RX_AACK = 0x11,
00100     SLEEP = 0x0F,
00101     RX_AACK_ON = 0x16,
00102     TX_ARET_ON = 0x19
00103 }rf_trx_states_t;
00104 
00105 /*RF receive buffer*/
00106 static uint8_t rf_buffer[RF_BUFFER_SIZE];
00107 
00108 /* TX info */
00109 static uint8_t  radio_tx_power = 0x17; /* 0 dBm */
00110 static uint8_t  mac_tx_handle = 0;
00111 static uint8_t  need_ack = 0;
00112 static uint16_t tx_len = 0;
00113 
00114 /* RF driver data */
00115 static xcvrState_t mPhySeqState;
00116 static xcvrPwrMode_t mPwrState;
00117 static phy_device_driver_s device_driver;
00118 static uint8_t mStatusAndControlRegs[8];
00119 static uint8_t rf_rnd = 0;
00120 static int8_t  rf_radio_driver_id = -1;
00121 static uint8_t MAC_address[8] = {1, 2, 3, 4, 5, 6, 7, 8};
00122 
00123 /* Driver instance handle and hardware */
00124 static NanostackRfPhyMcr20a *rf = NULL;
00125 static SPI *spi = NULL;
00126 static DigitalOut *cs = NULL;
00127 static DigitalOut *rst = NULL;
00128 static InterruptIn *irq = NULL;
00129 static DigitalIn *irq_pin = NULL;
00130 static Thread irq_thread(osPriorityRealtime, 1024);
00131 
00132 /* Channel info */                 /* 2405    2410    2415    2420    2425    2430    2435    2440    2445    2450    2455    2460    2465    2470    2475    2480 */
00133 static const uint8_t  pll_int[16] =  {0x0B,   0x0B,   0x0B,   0x0B,   0x0B,   0x0B,   0x0C,   0x0C,   0x0C,   0x0C,   0x0C,   0x0C,   0x0D,   0x0D,   0x0D,   0x0D};
00134 static const uint16_t pll_frac[16] = {0x2800, 0x5000, 0x7800, 0xA000, 0xC800, 0xF000, 0x1800, 0x4000, 0x6800, 0x9000, 0xB800, 0xE000, 0x0800, 0x3000, 0x5800, 0x8000};
00135 static uint8_t rf_phy_channel = 0;
00136 
00137 /* Channel configurations for 2.4 */
00138 static const phy_rf_channel_configuration_s phy_24ghz = {2405000000U, 5000000U, 250000U, 16U, M_OQPSK};
00139 
00140 static const phy_device_channel_page_s phy_channel_pages[] = {
00141         { CHANNEL_PAGE_0, &phy_24ghz},
00142         { CHANNEL_PAGE_0, NULL}
00143 };
00144 
00145 
00146 static rf_trx_part_e rf_radio_type_read(void);
00147 
00148 MBED_UNUSED static void rf_ack_wait_timer_start(uint16_t slots);
00149 MBED_UNUSED static void rf_ack_wait_timer_stop(void);
00150 MBED_UNUSED static void rf_handle_cca_ed_done(void);
00151 MBED_UNUSED static void rf_handle_tx_end(void);
00152 MBED_UNUSED static void rf_handle_rx_end(void);
00153 MBED_UNUSED static void rf_on(void);
00154 MBED_UNUSED static void rf_receive(void);
00155 MBED_UNUSED static void rf_poll_trx_state_change(rf_trx_states_t trx_state);
00156 MBED_UNUSED static void rf_init(void);
00157 MBED_UNUSED static void rf_set_mac_address(const uint8_t *ptr);
00158 MBED_UNUSED static int8_t rf_device_register(void);
00159 MBED_UNUSED static void rf_device_unregister(void);
00160 MBED_UNUSED static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol );
00161 MBED_UNUSED static void rf_cca_abort(void);
00162 MBED_UNUSED static void rf_read_mac_address(uint8_t *ptr);
00163 MBED_UNUSED static int8_t rf_read_random(void);
00164 MBED_UNUSED static void rf_calibration_cb(void);
00165 MBED_UNUSED static void rf_init_phy_mode(void);
00166 MBED_UNUSED static void rf_ack_wait_timer_interrupt(void);
00167 MBED_UNUSED static void rf_calibration_timer_interrupt(void);
00168 MBED_UNUSED static void rf_calibration_timer_start(uint32_t slots);
00169 MBED_UNUSED static void rf_cca_timer_interrupt(void);
00170 MBED_UNUSED static void rf_cca_timer_start(uint32_t slots);
00171 MBED_UNUSED static uint16_t rf_get_phy_mtu_size(void);
00172 MBED_UNUSED static uint8_t rf_scale_lqi(int8_t rssi);
00173 
00174 /**
00175  *  RF output power write
00176  *
00177  * \brief TX power has to be set before network start.
00178  *
00179  * \param power
00180  *              See datasheet for TX power settings
00181  *
00182  * \return 0, Supported Value
00183  * \return -1, Not Supported Value
00184  */
00185 MBED_UNUSED static int8_t rf_tx_power_set(uint8_t power);
00186 MBED_UNUSED static uint8_t rf_tx_power_get(void);
00187 MBED_UNUSED static int8_t rf_enable_antenna_diversity(void);
00188 
00189 /* Private functions */
00190 MBED_UNUSED static void    rf_abort(void);
00191 MBED_UNUSED static void    rf_promiscuous(uint8_t mode);
00192 MBED_UNUSED static void    rf_get_timestamp(uint32_t *pRetClk);
00193 MBED_UNUSED static void    rf_set_timeout(uint32_t *pEndTime);
00194 MBED_UNUSED static void    rf_set_power_state(xcvrPwrMode_t newState);
00195 MBED_UNUSED static uint8_t rf_if_read_rnd(void);
00196 MBED_UNUSED static uint8_t rf_convert_LQI(uint8_t hwLqi);
00197 MBED_UNUSED static uint8_t rf_get_channel_energy(void);
00198 MBED_UNUSED static uint8_t rf_convert_energy_level(uint8_t energyLevel);
00199 MBED_UNUSED static int8_t  rf_convert_LQI_to_RSSI(uint8_t lqi);
00200 MBED_UNUSED static int8_t  rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel);
00201 MBED_UNUSED static int8_t  rf_extension(phy_extension_type_e extension_type,uint8_t *data_ptr);
00202 MBED_UNUSED static int8_t  rf_address_write(phy_address_type_e address_type,uint8_t *address_ptr);
00203 MBED_UNUSED static void rf_mac64_read(uint8_t *address);
00204 static void PHY_InterruptThread(void);
00205 static void handle_interrupt(void);
00206 
00207 
00208 /*
00209  * \brief Read connected radio part.
00210  *
00211  * This function only return valid information when rf_init() is called
00212  *
00213  * \return
00214  */
00215 static rf_trx_part_e rf_radio_type_read(void)
00216 {
00217     return FREESCALE_MCR20A;
00218 }
00219 
00220 /*
00221  * \brief Function initialises and registers the RF driver.
00222  *
00223  * \param none
00224  *
00225  * \return rf_radio_driver_id Driver ID given by NET library
00226  */
00227 static int8_t rf_device_register(void)
00228 {
00229     rf_trx_part_e radio_type;
00230 
00231     rf_init();
00232 
00233 
00234 
00235     radio_type = rf_radio_type_read();
00236     if(radio_type == FREESCALE_MCR20A)
00237     {
00238         /*Set pointer to MAC address*/
00239         device_driver.PHY_MAC = MAC_address;
00240         device_driver.driver_description = (char*)"FREESCALE_MAC";
00241 
00242         //Create setup Used Radio chips
00243         /*Type of RF PHY is SubGHz*/
00244         device_driver.link_type = PHY_LINK_15_4_2_4GHZ_TYPE;
00245 
00246         device_driver.phy_channel_pages = phy_channel_pages;
00247         /*Maximum size of payload is 127*/
00248         device_driver.phy_MTU = 127;
00249         /*No header in PHY*/
00250         device_driver.phy_header_length = 0;
00251         /*No tail in PHY*/
00252         device_driver.phy_tail_length = 0;
00253         /*Set address write function*/
00254         device_driver.address_write = &rf_address_write;
00255         /*Set RF extension function*/
00256         device_driver.extension = &rf_extension;
00257         /*Set RF state control function*/
00258         device_driver.state_control = &rf_interface_state_control;
00259         /*Set transmit function*/
00260         device_driver.tx = &rf_start_cca;
00261         /*Upper layer callbacks init to NULL*/
00262         device_driver.phy_rx_cb = NULL;
00263         device_driver.phy_tx_done_cb = NULL;
00264         /*Virtual upper data callback init to NULL*/
00265         device_driver.arm_net_virtual_rx_cb = NULL;
00266         device_driver.arm_net_virtual_tx_cb = NULL;
00267 
00268         /*Register device driver*/
00269         rf_radio_driver_id = arm_net_phy_register(&device_driver);
00270     }
00271 
00272     return rf_radio_driver_id;
00273 }
00274 
00275 /*
00276  * \brief Function unregisters the RF driver.
