MPU9250 library fork

Dependents:   IMU_serial

Committer:
rctaduio
Date:
Thu Oct 06 22:19:07 2016 +0000
Revision:
0:89967a01628c
Updated to include madgewick open source lib

Who changed what in which revision?

UserRevisionLine numberNew contents of line
rctaduio 0:89967a01628c 1 /*
rctaduio 0:89967a01628c 2 TODO:
rctaduio 0:89967a01628c 3 add configuration function:
rctaduio 0:89967a01628c 4 loop through mux
rctaduio 0:89967a01628c 5 if imu
rctaduio 0:89967a01628c 6 append imu to a list
rctaduio 0:89967a01628c 7 ...
rctaduio 0:89967a01628c 8 ...
rctaduio 0:89967a01628c 9 if list > 0
rctaduio 0:89967a01628c 10 return something good
rctaduio 0:89967a01628c 11
rctaduio 0:89967a01628c 12 add config output function
rctaduio 0:89967a01628c 13
rctaduio 0:89967a01628c 14
rctaduio 0:89967a01628c 15
rctaduio 0:89967a01628c 16
rctaduio 0:89967a01628c 17 */
rctaduio 0:89967a01628c 18
rctaduio 0:89967a01628c 19
rctaduio 0:89967a01628c 20 #ifndef MPU9250_H
rctaduio 0:89967a01628c 21 #define MPU9250_H
rctaduio 0:89967a01628c 22
rctaduio 0:89967a01628c 23 #include "mbed.h"
rctaduio 0:89967a01628c 24 #include "math.h"
rctaduio 0:89967a01628c 25 #include "MadgwickAHRS.h"
rctaduio 0:89967a01628c 26
rctaduio 0:89967a01628c 27 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
rctaduio 0:89967a01628c 28 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
rctaduio 0:89967a01628c 29 //
rctaduio 0:89967a01628c 30 //Magnetometer Registers
rctaduio 0:89967a01628c 31 #define AK8963_ADDRESS 0x0C<<1
rctaduio 0:89967a01628c 32 #define WHO_AM_I_AK8963 0x00 // should return 0x48
rctaduio 0:89967a01628c 33 #define INFO 0x01
rctaduio 0:89967a01628c 34 #define AK8963_ST1 0x02 // data ready status bit 0
rctaduio 0:89967a01628c 35 #define AK8963_XOUT_L 0x03 // data
rctaduio 0:89967a01628c 36 #define AK8963_XOUT_H 0x04
rctaduio 0:89967a01628c 37 #define AK8963_YOUT_L 0x05
rctaduio 0:89967a01628c 38 #define AK8963_YOUT_H 0x06
rctaduio 0:89967a01628c 39 #define AK8963_ZOUT_L 0x07
rctaduio 0:89967a01628c 40 #define AK8963_ZOUT_H 0x08
rctaduio 0:89967a01628c 41 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
rctaduio 0:89967a01628c 42 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
rctaduio 0:89967a01628c 43 #define AK8963_ASTC 0x0C // Self test control
rctaduio 0:89967a01628c 44 #define AK8963_I2CDIS 0x0F // I2C disable
rctaduio 0:89967a01628c 45 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
rctaduio 0:89967a01628c 46 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
rctaduio 0:89967a01628c 47 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
rctaduio 0:89967a01628c 48
rctaduio 0:89967a01628c 49 #define SELF_TEST_X_GYRO 0x00
rctaduio 0:89967a01628c 50 #define SELF_TEST_Y_GYRO 0x01
rctaduio 0:89967a01628c 51 #define SELF_TEST_Z_GYRO 0x02
rctaduio 0:89967a01628c 52
rctaduio 0:89967a01628c 53 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
rctaduio 0:89967a01628c 54 #define Y_FINE_GAIN 0x04
rctaduio 0:89967a01628c 55 #define Z_FINE_GAIN 0x05
rctaduio 0:89967a01628c 56 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
rctaduio 0:89967a01628c 57 #define XA_OFFSET_L_TC 0x07
rctaduio 0:89967a01628c 58 #define YA_OFFSET_H 0x08
rctaduio 0:89967a01628c 59 #define YA_OFFSET_L_TC 0x09
rctaduio 0:89967a01628c 60 #define ZA_OFFSET_H 0x0A
rctaduio 0:89967a01628c 61 #define ZA_OFFSET_L_TC 0x0B */
rctaduio 0:89967a01628c 62
rctaduio 0:89967a01628c 63 #define SELF_TEST_X_ACCEL 0x0D
rctaduio 0:89967a01628c 64 #define SELF_TEST_Y_ACCEL 0x0E
rctaduio 0:89967a01628c 65 #define SELF_TEST_Z_ACCEL 0x0F