00277  *
00278  * \param none
00279  *
00280  * \return none
00281  */
00282 static void rf_device_unregister(void)
00283 {
00284     arm_net_phy_unregister(rf_radio_driver_id);
00285 }
00286 
00287 /*
00288  * \brief Function returns the generated 8-bit random value for seeding Pseudo-random generator.
00289  *
00290  * \param none
00291  *
00292  * \return random value
00293  */
00294 static int8_t rf_read_random(void)
00295 {
00296     return rf_rnd;
00297 }
00298 
00299 /*
00300  * \brief Function is a call back for ACK wait timeout.
00301  *
00302  * \param none
00303  *
00304  * \return none
00305  */
00306 static void rf_ack_wait_timer_interrupt(void)
00307 {
00308     /* The packet was transmitted successfully, but no ACK was received */
00309     if (device_driver.phy_tx_done_cb) {
00310         device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 1, 1);
00311     }
00312     rf_receive();
00313 }
00314 
00315 /*
00316  * \brief Function is a call back for calibration interval timer.
00317  *
00318  * \param none
00319  *
00320  * \return none
00321  */
00322 static void rf_calibration_timer_interrupt(void)
00323 {
00324 }
00325 
00326 /*
00327  * \brief Function is a call back for cca interval timer.
00328  *
00329  * \param none
00330  *
00331  * \return none
00332  */
00333 static void rf_cca_timer_interrupt(void)
00334 {
00335     /* CCA time-out handled by Hardware */
00336 }
00337 
00338 
00339 /*
00340  * \brief Function starts the ACK wait time-out.
00341  *
00342  * \param slots The ACK wait time-out in [symbols]
00343  *
00344  * \return none
00345  */
00346 static void rf_ack_wait_timer_start(uint16_t time)
00347 {
00348     uint32_t timeout;
00349 
00350     rf_get_timestamp(&timeout);
00351     timeout += time;
00352     rf_set_timeout(&timeout);
00353 }
00354 
00355 /*
00356  * \brief Function starts the calibration interval.
00357  *
00358  * \param slots Given slots, resolution 50us
00359  *
00360  * \return none
00361  */
00362 static void rf_calibration_timer_start(uint32_t slots)
00363 {
00364     (void)slots;
00365 }
00366 
00367 /*
00368  * \brief Function starts the CCA timout.
00369  *
00370  * \param slots Given slots, resolution 50us
00371  *
00372  * \return none
00373  */
00374 static void rf_cca_timer_start(uint32_t slots)
00375 {
00376     (void)slots;
00377 }
00378 
00379 /*
00380  * \brief Function stops the ACK wait timeout.
00381  *
00382  * \param none
00383  *
00384  * \return none
00385  */
00386 static void rf_ack_wait_timer_stop(void)
00387 {
00388 }
00389 
00390 /*
00391  * \brief Function reads the MAC address array.
00392  *
00393  * \param ptr Pointer to read array
00394  *
00395  * \return none
00396  */
00397 static void rf_read_mac_address(uint8_t *ptr)
00398 {
00399     memcpy(ptr, MAC_address, 8);
00400 }
00401 
00402 /*
00403  * \brief Function sets the MAC address array.
00404  *
00405  * \param ptr Pointer to given MAC address array
00406  *
00407  * \return none
00408  */
00409 static void rf_set_mac_address(const uint8_t *ptr)
00410 {
00411     memcpy(MAC_address, ptr, 8);
00412 }
00413 
00414 static uint16_t rf_get_phy_mtu_size(void)
00415 {
00416     return device_driver.phy_MTU;
00417 }
00418 
00419 /*
00420  * \brief Function writes 16-bit address in RF address filter.
00421  *
00422  * \param short_address Given short address
00423  *
00424  * \return none
00425  */
00426 static void rf_set_short_adr(uint8_t * short_address)
00427 {
00428     /* Write one register at a time to be accessible from hibernate mode */
00429     MCR20Drv_IndirectAccessSPIWrite(MACSHORTADDRS0_MSB, short_address[0]);
00430     MCR20Drv_IndirectAccessSPIWrite(MACSHORTADDRS0_LSB, short_address[1]);
00431 }
00432 
00433 /*
00434  * \brief Function writes PAN Id in RF PAN Id filter.
00435  *
00436  * \param pan_id Given PAN Id
00437  *
00438  * \return none
00439  */
00440 static void rf_set_pan_id(uint8_t *pan_id)
00441 {
00442     /* Write one register at a time to be accessible from hibernate mode */
00443     MCR20Drv_IndirectAccessSPIWrite(MACPANID0_MSB, pan_id[0]);
00444     MCR20Drv_IndirectAccessSPIWrite(MACPANID0_LSB, pan_id[1]);
00445 }
00446 
00447 /*
00448  * \brief Function writes 64-bit address in RF address filter.
00449  *
00450  * \param address Given 64-bit address
00451  *
00452  * \return none
00453  */
00454 static void rf_set_address(uint8_t *address)
00455 {
00456     /* Write one register at a time to be accessible from hibernate mode */
00457     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_0,  address[7]);
00458     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_8,  address[6]);
00459     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_16, address[5]);
00460     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_24, address[4]);
00461     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_32, address[3]);
00462     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_40, address[2]);
00463     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_48, address[1]);
00464     MCR20Drv_IndirectAccessSPIWrite(MACLONGADDRS0_56, address[0]);
00465 }
00466 
00467 /*
00468  * \brief Function sets the RF channel.
00469  *
00470  * \param ch New channel
00471  *
00472  * \return none
00473  */
00474 static void rf_channel_set(uint8_t channel)
00475 {
00476     rf_phy_channel = channel;
00477     MCR20Drv_DirectAccessSPIWrite(PLL_INT0, pll_int[channel - 11]);
00478     MCR20Drv_DirectAccessSPIMultiByteWrite(PLL_FRAC0_LSB, (uint8_t *) &pll_frac[channel - 11], 2);
00479 }
00480 
00481 
00482 /*
00483  * \brief Function initialises the radio driver and resets the radio.
00484  *
00485  * \param none
00486  *
00487  * \return none
00488  */
00489 static void rf_init(void)
00490 {
00491     uint32_t index;
00492     mPhySeqState = gIdle_c;
00493     mPwrState = gXcvrPwrIdle_c;
00494     /*Reset RF module*/
00495     MCR20Drv_RESET();
00496     /* Initialize the transceiver SPI driver */
00497     MCR20Drv_Init();
00498     /* Disable Tristate on MISO for SPI reads */
00499     MCR20Drv_IndirectAccessSPIWrite(MISC_PAD_CTRL, 0x02);
00500     /* Set XCVR clock output settings */
00501     #if !defined(TARGET_KW24D)
00502       MCR20Drv_Set_CLK_OUT_Freq(gMCR20_ClkOutFreq_d);
00503     #endif
00504     /* Set default XCVR power state */
00505     rf_set_power_state(gXcvrRunState_d);
00506 
00507     /* PHY_CTRL1 default HW settings  + AUTOACK enabled */
00508     mStatusAndControlRegs[PHY_CTRL1] = cPHY_CTRL1_AUTOACK;
00509     /* PHY_CTRL2 : mask all PP interrupts */
00510     mStatusAndControlRegs[PHY_CTRL2] = cPHY_CTRL2_CRC_MSK | \
00511                                        cPHY_CTRL2_PLL_UNLOCK_MSK | \
00512                                        /*cPHY_CTRL2_FILTERFAIL_MSK | */ \
00513                                        cPHY_CTRL2_RX_WMRK_MSK | \
00514                                        cPHY_CTRL2_CCAMSK | \
00515                                        cPHY_CTRL2_RXMSK | \
00516                                        cPHY_CTRL2_TXMSK | \
00517                                        cPHY_CTRL2_SEQMSK;
00518     /* PHY_CTRL3 : enable timer 3 and disable remaining interrupts */
00519     mStatusAndControlRegs[PHY_CTRL3] = cPHY_CTRL3_ASM_MSK    | \
00520                                        cPHY_CTRL3_PB_ERR_MSK | \
00521                                        cPHY_CTRL3_WAKE_MSK   | \
00522                                        cPHY_CTRL3_TMR3CMP_EN;
00523     /* PHY_CTRL4 unmask global TRX interrupts, enable 16 bit mode for TC2 - TC2 prime EN */
00524     mStatusAndControlRegs[PHY_CTRL4] = cPHY_CTRL4_TC2PRIME_EN | (gCcaCCA_MODE1_c << cPHY_CTRL4_CCATYPE_Shift_c);
00525     /* Clear all PP IRQ bits to avoid unexpected interrupts immediately after initialization */
00526     mStatusAndControlRegs[IRQSTS1] = cIRQSTS1_PLL_UNLOCK_IRQ | \
00527                                      cIRQSTS1_FILTERFAIL_IRQ | \
00528                                      cIRQSTS1_RXWTRMRKIRQ | \
00529                                      cIRQSTS1_CCAIRQ | \
00530                                      cIRQSTS1_RXIRQ | \
00531                                      cIRQSTS1_TXIRQ | \
00532                                      cIRQSTS1_SEQIRQ;
00533     
00534     mStatusAndControlRegs[IRQSTS2] = cIRQSTS2_ASM_IRQ | cIRQSTS2_PB_ERR_IRQ | cIRQSTS2_WAKE_IRQ;
00535     /* Mask and clear all TMR IRQs */
00536     mStatusAndControlRegs[IRQSTS3] = cIRQSTS3_TMR4MSK | cIRQSTS3_TMR3MSK | cIRQSTS3_TMR2MSK | cIRQSTS3_TMR1MSK | \
00537                                      cIRQSTS3_TMR4IRQ | cIRQSTS3_TMR3IRQ | cIRQSTS3_TMR2IRQ | cIRQSTS3_TMR1IRQ;
00538     /* Write settings to XCVR */
00539     MCR20Drv_DirectAccessSPIMultiByteWrite(PHY_CTRL1, &mStatusAndControlRegs[PHY_CTRL1], 5);
00540     /* Clear all interrupts */
00541     MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, &mStatusAndControlRegs[IRQSTS1], 3);
00542     
00543     /*  RX_FRAME_FILTER. Accept FrameVersion 0 and 1 packets, reject all others */
00544     MCR20Drv_IndirectAccessSPIWrite(RX_FRAME_FILTER, (cRX_FRAME_FLT_FRM_VER | \
00545                                                       cRX_FRAME_FLT_BEACON_FT | \
00546                                                       cRX_FRAME_FLT_DATA_FT | \
00547                                                       cRX_FRAME_FLT_CMD_FT ));
00548     /* Direct register overwrites */
00549     for (index = 0; index < sizeof(overwrites_direct)/sizeof(overwrites_t); index++)
00550         MCR20Drv_DirectAccessSPIWrite(overwrites_direct[index].address, overwrites_direct[index].data);
00551     /* Indirect register overwrites */
00552     for (index = 0; index < sizeof(overwrites_indirect)/sizeof(overwrites_t); index++)
00553         MCR20Drv_IndirectAccessSPIWrite(overwrites_indirect[index].address, overwrites_indirect[index].data);
00554 
00555     /* Set the CCA energy threshold value */
00556     MCR20Drv_IndirectAccessSPIWrite(CCA1_THRESH, RF_CCA_THRESHOLD);
00557     /* Set prescaller to obtain 1 symbol (16us) timebase */
00558     MCR20Drv_IndirectAccessSPIWrite(TMR_PRESCALE, 0x05);
00559 
00560     MCR20Drv_IRQ_Enable();
00561 
00562     /*Read random variable. This will be used when seeding pseudo-random generator*/
00563     rf_rnd = rf_if_read_rnd();
00564     /*Read eui64*/
00565     rf_mac64_read(MAC_address);
00566     /*set default channel to 11*/
00567     rf_channel_set(11);
00568     /*Start receiver*/
00569     rf_receive();
00570 }
00571 
00572 /**
00573  * \brief Function gets called when MAC is setting radio off.
00574  *
00575  * \param none
00576  *
00577  * \return none
00578  */
00579 static void rf_off(void)
00580 {
00581     /* Abort any ongoing sequences */
00582     rf_abort();
00583     /* Set XCVR in a low power state */
00584     rf_set_power_state(gXcvrLowPowerState_d);
00585 }
00586 
00587 /*
00588  * \brief Function polls the RF state until it has changed to desired state.
00589  *
00590  * \param trx_state RF state
00591  *
00592  * \return none
00593  */
00594 static void rf_poll_trx_state_change(rf_trx_states_t trx_state)
00595 {
00596     (void)trx_state;
00597 }
00598 
00599 /*
00600  * \brief Function starts the CCA process before starting data transmission and copies the data to RF TX FIFO.
00601  *
00602  * \param data_ptr Pointer to TX data
00603  * \param data_length Length of the TX data
00604  * \param tx_handle Handle to transmission
00605  * \return 0 Success
00606  * \return -1 Busy
00607  */
00608 static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol )
00609 {
00610     uint8_t ccaMode;
00611 
00612     /* Parameter validation */
00613     if( !data_ptr || (data_length > 125) || (PHY_LAYER_PAYLOAD != data_protocol) )
00614     {
00615         return -1;
00616     }
00617 
00618     if( mPhySeqState == gRX_c )
00619     {
00620         uint8_t phyReg = MCR20Drv_DirectAccessSPIRead(SEQ_STATE) & 0x1F;
00621         /* Check for an Rx in progress. */
00622         if((phyReg <= 0x06) || (phyReg == 0x15) || (phyReg == 0x16))
00623         {
00624             if (device_driver.phy_tx_done_cb) {
00625                 device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 1, 1);
00626             }
00627             return -1;
00628         }
00629         rf_abort();
00630     }
00631 
00632     /*Check if transmitter is busy*/
00633     if( mPhySeqState != gIdle_c )
00634     {
00635         /*Return busy*/
00636         return -1;
00637     }
00638 
00639     /*Store TX handle*/
00640     mac_tx_handle = tx_handle;
00641     /*Check if transmitted data needs to be acked*/
00642     need_ack = (*data_ptr & 0x20) == 0x20;
00643 
00644     /* Set XCVR power state in run mode */
00645     rf_set_power_state(gXcvrRunState_d);
00646     /* Load data into XCVR */
00647     tx_len = data_length + 2;
00648     MCR20Drv_PB_SPIBurstWrite(data_ptr - 1, data_length + 1);
00649     MCR20Drv_PB_SPIByteWrite(0,tx_len);
00650     
00651     /* Set CCA mode 1 */
00652     ccaMode = (mStatusAndControlRegs[PHY_CTRL4] >> cPHY_CTRL4_CCATYPE_Shift_c) & cPHY_CTRL4_CCATYPE;
00653     if( ccaMode != gCcaCCA_MODE1_c )
00654     {
00655         mStatusAndControlRegs[PHY_CTRL4] &= ~(cPHY_CTRL4_CCATYPE << cPHY_CTRL4_CCATYPE_Shift_c);
00656         mStatusAndControlRegs[PHY_CTRL4] |= gCcaCCA_MODE1_c << cPHY_CTRL4_CCATYPE_Shift_c;
00657         MCR20Drv_DirectAccessSPIWrite(PHY_CTRL4, mStatusAndControlRegs[PHY_CTRL4]);
00658     }
00659 
00660     /* Read XCVR registers */
00661     mStatusAndControlRegs[0] = MCR20Drv_DirectAccessSPIMultiByteRead(IRQSTS2, &mStatusAndControlRegs[1], 4);
00662     mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
00663     mStatusAndControlRegs[PHY_CTRL1] |= gCCA_c;
00664     mPhySeqState = gCCA_c;
00665 
00666     /* Ensure that no spurious interrupts are raised */
00667     mStatusAndControlRegs[IRQSTS3] &= 0xF0; /* do not change other IRQ status */
00668     mStatusAndControlRegs[IRQSTS3] |= (cIRQSTS3_TMR3MSK | cIRQSTS3_TMR3IRQ);
00669     MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, mStatusAndControlRegs, 3);
00670 
00671     /* Write XCVR settings */
00672     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
00673     
00674     /* Unmask SEQ interrupt */
00675     mStatusAndControlRegs[PHY_CTRL2] &= ~(cPHY_CTRL2_SEQMSK);
00676     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL2, mStatusAndControlRegs[PHY_CTRL2]);
00677 
00678     /*Return success*/
00679     return 0;
00680 }
00681 
00682 /*
00683  * \brief Function aborts CCA process.
00684  *
00685  * \param none
00686  *
00687  * \return none
00688  */
00689 static void rf_cca_abort(void)
00690 {
00691     rf_abort();
00692 }
00693 
00694 /*
00695  * \brief Function starts the transmission of the frame. Called from ISR context!