rctaduio 0:89967a01628c 66
rctaduio 0:89967a01628c 67 #define SELF_TEST_A 0x10
rctaduio 0:89967a01628c 68
rctaduio 0:89967a01628c 69 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
rctaduio 0:89967a01628c 70 #define XG_OFFSET_L 0x14
rctaduio 0:89967a01628c 71 #define YG_OFFSET_H 0x15
rctaduio 0:89967a01628c 72 #define YG_OFFSET_L 0x16
rctaduio 0:89967a01628c 73 #define ZG_OFFSET_H 0x17
rctaduio 0:89967a01628c 74 #define ZG_OFFSET_L 0x18
rctaduio 0:89967a01628c 75 #define SMPLRT_DIV 0x19
rctaduio 0:89967a01628c 76 #define CONFIG 0x1A
rctaduio 0:89967a01628c 77 #define GYRO_CONFIG 0x1B
rctaduio 0:89967a01628c 78 #define ACCEL_CONFIG 0x1C
rctaduio 0:89967a01628c 79 #define ACCEL_CONFIG2 0x1D
rctaduio 0:89967a01628c 80 #define LP_ACCEL_ODR 0x1E
rctaduio 0:89967a01628c 81 #define WOM_THR 0x1F
rctaduio 0:89967a01628c 82
rctaduio 0:89967a01628c 83 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
rctaduio 0:89967a01628c 84 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
rctaduio 0:89967a01628c 85 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
rctaduio 0:89967a01628c 86
rctaduio 0:89967a01628c 87 #define FIFO_EN 0x23
rctaduio 0:89967a01628c 88 #define I2C_MST_CTRL 0x24
rctaduio 0:89967a01628c 89 #define I2C_SLV0_ADDR 0x25
rctaduio 0:89967a01628c 90 #define I2C_SLV0_REG 0x26
rctaduio 0:89967a01628c 91 #define I2C_SLV0_CTRL 0x27
rctaduio 0:89967a01628c 92 #define I2C_SLV1_ADDR 0x28
rctaduio 0:89967a01628c 93 #define I2C_SLV1_REG 0x29
rctaduio 0:89967a01628c 94 #define I2C_SLV1_CTRL 0x2A
rctaduio 0:89967a01628c 95 #define I2C_SLV2_ADDR 0x2B
rctaduio 0:89967a01628c 96 #define I2C_SLV2_REG 0x2C
rctaduio 0:89967a01628c 97 #define I2C_SLV2_CTRL 0x2D
rctaduio 0:89967a01628c 98 #define I2C_SLV3_ADDR 0x2E
rctaduio 0:89967a01628c 99 #define I2C_SLV3_REG 0x2F
rctaduio 0:89967a01628c 100 #define I2C_SLV3_CTRL 0x30
rctaduio 0:89967a01628c 101 #define I2C_SLV4_ADDR 0x31
rctaduio 0:89967a01628c 102 #define I2C_SLV4_REG 0x32
rctaduio 0:89967a01628c 103 #define I2C_SLV4_DO 0x33
rctaduio 0:89967a01628c 104 #define I2C_SLV4_CTRL 0x34
rctaduio 0:89967a01628c 105 #define I2C_SLV4_DI 0x35
rctaduio 0:89967a01628c 106 #define I2C_MST_STATUS 0x36
rctaduio 0:89967a01628c 107 #define INT_PIN_CFG 0x37
rctaduio 0:89967a01628c 108 #define INT_ENABLE 0x38
rctaduio 0:89967a01628c 109 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
rctaduio 0:89967a01628c 110 #define INT_STATUS 0x3A
rctaduio 0:89967a01628c 111 #define ACCEL_XOUT_H 0x3B
rctaduio 0:89967a01628c 112 #define ACCEL_XOUT_L 0x3C
rctaduio 0:89967a01628c 113 #define ACCEL_YOUT_H 0x3D
rctaduio 0:89967a01628c 114 #define ACCEL_YOUT_L 0x3E
rctaduio 0:89967a01628c 115 #define ACCEL_ZOUT_H 0x3F
rctaduio 0:89967a01628c 116 #define ACCEL_ZOUT_L 0x40
rctaduio 0:89967a01628c 117 #define TEMP_OUT_H 0x41
rctaduio 0:89967a01628c 118 #define TEMP_OUT_L 0x42
rctaduio 0:89967a01628c 119 #define GYRO_XOUT_H 0x43
rctaduio 0:89967a01628c 120 #define GYRO_XOUT_L 0x44
rctaduio 0:89967a01628c 121 #define GYRO_YOUT_H 0x45
rctaduio 0:89967a01628c 122 #define GYRO_YOUT_L 0x46
rctaduio 0:89967a01628c 123 #define GYRO_ZOUT_H 0x47
rctaduio 0:89967a01628c 124 #define GYRO_ZOUT_L 0x48
rctaduio 0:89967a01628c 125 #define EXT_SENS_DATA_00 0x49
rctaduio 0:89967a01628c 126 #define EXT_SENS_DATA_01 0x4A
rctaduio 0:89967a01628c 127 #define EXT_SENS_DATA_02 0x4B
rctaduio 0:89967a01628c 128 #define EXT_SENS_DATA_03 0x4C
rctaduio 0:89967a01628c 129 #define EXT_SENS_DATA_04 0x4D
rctaduio 0:89967a01628c 130 #define EXT_SENS_DATA_05 0x4E