00696  *
00697  * \param none
00698  *
00699  * \return none
00700  */
00701 static void rf_start_tx(void)
00702 {
00703     /* Perform TxRxAck sequence if required by phyTxMode */
00704     if( need_ack )
00705     {
00706         mStatusAndControlRegs[PHY_CTRL1] |= cPHY_CTRL1_RXACKRQD;
00707         mPhySeqState = gTR_c;
00708     }
00709     else
00710     {
00711         mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_RXACKRQD);
00712         mPhySeqState = gTX_c;
00713     }
00714 
00715     mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
00716     mStatusAndControlRegs[PHY_CTRL1] |= mPhySeqState;
00717     
00718     /* Unmask SEQ interrupt */
00719     mStatusAndControlRegs[PHY_CTRL2] &= ~(cPHY_CTRL2_SEQMSK);
00720 
00721     /* Start the sequence immediately */
00722     MCR20Drv_DirectAccessSPIMultiByteWrite(PHY_CTRL1, &mStatusAndControlRegs[PHY_CTRL1], 2);
00723 
00724     if( need_ack )
00725     {
00726         rf_ack_wait_timer_start(gPhyWarmUpTime_c + gPhySHRDuration_c + tx_len * gPhySymbolsPerOctet_c + gPhyAckWaitDuration_c);
00727     }
00728 }
00729 
00730 /*
00731  * \brief Function sets the RF in RX state. Called from ISR context!
00732  *
00733  * \param none
00734  *
00735  * \return none
00736  */
00737 static void rf_receive(void)
00738 {
00739     uint8_t phyRegs[5];
00740 
00741     /* RX can start only from Idle state */
00742     if( mPhySeqState != gIdle_c )
00743     {
00744         return;
00745     }
00746 
00747     /* Set XCVR power state in run mode */
00748     rf_set_power_state(gXcvrRunState_d);
00749     /* read XVCR settings */
00750     phyRegs[IRQSTS1] = MCR20Drv_DirectAccessSPIMultiByteRead(IRQSTS2, &phyRegs[IRQSTS2], 4);
00751     /* unmask SEQ interrupt */
00752     phyRegs[PHY_CTRL2] &= ~(cPHY_CTRL2_SEQMSK);
00753     /* set XcvrSeq to RX */
00754     phyRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
00755     phyRegs[PHY_CTRL1] |=  gRX_c;
00756     mPhySeqState = gRX_c;
00757     /* Ensure that no spurious interrupts are raised */
00758     phyRegs[IRQSTS3] &= 0xF0; /* do not change other IRQ status */
00759     phyRegs[IRQSTS3] |= cIRQSTS3_TMR3MSK | cIRQSTS3_TMR3IRQ;
00760     /* sync settings with XCVR */
00761     MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, phyRegs, 5);
00762 }
00763 
00764 /*
00765  * \brief Function calibrates the radio.
00766  *
00767  * \param none
00768  *
00769  * \return none
00770  */
00771 static void rf_calibration_cb(void)
00772 {
00773 }
00774 
00775 /*
00776  * \brief Function sets RF_ON flag when radio is powered.
00777  *
00778  * \param none
00779  *
00780  * \return none
00781  */
00782 static void rf_on(void)
00783 {
00784 }
00785 
00786 /*
00787  * \brief Function is a call back for RX end interrupt.
00788  *
00789  * \param none
00790  *
00791  * \return none
00792  */
00793 static void rf_handle_rx_end(void)
00794 {
00795     uint8_t rf_lqi = MCR20Drv_DirectAccessSPIRead(LQI_VALUE);
00796     int8_t rf_rssi = 0;
00797     uint8_t len = mStatusAndControlRegs[RX_FRM_LEN] - 2;
00798     
00799 
00800     /*Start receiver*/
00801     rf_receive();
00802 
00803     /*Check the length is valid*/
00804     if(len > 1 && len < RF_BUFFER_SIZE)
00805     {
00806         rf_lqi  = rf_convert_LQI(rf_lqi);
00807         rf_rssi = rf_convert_LQI_to_RSSI(rf_lqi);
00808         /*gcararu: Scale LQI using received RSSI, to match the LQI reported by the ATMEL radio */
00809         rf_lqi  = rf_scale_lqi(rf_rssi);
00810 
00811         /*Read received packet*/
00812         MCR20Drv_PB_SPIBurstRead(rf_buffer, len);
00813         if (device_driver.phy_rx_cb) {
00814             device_driver.phy_rx_cb(rf_buffer, len, rf_lqi, rf_rssi, rf_radio_driver_id);
00815         }
00816     }
00817 }
00818 
00819 /*
00820  * \brief Function is called when MAC is shutting down the radio.
00821  *
00822  * \param none
00823  *
00824  * \return none
00825  */
00826 static void rf_shutdown(void)
00827 {
00828     /*Call RF OFF*/
00829     rf_off();
00830 }
00831 
00832 /*
00833  * \brief Function is a call back for TX end interrupt.
00834  *
00835  * \param none
00836  *
00837  * \return none
00838  */
00839 static void rf_handle_tx_end(void)
00840 {
00841     uint8_t rx_frame_pending = mStatusAndControlRegs[IRQSTS1] & cIRQSTS1_RX_FRM_PEND;
00842 
00843     /*Start receiver*/
00844     rf_receive();
00845 
00846     if (!device_driver.phy_tx_done_cb) {
00847         return;
00848     }
00849 
00850     /*Call PHY TX Done API*/
00851     if( need_ack )
00852     {
00853         if( rx_frame_pending )
00854         {
00855             device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_DONE_PENDING, 1, 1);
00856         }
00857         else
00858         {
00859             // arm_net_phy_tx_done(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 1, 1);
00860             device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_DONE, 1, 1);
00861         }
00862     }
00863     else
00864     {
00865         device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 1, 1);
00866     }
00867 }
00868 
00869 /*
00870  * \brief Function is a call back for CCA ED done interrupt.
00871  *
00872  * \param none
00873  *
00874  * \return none
00875  */
00876 static void rf_handle_cca_ed_done(void)
00877 {
00878     /*Check the result of CCA process*/
00879     if( !(mStatusAndControlRegs[IRQSTS2] & cIRQSTS2_CCA) ) 
00880     {
00881         rf_start_tx();
00882     }
00883     else if (device_driver.phy_tx_done_cb)
00884     {
00885         /*Send CCA fail notification*/
00886         device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 1, 1);
00887     }
00888 }
00889 
00890 /*
00891  * \brief Function sets the TX power variable.
00892  *
00893  * \param power TX power setting
00894  *
00895  * \return 0 Success
00896  * \return -1 Fail
00897  */
00898 static int8_t rf_tx_power_set(uint8_t power)
00899 {
00900     /* gcapraru: Map MCR20A Tx power levels over ATMEL values */
00901     static uint8_t pwrLevelMapping[16] = {25,25,25,24,24,24,23,23,22,22,21,20,19,18,17,14};
00902 
00903     if( power > 15 )
00904     {
00905         return -1;
00906     }
00907 
00908     radio_tx_power = power;
00909     MCR20Drv_DirectAccessSPIWrite(PA_PWR, pwrLevelMapping[power]);
00910     return 0;
00911 }
00912 
00913 /*
00914  * \brief Function returns the TX power variable.
00915  *
00916  * \param none
00917  *
00918  * \return radio_tx_power TX power variable
00919  */
00920 static uint8_t rf_tx_power_get(void)
00921 {
00922     return radio_tx_power;
00923 }
00924 
00925 /*
00926  * \brief Function enables the usage of Antenna diversity.
00927  *
00928  * \param none
00929  *
00930  * \return 0 Success
00931  */
00932 static int8_t rf_enable_antenna_diversity(void)
00933 {
00934     uint8_t phyReg;
00935 
00936     phyReg = MCR20Drv_IndirectAccessSPIRead(ANT_AGC_CTRL);
00937     phyReg |= cANT_AGC_CTRL_FAD_EN_Mask_c;
00938     MCR20Drv_IndirectAccessSPIWrite(ANT_AGC_CTRL, phyReg);
00939 
00940     phyReg = MCR20Drv_IndirectAccessSPIRead(ANT_PAD_CTRL);
00941     phyReg |= 0x02;
00942     MCR20Drv_IndirectAccessSPIWrite(ANT_PAD_CTRL, phyReg);
00943     
00944     return 0;
00945 }
00946 
00947 /*
00948  * \brief Function gives the control of RF states to MAC.
00949  *
00950  * \param new_state RF state
00951  * \param rf_channel RF channel
00952  *
00953  * \return 0 Success
00954  */
00955 static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel)
00956 {
00957     int8_t ret_val = 0;
00958     switch (new_state)
00959     {
00960         /*Reset PHY driver and set to idle*/
00961         case PHY_INTERFACE_RESET:
00962             break;
00963         /*Disable PHY Interface driver*/
00964         case PHY_INTERFACE_DOWN:
00965             rf_shutdown();
00966             break;
00967         /*Enable PHY Interface driver*/
00968         case PHY_INTERFACE_UP:
00969             rf_channel_set(rf_channel);
00970             rf_receive();
00971             break;
00972         /*Enable wireless interface ED scan mode*/
00973         case PHY_INTERFACE_RX_ENERGY_STATE:
00974             rf_abort();
00975             rf_channel_set(rf_channel);
00976             break;
00977         case PHY_INTERFACE_SNIFFER_STATE:             /**< Enable Sniffer state */
00978             rf_promiscuous(1);
00979             rf_channel_set(rf_channel);
00980             rf_receive();
00981             break;
00982     }
00983     return ret_val;
00984 }
00985 
00986 /*
00987  * \brief Function controls the ACK pending, channel setting and energy detection.
00988  *
00989  * \param extension_type Type of control
00990  * \param data_ptr Data from NET library
00991  *
00992  * \return 0 Success
00993  */
00994 static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_ptr)
00995 {
00996     switch (extension_type)
00997     {
00998         /*Control MAC pending bit for Indirect data transmission*/
00999         case PHY_EXTENSION_CTRL_PENDING_BIT:
01000         {
01001             uint8_t reg = MCR20Drv_DirectAccessSPIRead(SRC_CTRL);
01002 
01003             if(*data_ptr)
01004             {
01005                 reg |= cSRC_CTRL_ACK_FRM_PND;
01006             }
01007             else
01008             {
01009                 reg &= ~cSRC_CTRL_ACK_FRM_PND;
01010             }
01011             
01012             MCR20Drv_DirectAccessSPIWrite(SRC_CTRL, reg);
01013             break;
01014             
01015         }
01016         /*Return frame Auto Ack frame pending status*/
01017         case PHY_EXTENSION_READ_LAST_ACK_PENDING_STATUS: {
01018             uint8_t reg = MCR20Drv_DirectAccessSPIRead(SRC_CTRL);
01019             if (reg & cSRC_CTRL_ACK_FRM_PND) {
01020                 *data_ptr = 1;
01021             } else {
01022                 *data_ptr  = 0;
01023             }
01024             break;
01025         }
01026         /*Set channel*/
01027         case PHY_EXTENSION_SET_CHANNEL:
01028             break;
01029         /*Read energy on the channel*/
01030         case PHY_EXTENSION_READ_CHANNEL_ENERGY:
01031             *data_ptr = rf_get_channel_energy();
01032             break;
01033         /*Read status of the link*/
01034         case PHY_EXTENSION_READ_LINK_STATUS:
01035             break;
01036         case PHY_EXTENSION_CONVERT_SIGNAL_INFO:
01037             break;
01038     }
01039     return 0;
01040 }
01041 
01042 /*
01043  * \brief Function sets the addresses to RF address filters.
01044  *
01045  * \param address_type Type of address
01046  * \param address_ptr Pointer to given address
01047  *
01048  * \return 0 Success
01049  */
01050 static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
01051 {
01052     int8_t ret_val = 0;
01053     switch (address_type)
01054     {
01055         /*Set 48-bit address*/
01056         case PHY_MAC_48BIT:
01057             break;
01058             /*Set 64-bit address*/
01059         case PHY_MAC_64BIT:
01060             rf_set_address(address_ptr);
01061             break;
01062         /*Set 16-bit address*/
01063         case PHY_MAC_16BIT:
01064             rf_set_short_adr(address_ptr);
01065             break;
01066         /*Set PAN Id*/
01067         case PHY_MAC_PANID:
01068             rf_set_pan_id(address_ptr);
01069             break;
01070     }
01071     return ret_val;
01072 }
01073 
01074 static void rf_mac64_read(uint8_t *address)
01075 {
01076     /* Write one register at a time to be accessible from hibernate mode */
01077     address[7] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_0);
01078     address[6] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_8);
01079     address[5] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_16);
01080     address[4] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_24);
01081     address[3] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_32);
01082     address[2] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_40);
01083     address[1] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_48);
01084     address[0] = MCR20Drv_DirectAccessSPIRead(MACLONGADDRS0_56);
01085 
01086 }
01087 
01088 /*
01089  * \brief Function initialises the ACK wait time and returns the used PHY mode.
01090  *
01091  * \param none
01092  *
01093  * \return tmp Used PHY mode
01094  */
01095 static void rf_init_phy_mode(void)
01096 {
01097 }
01098 
01099 /*
01100  * \brief Function is a RF interrupt vector. End of frame in RX and TX are handled here as well as CCA process interrupt.
01101  *
01102  * \param none
01103  *
01104  * \return none
01105  */
01106 static void PHY_InterruptHandler(void)
01107 {
01108     /* Disable and clear transceiver(IRQ_B) interrupt */
01109     MCR20Drv_IRQ_Disable();
01110     irq_thread.signal_set(1);
01111 }
01112 
01113 static void PHY_InterruptThread(void)
01114 {
01115     for (;;) {
01116         osEvent event = irq_thread.signal_wait(0);
01117         if (event.status != osEventSignal) {
01118             continue;
01119         }
01120         handle_interrupt();
01121     }
01122 }
01123 
01124 static void handle_interrupt(void)
01125 {
01126     uint8_t xcvseqCopy;
01127 
01128     //MCR20Drv_IRQ_Clear();
01129 
01130     /* Read transceiver interrupt status and control registers */
01131     mStatusAndControlRegs[IRQSTS1] =
01132         MCR20Drv_DirectAccessSPIMultiByteRead(IRQSTS2, &mStatusAndControlRegs[IRQSTS2], 7);
01133 
01134     xcvseqCopy = mStatusAndControlRegs[PHY_CTRL1] & cPHY_CTRL1_XCVSEQ;
01135     
01136     /* Flter Fail IRQ */
01137     if( (mStatusAndControlRegs[IRQSTS1] & cIRQSTS1_FILTERFAIL_IRQ) &&
01138        !(mStatusAndControlRegs[PHY_CTRL2] & cPHY_CTRL2_FILTERFAIL_MSK) )
01139     {
01140         if( xcvseqCopy == gRX_c )
01141         {
01142             /* Abort current SEQ */
01143             mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
01144             MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
01145             /* Wait for Sequence Idle */
01146             while ((MCR20Drv_DirectAccessSPIRead(SEQ_STATE) & 0x1F) != 0);
01147             /* Clear IRQ flags: */
01148             MCR20Drv_DirectAccessSPIWrite(IRQSTS1, cIRQSTS1_SEQIRQ);
01149             /* Restart Rx asap */
01150             mStatusAndControlRegs[PHY_CTRL1] |= gRX_c;
01151             MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
01152         }
01153     }
01154     
01155     /* TMR3 IRQ: ACK wait time-out */
01156     if( (mStatusAndControlRegs[IRQSTS3] & cIRQSTS3_TMR3IRQ) &&
01157        !(mStatusAndControlRegs[IRQSTS3] & cIRQSTS3_TMR3MSK) )
01158     {
01159         /* Disable TMR3 IRQ */
01160         mStatusAndControlRegs[IRQSTS3] |= cIRQSTS3_TMR3MSK;
01161 
01162         if( xcvseqCopy == gTR_c )
01163         {
01164             /* Set XCVR to Idle */
01165             mPhySeqState = gIdle_c;
01166             mStatusAndControlRegs[PHY_CTRL1] &=  ~( cPHY_CTRL1_XCVSEQ );
01167             /* Mask interrupts */
01168             mStatusAndControlRegs[PHY_CTRL2] |= cPHY_CTRL2_CCAMSK | cPHY_CTRL2_RXMSK | cPHY_CTRL2_TXMSK | cPHY_CTRL2_SEQMSK;
01169             /* Sync settings with XCVR */
01170             MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, mStatusAndControlRegs, 5);
01171             
01172             rf_ack_wait_timer_interrupt();
01173             MCR20Drv_IRQ_Enable();
01174             return;
01175         }
01176     }
01177 
01178     /* Sequencer interrupt, the autosequence has completed */
01179     if( (mStatusAndControlRegs[IRQSTS1] & cIRQSTS1_SEQIRQ) && 
01180        !(mStatusAndControlRegs[PHY_CTRL2] & cPHY_CTRL2_SEQMSK) )
01181     {
01182         /* Set XCVR to Idle */
01183         mPhySeqState = gIdle_c;
01184         mStatusAndControlRegs[PHY_CTRL1] &=  ~( cPHY_CTRL1_XCVSEQ );
01185         /* Mask interrupts */
01186         mStatusAndControlRegs[PHY_CTRL2] |= cPHY_CTRL2_CCAMSK | cPHY_CTRL2_RXMSK | cPHY_CTRL2_TXMSK | cPHY_CTRL2_SEQMSK;
01187         /* Sync settings with XCVR */
01188         MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, mStatusAndControlRegs, 5);
01189                                                                
01190         /* PLL unlock, the autosequence has been aborted due to PLL unlock */
01191         if( mStatusAndControlRegs[IRQSTS1] & cIRQSTS1_PLL_UNLOCK_IRQ )
01192         {
01193             if(xcvseqCopy == gRX_c)
01194             {
01195                 rf_receive();
01196             }
01197             MCR20Drv_IRQ_Enable();
01198             return;
01199         }
01200 
01201         switch(xcvseqCopy)
01202         {
01203         case gTX_c:
01204         case gTR_c:
01205             rf_handle_tx_end();
01206             break;
01207 
01208         case gRX_c:
01209             rf_handle_rx_end();
01210             break;
01211 
01212         case gCCA_c:
01213             rf_handle_cca_ed_done();
01214             break;
01215 
01216         default:
01217             break;
01218         }
01219         
01220         MCR20Drv_IRQ_Enable();
01221         return;
01222     }
01223     /* Other IRQ. Clear XCVR interrupt flags */
01224     MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, mStatusAndControlRegs, 3);
01225     MCR20Drv_IRQ_Enable();
01226 }
01227 
01228 /*
01229  * \brief Function forces the XCVR to Idle state.