rctaduio 0:89967a01628c 131 #define EXT_SENS_DATA_06 0x4F
rctaduio 0:89967a01628c 132 #define EXT_SENS_DATA_07 0x50
rctaduio 0:89967a01628c 133 #define EXT_SENS_DATA_08 0x51
rctaduio 0:89967a01628c 134 #define EXT_SENS_DATA_09 0x52
rctaduio 0:89967a01628c 135 #define EXT_SENS_DATA_10 0x53
rctaduio 0:89967a01628c 136 #define EXT_SENS_DATA_11 0x54
rctaduio 0:89967a01628c 137 #define EXT_SENS_DATA_12 0x55
rctaduio 0:89967a01628c 138 #define EXT_SENS_DATA_13 0x56
rctaduio 0:89967a01628c 139 #define EXT_SENS_DATA_14 0x57
rctaduio 0:89967a01628c 140 #define EXT_SENS_DATA_15 0x58
rctaduio 0:89967a01628c 141 #define EXT_SENS_DATA_16 0x59
rctaduio 0:89967a01628c 142 #define EXT_SENS_DATA_17 0x5A
rctaduio 0:89967a01628c 143 #define EXT_SENS_DATA_18 0x5B
rctaduio 0:89967a01628c 144 #define EXT_SENS_DATA_19 0x5C
rctaduio 0:89967a01628c 145 #define EXT_SENS_DATA_20 0x5D
rctaduio 0:89967a01628c 146 #define EXT_SENS_DATA_21 0x5E
rctaduio 0:89967a01628c 147 #define EXT_SENS_DATA_22 0x5F
rctaduio 0:89967a01628c 148 #define EXT_SENS_DATA_23 0x60
rctaduio 0:89967a01628c 149 #define MOT_DETECT_STATUS 0x61
rctaduio 0:89967a01628c 150 #define I2C_SLV0_DO 0x63
rctaduio 0:89967a01628c 151 #define I2C_SLV1_DO 0x64
rctaduio 0:89967a01628c 152 #define I2C_SLV2_DO 0x65
rctaduio 0:89967a01628c 153 #define I2C_SLV3_DO 0x66
rctaduio 0:89967a01628c 154 #define I2C_MST_DELAY_CTRL 0x67
rctaduio 0:89967a01628c 155 #define SIGNAL_PATH_RESET 0x68
rctaduio 0:89967a01628c 156 #define MOT_DETECT_CTRL 0x69
rctaduio 0:89967a01628c 157 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
rctaduio 0:89967a01628c 158 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
rctaduio 0:89967a01628c 159 #define PWR_MGMT_2 0x6C
rctaduio 0:89967a01628c 160 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
rctaduio 0:89967a01628c 161 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
rctaduio 0:89967a01628c 162 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
rctaduio 0:89967a01628c 163 #define DMP_REG_1 0x70
rctaduio 0:89967a01628c 164 #define DMP_REG_2 0x71
rctaduio 0:89967a01628c 165 #define FIFO_COUNTH 0x72
rctaduio 0:89967a01628c 166 #define FIFO_COUNTL 0x73
rctaduio 0:89967a01628c 167 #define FIFO_R_W 0x74
rctaduio 0:89967a01628c 168 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
rctaduio 0:89967a01628c 169 #define XA_OFFSET_H 0x77
rctaduio 0:89967a01628c 170 #define XA_OFFSET_L 0x78
rctaduio 0:89967a01628c 171 #define YA_OFFSET_H 0x7A
rctaduio 0:89967a01628c 172 #define YA_OFFSET_L 0x7B
rctaduio 0:89967a01628c 173 #define ZA_OFFSET_H 0x7D
rctaduio 0:89967a01628c 174 #define ZA_OFFSET_L 0x7E
rctaduio 0:89967a01628c 175
rctaduio 0:89967a01628c 176 // Using the MSENSR-9250 breakout board, ADO is set to 0
rctaduio 0:89967a01628c 177 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
rctaduio 0:89967a01628c 178 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
rctaduio 0:89967a01628c 179 #define ADO 0
rctaduio 0:89967a01628c 180 #if ADO
rctaduio 0:89967a01628c 181 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
rctaduio 0:89967a01628c 182 #else
rctaduio 0:89967a01628c 183 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
rctaduio 0:89967a01628c 184 #endif
rctaduio 0:89967a01628c 185
rctaduio 0:89967a01628c 186 // Set initial input parameters
rctaduio 0:89967a01628c 187 enum Ascale {
rctaduio 0:89967a01628c 188 AFS_2G = 0,
rctaduio 0:89967a01628c 189 AFS_4G,
rctaduio 0:89967a01628c 190 AFS_8G,
rctaduio 0:89967a01628c 191 AFS_16G
rctaduio 0:89967a01628c 192 };
rctaduio 0:89967a01628c 193