01230  *
01231  * \param none
01232  *
01233  * \return none
01234  */
01235 static void rf_abort(void)
01236 {
01237     /* Mask XCVR irq */
01238     MCR20Drv_IRQ_Disable();
01239 
01240     mPhySeqState = gIdle_c;
01241 
01242     mStatusAndControlRegs[IRQSTS1] = MCR20Drv_DirectAccessSPIMultiByteRead(IRQSTS2, &mStatusAndControlRegs[IRQSTS2], 5);
01243     
01244     /* Mask SEQ interrupt */
01245     mStatusAndControlRegs[PHY_CTRL2] |= cPHY_CTRL2_SEQMSK;
01246     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL2, mStatusAndControlRegs[PHY_CTRL2]);
01247 
01248     if( (mStatusAndControlRegs[PHY_CTRL1] & cPHY_CTRL1_XCVSEQ) != gIdle_c )
01249     {
01250         /* Abort current SEQ */
01251         mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
01252         MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
01253         
01254         /* Wait for Sequence Idle (if not already) */
01255         while ((MCR20Drv_DirectAccessSPIRead(SEQ_STATE) & 0x1F) != 0);
01256         //while ( !(MCR20Drv_DirectAccessSPIRead(IRQSTS1) & cIRQSTS1_SEQIRQ));
01257         mStatusAndControlRegs[IRQSTS1] |= cIRQSTS1_SEQIRQ;
01258     }
01259 
01260     /* Clear all PP IRQ bits to avoid unexpected interrupts and mask TMR3 interrupt.
01261        Do not change TMR IRQ status. */
01262     mStatusAndControlRegs[IRQSTS3] &= 0xF0;
01263     mStatusAndControlRegs[IRQSTS3] |= (cIRQSTS3_TMR3MSK | cIRQSTS3_TMR3IRQ);
01264     MCR20Drv_DirectAccessSPIMultiByteWrite(IRQSTS1, mStatusAndControlRegs, 3);
01265 
01266     /* Unmask XCVR irq */
01267     MCR20Drv_IRQ_Enable();
01268 }
01269 
01270 /*
01271  * \brief Function reads a time-stamp value from XCVR [symbols]
01272  *
01273  * \param pEndTime pointer to location where time-stamp will be stored
01274  *
01275  * \return none
01276  */
01277 static void rf_get_timestamp(uint32_t *pRetClk)
01278 {
01279     if(NULL == pRetClk)
01280     {
01281         return;
01282     }
01283 
01284     platform_enter_critical();
01285 
01286     *pRetClk = 0;
01287     MCR20Drv_DirectAccessSPIMultiByteRead(EVENT_TMR_LSB, (uint8_t *) pRetClk, 3);
01288 
01289     platform_exit_critical();
01290 }
01291 
01292 /*
01293  * \brief Function set a time-out to an XCVR sequence.
01294  *
01295  * \param pEndTime pointer to the sequence time-out value [symbols]
01296  *
01297  * \return none
01298  */
01299 static void rf_set_timeout(uint32_t *pEndTime)
01300 {
01301     uint8_t phyReg;
01302     
01303     if(NULL == pEndTime)
01304     {
01305         return;
01306     }
01307     
01308     platform_enter_critical();
01309     
01310     phyReg = MCR20Drv_DirectAccessSPIRead(IRQSTS3);
01311     phyReg &= 0xF0;                    /* do not change IRQ status */
01312     phyReg |= (cIRQSTS3_TMR3MSK);      /* mask TMR3 interrupt */
01313     MCR20Drv_DirectAccessSPIWrite(IRQSTS3, phyReg);
01314     
01315     MCR20Drv_DirectAccessSPIMultiByteWrite(T3CMP_LSB, (uint8_t *) pEndTime, 3);
01316     
01317     phyReg &= ~(cIRQSTS3_TMR3MSK);      /* unmask TMR3 interrupt */
01318     phyReg |= (cIRQSTS3_TMR3IRQ);       /* aknowledge TMR3 IRQ */
01319     MCR20Drv_DirectAccessSPIWrite(IRQSTS3, phyReg);
01320     
01321     platform_exit_critical();
01322 }
01323 
01324 /*
01325  * \brief Function reads a random number from RF.
01326  *
01327  * \param none 
01328  *
01329  * \return 8-bit random number
01330  */
01331 static uint8_t rf_if_read_rnd(void)
01332 {
01333     uint8_t phyReg;
01334 
01335     MCR20Drv_IRQ_Disable();
01336     /* Check if XCVR is idle */
01337     phyReg = MCR20Drv_DirectAccessSPIRead(PHY_CTRL1);
01338 
01339     if( (phyReg & cPHY_CTRL1_XCVSEQ) == gIdle_c )
01340     {
01341         /* Program a new sequence */
01342         MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, phyReg | gCCA_c);
01343         /* Wait for sequence to finish */
01344         while( !(MCR20Drv_DirectAccessSPIRead(IRQSTS1) & cIRQSTS1_SEQIRQ) );
01345         /* Clear interrupt flag */
01346         MCR20Drv_DirectAccessSPIWrite(IRQSTS1, cIRQSTS1_SEQIRQ);
01347     }
01348 
01349     MCR20Drv_IRQ_Enable();
01350 
01351     return MCR20Drv_IndirectAccessSPIRead(_RNG);
01352 }
01353 
01354 /*
01355  * \brief Function converts LQI into RSSI.
01356  *
01357  * \param LQI 
01358  *
01359  * \return RSSI
01360  */
01361 static int8_t rf_convert_LQI_to_RSSI(uint8_t lqi)
01362 {
01363     int32_t rssi = (50*lqi - 16820) / 163;
01364     return (int8_t)rssi;
01365 }
01366 
01367 /*
01368  * \brief Function scale the LQI value reported by RF into a 0-255 value.
01369  *
01370  * \param hwLqi - the LQI value reported by RF
01371  *
01372  * \return scaled LQI
01373  */
01374 static uint8_t rf_convert_LQI(uint8_t hwLqi)
01375 {
01376     uint32_t tmpLQI;
01377 
01378     /* LQI Saturation Level */
01379     if (hwLqi >= 230)
01380     {
01381         return 0xFF;
01382     }
01383     else if (hwLqi <= 9)
01384     {
01385         return 0;
01386     }
01387     else
01388     {
01389         /* Rescale the LQI values from min to saturation to the 0x00 - 0xFF range */
01390         /* The LQI value mst be multiplied by ~1.1087 */
01391         /* tmpLQI =  hwLqi * 7123 ~= hwLqi * 65536 * 0.1087 = hwLqi * 2^16 * 0.1087*/
01392         tmpLQI = ((uint32_t)hwLqi * (uint32_t)7123 );
01393         /* tmpLQI =  (tmpLQI / 2^16) + hwLqi */
01394         tmpLQI = (uint32_t)(tmpLQI >> 16) + (uint32_t)hwLqi;
01395 
01396         return (uint8_t)tmpLQI;
01397     }
01398 }
01399 
01400 /*
01401  * \brief Function enables/disables Rx promiscuous mode.
01402  *
01403  * \param state of XCVR promiscuous mode
01404  *
01405  * \return none
01406  */
01407 static void rf_promiscuous(uint8_t state)
01408 {
01409     uint8_t rxFrameFltReg, phyCtrl4Reg;
01410 
01411     rxFrameFltReg = MCR20Drv_IndirectAccessSPIRead(RX_FRAME_FILTER);
01412     phyCtrl4Reg = MCR20Drv_DirectAccessSPIRead(PHY_CTRL4);
01413 
01414     if( state )
01415     {
01416         /* FRM_VER[1:0] = b00. 00: Any FrameVersion accepted (0,1,2 & 3) */
01417         /* All frame types accepted*/
01418         phyCtrl4Reg   |= cPHY_CTRL4_PROMISCUOUS;
01419         rxFrameFltReg &= ~(cRX_FRAME_FLT_FRM_VER);
01420         rxFrameFltReg |=  (cRX_FRAME_FLT_ACK_FT | cRX_FRAME_FLT_NS_FT);
01421     }
01422     else
01423     {
01424         phyCtrl4Reg   &= ~cPHY_CTRL4_PROMISCUOUS;
01425         /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets, reject all others */
01426         /* Beacon, Data and MAC command frame types accepted */
01427         rxFrameFltReg &= ~(cRX_FRAME_FLT_FRM_VER);
01428         rxFrameFltReg |= (0x03 << cRX_FRAME_FLT_FRM_VER_Shift_c);
01429         rxFrameFltReg &= ~(cRX_FRAME_FLT_ACK_FT | cRX_FRAME_FLT_NS_FT);
01430     }
01431 
01432     MCR20Drv_IndirectAccessSPIWrite(RX_FRAME_FILTER, rxFrameFltReg);
01433     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL4, phyCtrl4Reg);
01434 }
01435 
01436 /*
01437  * \brief Function used to switch XCVR power state.
01438  *
01439  * \param state The XCVR power mode
01440  *
01441  * \return none
01442  */
01443 static void rf_set_power_state(xcvrPwrMode_t newState)
01444 {
01445     uint8_t pwrMode;
01446     uint8_t xtalState;
01447 
01448     if( mPwrState == newState )
01449     {
01450         return;
01451     }
01452 
01453     /* Read power settings from RF */
01454     pwrMode = MCR20Drv_DirectAccessSPIRead(PWR_MODES);
01455     xtalState = pwrMode & cPWR_MODES_XTALEN;
01456     
01457     switch( newState )
01458     {
01459     case gXcvrPwrIdle_c:
01460         pwrMode &= ~(cPWR_MODES_AUTODOZE);
01461         pwrMode |= (cPWR_MODES_XTALEN | cPWR_MODES_PMC_MODE);
01462         break;
01463     case gXcvrPwrAutodoze_c:
01464         pwrMode |= (cPWR_MODES_XTALEN | cPWR_MODES_AUTODOZE | cPWR_MODES_PMC_MODE);
01465         break;
01466     case gXcvrPwrDoze_c:
01467         pwrMode &= ~(cPWR_MODES_AUTODOZE | cPWR_MODES_PMC_MODE);
01468         pwrMode |= cPWR_MODES_XTALEN;
01469         break;
01470     case gXcvrPwrHibernate_c:
01471         pwrMode &= ~(cPWR_MODES_XTALEN | cPWR_MODES_AUTODOZE | cPWR_MODES_PMC_MODE);
01472         break;
01473     default:
01474         return;
01475     }
01476     
01477     mPwrState = newState;
01478     MCR20Drv_DirectAccessSPIWrite(PWR_MODES, pwrMode);
01479     
01480     if( !xtalState && (pwrMode & cPWR_MODES_XTALEN))
01481     {
01482         /* wait for crystal oscillator to complet its warmup */
01483         while( ( MCR20Drv_DirectAccessSPIRead(PWR_MODES) & cPWR_MODES_XTAL_READY ) != cPWR_MODES_XTAL_READY);
01484         /* wait for radio wakeup from hibernate interrupt */
01485         while( ( MCR20Drv_DirectAccessSPIRead(IRQSTS2) & (cIRQSTS2_WAKE_IRQ | cIRQSTS2_TMRSTATUS) ) != (cIRQSTS2_WAKE_IRQ | cIRQSTS2_TMRSTATUS) );
01486 
01487         MCR20Drv_DirectAccessSPIWrite(IRQSTS2, cIRQSTS2_WAKE_IRQ);
01488     }
01489 }
01490 
01491 /*
01492  * \brief Function reads the energy level on the preselected channel.
01493  *
01494  * \return energy level
01495  */
01496 static uint8_t rf_get_channel_energy(void)
01497 {
01498     uint8_t ccaMode;
01499 
01500     MCR20Drv_IRQ_Disable();
01501     /* RX can start only from Idle state */
01502     if( mPhySeqState != gIdle_c )
01503     {
01504         MCR20Drv_IRQ_Enable();
01505         return 0;
01506     }
01507 
01508     /* Set XCVR power state in run mode */
01509     rf_set_power_state(gXcvrRunState_d);
01510 
01511     /* Switch to ED mode */
01512     ccaMode = (mStatusAndControlRegs[PHY_CTRL4] >> cPHY_CTRL4_CCATYPE_Shift_c) & cPHY_CTRL4_CCATYPE;
01513     if( ccaMode != gCcaED_c )
01514     {
01515         mStatusAndControlRegs[PHY_CTRL4] &= ~(cPHY_CTRL4_CCATYPE << cPHY_CTRL4_CCATYPE_Shift_c);
01516         mStatusAndControlRegs[PHY_CTRL4] |= gCcaED_c << cPHY_CTRL4_CCATYPE_Shift_c;
01517         MCR20Drv_DirectAccessSPIWrite(PHY_CTRL4, mStatusAndControlRegs[PHY_CTRL4]);
01518     }
01519     
01520     /* Start ED sequence */
01521     mStatusAndControlRegs[PHY_CTRL1] |= gCCA_c;
01522     MCR20Drv_DirectAccessSPIWrite(IRQSTS1, cIRQSTS1_CCAIRQ | cIRQSTS1_SEQIRQ);
01523     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
01524     /* Wait for sequence to finish */
01525     while ( !(MCR20Drv_DirectAccessSPIRead(IRQSTS1) & cIRQSTS1_SEQIRQ));
01526     /* Set XCVR to Idle */
01527     mStatusAndControlRegs[PHY_CTRL1] &= ~(cPHY_CTRL1_XCVSEQ);
01528     MCR20Drv_DirectAccessSPIWrite(PHY_CTRL1, mStatusAndControlRegs[PHY_CTRL1]);
01529     MCR20Drv_DirectAccessSPIWrite(IRQSTS1, cIRQSTS1_CCAIRQ | cIRQSTS1_SEQIRQ);
01530     
01531     MCR20Drv_IRQ_Enable();
01532     
01533     return rf_convert_energy_level(MCR20Drv_DirectAccessSPIRead(CCA1_ED_FNL));
01534 }
01535 
01536 /*
01537  * \brief Function converts the energy level from dBm to a 0-255 value.
01538  *
01539  * \param energyLevel in dBm
01540  *
01541  * \return energy level (0-255)
01542  */
01543 static uint8_t rf_convert_energy_level(uint8_t energyLevel)
01544 {
01545     if(energyLevel >= 90)
01546     {
01547         /* ED value is below minimum. Return 0x00. */
01548         energyLevel = 0x00;
01549     }
01550     else if(energyLevel <= 26)
01551     {
01552         /* ED value is above maximum. Return 0xFF. */
01553         energyLevel = 0xFF;
01554     }
01555     else
01556     {
01557         /* Energy level (-90 dBm to -26 dBm ) --> varies form 0 to 64 */
01558         energyLevel = (90 - energyLevel);
01559         /* Rescale the energy level values to the 0x00-0xff range (0 to 64 translates in 0 to 255) */
01560         /* energyLevel * 3.9844 ~= 4 */
01561         /* Multiply with 4=2^2 by shifting left.