rctaduio 0:89967a01628c 194 enum Gscale {
rctaduio 0:89967a01628c 195 GFS_250DPS = 0,
rctaduio 0:89967a01628c 196 GFS_500DPS,
rctaduio 0:89967a01628c 197 GFS_1000DPS,
rctaduio 0:89967a01628c 198 GFS_2000DPS
rctaduio 0:89967a01628c 199 };
rctaduio 0:89967a01628c 200
rctaduio 0:89967a01628c 201 enum Mscale {
rctaduio 0:89967a01628c 202 MFS_14BITS = 0, // 0.6 mG per LSB
rctaduio 0:89967a01628c 203 MFS_16BITS // 0.15 mG per LSB
rctaduio 0:89967a01628c 204 };
rctaduio 0:89967a01628c 205
rctaduio 0:89967a01628c 206 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
rctaduio 0:89967a01628c 207 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
rctaduio 0:89967a01628c 208 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
rctaduio 0:89967a01628c 209 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
rctaduio 0:89967a01628c 210 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
rctaduio 0:89967a01628c 211
rctaduio 0:89967a01628c 212 //Set up I2C, (SDA,SCL)
rctaduio 0:89967a01628c 213 I2C i2c(I2C_SDA, I2C_SCL);
rctaduio 0:89967a01628c 214
rctaduio 0:89967a01628c 215 DigitalOut myled(LED1);
rctaduio 0:89967a01628c 216
rctaduio 0:89967a01628c 217 // Pin definitions
rctaduio 0:89967a01628c 218 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
rctaduio 0:89967a01628c 219
rctaduio 0:89967a01628c 220 float SelfTest[6];
rctaduio 0:89967a01628c 221
rctaduio 0:89967a01628c 222 int delt_t = 0; // used to control display output rate
rctaduio 0:89967a01628c 223 int count = 0; // used to control display output rate
rctaduio 0:89967a01628c 224
rctaduio 0:89967a01628c 225 // parameters for 6 DoF sensor fusion calculations
rctaduio 0:89967a01628c 226 float PI = 3.14159265358979323846f;
rctaduio 0:89967a01628c 227 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
rctaduio 0:89967a01628c 228 //float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
rctaduio 0:89967a01628c 229 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
rctaduio 0:89967a01628c 230 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
rctaduio 0:89967a01628c 231 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
rctaduio 0:89967a01628c 232 #define Ki 0.0f
rctaduio 0:89967a01628c 233
rctaduio 0:89967a01628c 234
rctaduio 0:89967a01628c 235
rctaduio 0:89967a01628c 236 class MPU9250
rctaduio 0:89967a01628c 237 {
rctaduio 0:89967a01628c 238
rctaduio 0:89967a01628c 239 protected:
rctaduio 0:89967a01628c 240
rctaduio 0:89967a01628c 241 public:
rctaduio 0:89967a01628c 242 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
rctaduio 0:89967a01628c 243 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
rctaduio 0:89967a01628c 244 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
rctaduio 0:89967a01628c 245 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
rctaduio 0:89967a01628c 246 float magCalibration[3];
rctaduio 0:89967a01628c 247 float magbias[3]; // Factory mag calibration and mag bias
rctaduio 0:89967a01628c 248 float gyroBias[3];
rctaduio 0:89967a01628c 249 float accelBias[3]; // Bias corrections for gyro and accelerometer
rctaduio 0:89967a01628c 250 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
rctaduio 0:89967a01628c 251 float temperature;
rctaduio 0:89967a01628c 252 float pitch, yaw, roll;
rctaduio 0:89967a01628c 253 float deltat; // integration interval for both filter schemes
rctaduio 0:89967a01628c 254 int lastUpdate;
rctaduio 0:89967a01628c 255 int firstUpdate;
rctaduio 0:89967a01628c 256 int Now; // used to calculate integration interval