01562         The multiplication will not overflow beacause energyLevel has values between 0 and 63 */
01563         energyLevel <<= 2;
01564     }
01565 
01566     return energyLevel;
01567 }
01568 
01569 static uint8_t rf_scale_lqi(int8_t rssi)
01570 {
01571     uint8_t scaled_lqi;
01572     /*Worst case sensitivity*/
01573     const int8_t rf_sensitivity = -98;
01574 
01575     /*rssi < RF sensitivity*/
01576     if(rssi < rf_sensitivity)
01577         scaled_lqi=0;
01578     /*-91 dBm < rssi < -81 dBm (AT86RF233 XPro)*/
01579     /*-90 dBm < rssi < -80 dBm (AT86RF212B XPro)*/
01580     else if(rssi < (rf_sensitivity + 10))
01581         scaled_lqi=31;
01582     /*-81 dBm < rssi < -71 dBm (AT86RF233 XPro)*/
01583     /*-80 dBm < rssi < -70 dBm (AT86RF212B XPro)*/
01584     else if(rssi < (rf_sensitivity + 20))
01585         scaled_lqi=207;
01586     /*-71 dBm < rssi < -61 dBm (AT86RF233 XPro)*/
01587     /*-70 dBm < rssi < -60 dBm (AT86RF212B XPro)*/
01588     else if(rssi < (rf_sensitivity + 30))
01589         scaled_lqi=255;
01590     /*-61 dBm < rssi < -51 dBm (AT86RF233 XPro)*/
01591     /*-60 dBm < rssi < -50 dBm (AT86RF212B XPro)*/
01592     else if(rssi < (rf_sensitivity + 40))
01593         scaled_lqi=255;
01594     /*-51 dBm < rssi < -41 dBm (AT86RF233 XPro)*/
01595     /*-50 dBm < rssi < -40 dBm (AT86RF212B XPro)*/
01596     else if(rssi < (rf_sensitivity + 50))
01597         scaled_lqi=255;
01598     /*-41 dBm < rssi < -31 dBm (AT86RF233 XPro)*/
01599     /*-40 dBm < rssi < -30 dBm (AT86RF212B XPro)*/
01600     else if(rssi < (rf_sensitivity + 60))
01601         scaled_lqi=255;
01602     /*-31 dBm < rssi < -21 dBm (AT86RF233 XPro)*/
01603     /*-30 dBm < rssi < -20 dBm (AT86RF212B XPro)*/
01604     else if(rssi < (rf_sensitivity + 70))
01605         scaled_lqi=255;
01606     /*rssi > RF saturation*/
01607     else if(rssi > (rf_sensitivity + 80))
01608         scaled_lqi=111;
01609     /*-21 dBm < rssi < -11 dBm (AT86RF233 XPro)*/
01610     /*-20 dBm < rssi < -10 dBm (AT86RF212B XPro)*/
01611     else
01612         scaled_lqi=255;
01613 
01614     return scaled_lqi;
01615 }
01616 
01617 
01618 /*****************************************************************************/
01619 /*              Layer porting to the Freescale driver                        */
01620 /*****************************************************************************/
01621 extern "C" void xcvr_spi_init(uint32_t instance)
01622 {
01623     (void)instance;
01624 }
01625 
01626 extern "C" void RF_IRQ_Init(void) {
01627     MBED_ASSERT(irq != NULL);
01628     irq->mode(PullUp);
01629     irq->fall(&PHY_InterruptHandler);
01630 }
01631 
01632 extern "C" void RF_IRQ_Enable(void) {
01633     MBED_ASSERT(irq != NULL);
01634     irq->enable_irq();
01635 }
01636 
01637 extern "C" void RF_IRQ_Disable(void) {
01638     MBED_ASSERT(irq != NULL);
01639     irq->disable_irq();
01640 }
01641 
01642 extern "C" uint8_t RF_isIRQ_Pending(void) {
01643     MBED_ASSERT(rf != NULL);
01644     return !irq_pin->read();
01645 }
01646 
01647 extern "C" void RF_RST_Set(int state) {
01648     MBED_ASSERT(rst != NULL);
01649     *rst = state;
01650 }
01651 
01652 extern "C" void gXcvrAssertCS_d(void)
01653 {
01654     MBED_ASSERT(cs != NULL);
01655     *cs = 0;
01656 }
01657 
01658 extern "C" void gXcvrDeassertCS_d(void)
01659 {
01660     MBED_ASSERT(cs != NULL);
01661     *cs = 1;
01662 }
01663 
01664 extern "C" void xcvr_spi_configure_speed(uint32_t instance, uint32_t freq)
01665 {
01666     MBED_ASSERT(spi != NULL);
01667     (void)instance;
01668     spi->frequency(freq);
01669 }
01670 
01671 extern "C" void xcvr_spi_transfer(uint32_t instance,
01672                          uint8_t * sendBuffer,
01673                          uint8_t * receiveBuffer,
01674                          size_t transferByteCount)
01675 {
01676     MBED_ASSERT(spi != NULL);
01677     (void)instance;
01678     volatile uint8_t dummy;
01679 
01680     if( !transferByteCount )
01681         return;
01682 
01683     if( !sendBuffer && !receiveBuffer )
01684         return;
01685 
01686     while( transferByteCount-- )
01687     {
01688         if( sendBuffer )
01689         {
01690             dummy = *sendBuffer;
01691             sendBuffer++;
01692         }
01693         else
01694         {
01695             dummy = 0xFF;
01696         }
01697 
01698         dummy = spi->write(dummy);
01699 
01700         if( receiveBuffer )
01701         {
01702             *receiveBuffer = dummy;
01703             receiveBuffer++;
01704         }
01705     }
01706 }
01707 
01708 /*****************************************************************************/
01709 /*****************************************************************************/
01710 
01711 static void rf_if_lock(void)
01712 {
01713     platform_enter_critical();
01714 }
01715 
01716 static void rf_if_unlock(void)
01717 {
01718     platform_exit_critical();
01719 }
01720 
01721 NanostackRfPhyMcr20a::NanostackRfPhyMcr20a(PinName spi_mosi, PinName spi_miso,
01722         PinName spi_sclk, PinName spi_cs,  PinName spi_rst, PinName spi_irq)
01723     : _spi(spi_mosi, spi_miso, spi_sclk), _rf_cs(spi_cs), _rf_rst(spi_rst, 1),
01724       _rf_irq(spi_irq), _rf_irq_pin(spi_irq)
01725 {
01726     // Do nothing
01727 }
01728 
01729 NanostackRfPhyMcr20a::~NanostackRfPhyMcr20a()
01730 {
01731     // Do nothing
01732 }
01733 
01734 int8_t NanostackRfPhyMcr20a::rf_register()
01735 {
01736 
01737     rf_if_lock();
01738 
01739     if (rf != NULL) {
01740         rf_if_unlock();
01741         error("Multiple registrations of NanostackRfPhyMcr20a not supported");
01742         return -1;
01743     }
01744 
01745     irq_thread.start(mbed::callback(PHY_InterruptThread));
01746 
01747     _pins_set();
01748     int8_t radio_id = rf_device_register();
01749     if (radio_id < 0) {
01750         _pins_clear();
01751         rf = NULL;
01752     }
01753 
01754     rf_if_unlock();
01755     return radio_id;
01756 }
01757 
01758 void NanostackRfPhyMcr20a::rf_unregister()
01759 {
01760     rf_if_lock();
01761 
01762     if (rf != this) {
01763         rf_if_unlock();
01764         return;
01765     }
01766 
01767     rf_device_unregister();
01768     rf = NULL;
01769     _pins_clear();
01770 
01771     rf_if_unlock();
01772 }
01773 
01774 void NanostackRfPhyMcr20a::get_mac_address(uint8_t *mac)
01775 {
01776     rf_if_lock();
01777 
01778     memcpy((void*)mac, (void*)MAC_address, sizeof(MAC_address));
01779 
01780     rf_if_unlock();
01781 }
01782 
01783 void NanostackRfPhyMcr20a::set_mac_address(uint8_t *mac)
01784 {
01785     rf_if_lock();
01786 
01787     if (NULL != rf) {
01788         error("NanostackRfPhyAtmel cannot change mac address when running");
01789         rf_if_unlock();
01790         return;
01791     }
01792     memcpy((void*)MAC_address, (void*)mac, sizeof(MAC_address));
01793 
01794     rf_if_unlock();
01795 }
01796 
01797 void NanostackRfPhyMcr20a::_pins_set()
01798 {
01799     spi = &_spi;
01800     cs = &_rf_cs;
01801     rst = &_rf_rst;
01802     irq = &_rf_irq;
01803     irq_pin = &_rf_irq_pin;
01804 }
01805 
01806 void NanostackRfPhyMcr20a::_pins_clear()
01807 {
01808     spi = NULL;
01809     cs = NULL;
01810     rst = NULL;
01811     irq = NULL;
01812     irq_pin = NULL;
01813 }