rctaduio 0:89967a01628c 257 float q[4]; // vector to hold quaternion
rctaduio 0:89967a01628c 258 float eInt[3]; // vector to hold integral error for Mahony method
rctaduio 0:89967a01628c 259 uint32_t checksum;
rctaduio 0:89967a01628c 260
rctaduio 0:89967a01628c 261 MPU9250() {
rctaduio 0:89967a01628c 262 ax=ay=az=gx=gy=gz=mx=my=mz=0.0;
rctaduio 0:89967a01628c 263 for (int i = 0; i < 3; i++) {
rctaduio 0:89967a01628c 264 magCalibration[i] = 0.0;
rctaduio 0:89967a01628c 265 magbias[i] = 0.0;
rctaduio 0:89967a01628c 266 gyroBias[i] = 0.0;
rctaduio 0:89967a01628c 267 accelBias[i] = 0.0;
rctaduio 0:89967a01628c 268 eInt[i] = 0.0f;
rctaduio 0:89967a01628c 269 } // end of for
rctaduio 0:89967a01628c 270 q[0] = 1.0f;
rctaduio 0:89967a01628c 271 q[1] = 0.0f;
rctaduio 0:89967a01628c 272 q[2] = 0.0f;
rctaduio 0:89967a01628c 273 q[3] = 0.0f;
rctaduio 0:89967a01628c 274 lastUpdate = 0, firstUpdate = 0, Now = 0;
rctaduio 0:89967a01628c 275 deltat = 0.0f;
rctaduio 0:89967a01628c 276 } // end of initalizer
rctaduio 0:89967a01628c 277
rctaduio 0:89967a01628c 278 //===================================================================================================================
rctaduio 0:89967a01628c 279 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
rctaduio 0:89967a01628c 280 //===================================================================================================================
rctaduio 0:89967a01628c 281
rctaduio 0:89967a01628c 282 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
rctaduio 0:89967a01628c 283 char data_write[2];
rctaduio 0:89967a01628c 284 data_write[0] = subAddress;
rctaduio 0:89967a01628c 285 data_write[1] = data;
rctaduio 0:89967a01628c 286 i2c.write(address, data_write, 2, 0);
rctaduio 0:89967a01628c 287 }
rctaduio 0:89967a01628c 288
rctaduio 0:89967a01628c 289
rctaduio 0:89967a01628c 290 void selfTest(Serial &pc , bool show = false) {
rctaduio 0:89967a01628c 291 resetMPU9250(); // Reset registers to default in preparation for device calibration
rctaduio 0:89967a01628c 292 MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
rctaduio 0:89967a01628c 293 if (show) {
rctaduio 0:89967a01628c 294 pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
rctaduio 0:89967a01628c 295 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
rctaduio 0:89967a01628c 296 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
rctaduio 0:89967a01628c 297 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
rctaduio 0:89967a01628c 298 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
rctaduio 0:89967a01628c 299 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
rctaduio 0:89967a01628c 300 }
rctaduio 0:89967a01628c 301 //calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
rctaduio 0:89967a01628c 302 if(show) {
rctaduio 0:89967a01628c 303 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
rctaduio 0:89967a01628c 304 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
rctaduio 0:89967a01628c 305 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
rctaduio 0:89967a01628c 306 pc.printf("x accel bias = %f\n\r", accelBias[0]);
rctaduio 0:89967a01628c 307 pc.printf("y accel bias = %f\n\r", accelBias[1]);
rctaduio 0:89967a01628c 308 pc.printf("z accel bias = %f\n\r", accelBias[2]);
rctaduio 0:89967a01628c 309 }
rctaduio 0:89967a01628c 310 }
rctaduio 0:89967a01628c 311
rctaduio 0:89967a01628c 312
rctaduio 0:89967a01628c 313 void config(Serial &pc, bool show = false) {
rctaduio 0:89967a01628c 314 initMPU9250();
rctaduio 0:89967a01628c 315 if (show)
rctaduio 0:89967a01628c 316 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
rctaduio 0:89967a01628c 317 initAK8963(magCalibration);
rctaduio 0:89967a01628c 318 if(show) {
rctaduio 0:89967a01628c 319 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
rctaduio 0:89967a01628c 320 pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
rctaduio 0:89967a01628c 321 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
rctaduio 0:89967a01628c 322 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
rctaduio 0:89967a01628c 323 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
rctaduio 0:89967a01628c 324 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
rctaduio 0:89967a01628c 325 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
rctaduio 0:89967a01628c 326 pc.printf("mag calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]);
rctaduio 0:89967a01628c 327 }
rctaduio 0:89967a01628c 328 }
rctaduio 0:89967a01628c 329
rctaduio 0:89967a01628c 330
rctaduio 0:89967a01628c 331 void sensitivity(Serial &pc, bool show = false) {
rctaduio 0:89967a01628c 332 getAres(); // Get accelerometer sensitivity
rctaduio 0:89967a01628c 333 getGres(); // Get gyro sensitivity
rctaduio 0:89967a01628c 334 getMres(); // Get magnetometer sensitivity
rctaduio 0:89967a01628c 335 if (show) {
rctaduio 0:89967a01628c 336 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
rctaduio 0:89967a01628c 337 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
rctaduio 0:89967a01628c 338 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
rctaduio 0:89967a01628c 339 }
rctaduio 0:89967a01628c 340 }
rctaduio 0:89967a01628c 341
rctaduio 0:89967a01628c 342
rctaduio 0:89967a01628c 343 char readByte(uint8_t address, uint8_t subAddress) {
rctaduio 0:89967a01628c 344 char data[1]; // `data` will store the register data
rctaduio 0:89967a01628c 345 char data_write[1];
rctaduio 0:89967a01628c 346 data_write[0] = subAddress;
rctaduio 0:89967a01628c 347 i2c.write(address, data_write, 1, 1); // no stop
rctaduio 0:89967a01628c 348 i2c.read(address, data, 1, 0);
rctaduio 0:89967a01628c 349 return data[0];
rctaduio 0:89967a01628c 350 }
rctaduio 0:89967a01628c 351
rctaduio 0:89967a01628c 352
rctaduio 0:89967a01628c 353 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
rctaduio 0:89967a01628c 354 char data[14];
rctaduio 0:89967a01628c 355 char data_write[1];
rctaduio 0:89967a01628c 356 data_write[0] = subAddress;
rctaduio 0:89967a01628c 357 i2c.write(address, data_write, 1, 1); // no stop
rctaduio 0:89967a01628c 358 i2c.read(address, data, count, 0);
rctaduio 0:89967a01628c 359 for(int ii = 0; ii < count; ii++) {
rctaduio 0:89967a01628c 360 dest[ii] = data[ii];
rctaduio 0:89967a01628c 361 }
rctaduio 0:89967a01628c 362 }
rctaduio 0:89967a01628c 363
rctaduio 0:89967a01628c 364
rctaduio 0:89967a01628c 365 void getMres() {
rctaduio 0:89967a01628c 366 switch (Mscale) {
rctaduio 0:89967a01628c 367 // Possible magnetometer scales (and their register bit settings) are:
rctaduio 0:89967a01628c 368 // 14 bit resolution (0) and 16 bit resolution (1)
rctaduio 0:89967a01628c 369 case MFS_14BITS:
rctaduio 0:89967a01628c 370 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
rctaduio 0:89967a01628c 371 break;
rctaduio 0:89967a01628c 372 case MFS_16BITS:
rctaduio 0:89967a01628c 373 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
rctaduio 0:89967a01628c 374 break;
rctaduio 0:89967a01628c 375 }
rctaduio 0:89967a01628c 376 }
rctaduio 0:89967a01628c 377
rctaduio 0:89967a01628c 378
rctaduio 0:89967a01628c 379 void getGres() {
rctaduio 0:89967a01628c 380 switch (Gscale) {
rctaduio 0:89967a01628c 381 // Possible gyro scales (and their register bit settings) are:
rctaduio 0:89967a01628c 382 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
rctaduio 0:89967a01628c 383 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
rctaduio 0:89967a01628c 384 case GFS_250DPS:
rctaduio 0:89967a01628c 385 gRes = 250.0/32768.0;
rctaduio 0:89967a01628c 386 break;
rctaduio 0:89967a01628c 387 case GFS_500DPS:
rctaduio 0:89967a01628c 388 gRes = 500.0/32768.0;
rctaduio 0:89967a01628c 389 break;
rctaduio 0:89967a01628c 390 case GFS_1000DPS:
rctaduio 0:89967a01628c 391 gRes = 1000.0/32768.0;
rctaduio 0:89967a01628c 392 break;
rctaduio 0:89967a01628c 393 case GFS_2000DPS:
rctaduio 0:89967a01628c 394 gRes = 2000.0/32768.0;
rctaduio 0:89967a01628c 395 break;
rctaduio 0:89967a01628c 396 }
rctaduio 0:89967a01628c 397 }
rctaduio 0:89967a01628c 398
rctaduio 0:89967a01628c 399
rctaduio 0:89967a01628c 400 void getAres() {
rctaduio 0:89967a01628c 401 switch (Ascale) {
rctaduio 0:89967a01628c 402 // Possible accelerometer scales (and their register bit settings) are:
rctaduio 0:89967a01628c 403 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
rctaduio 0:89967a01628c 404 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
rctaduio 0:89967a01628c 405 case AFS_2G:
rctaduio 0:89967a01628c 406 aRes = 2.0/32768.0;
rctaduio 0:89967a01628c 407 break;
rctaduio 0:89967a01628c 408 case AFS_4G:
rctaduio 0:89967a01628c 409 aRes = 4.0/32768.0;
rctaduio 0:89967a01628c 410 break;
rctaduio 0:89967a01628c 411 case AFS_8G:
rctaduio 0:89967a01628c 412 aRes = 8.0/32768.0;
rctaduio 0:89967a01628c 413 break;
rctaduio 0:89967a01628c 414 case AFS_16G:
rctaduio 0:89967a01628c 415 aRes = 16.0/32768.0;
rctaduio 0:89967a01628c 416 break;
rctaduio 0:89967a01628c 417 }
rctaduio 0:89967a01628c 418 }
rctaduio 0:89967a01628c 419
rctaduio 0:89967a01628c 420
rctaduio 0:89967a01628c 421 void readAccelData() {
rctaduio 0:89967a01628c 422 uint8_t rawData[6]; // x/y/z accel register data stored here
rctaduio 0:89967a01628c 423 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
rctaduio 0:89967a01628c 424 ax = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 425 ay = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 426 az = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 427 }
rctaduio 0:89967a01628c 428
rctaduio 0:89967a01628c 429 void readGyroData() {
rctaduio 0:89967a01628c 430 uint8_t rawData[6]; // x/y/z gyro register data stored here
rctaduio 0:89967a01628c 431 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]) ; // Read the six raw data registers sequentially into data array
rctaduio 0:89967a01628c 432 gx = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 433 gy = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 434 gz = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 435 }
rctaduio 0:89967a01628c 436
rctaduio 0:89967a01628c 437 void readMagData() {
rctaduio 0:89967a01628c 438 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
rctaduio 0:89967a01628c 439 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) {
rctaduio 0:89967a01628c 440 // wait for magnetometer data ready bit to be set
rctaduio 0:89967a01628c 441 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
rctaduio 0:89967a01628c 442 uint8_t c = rawData[6]; // End data read by reading ST2 register
rctaduio 0:89967a01628c 443 if(!(c & 0x08)) {
rctaduio 0:89967a01628c 444 // Check if magnetic sensor overflow set, if not then report data
rctaduio 0:89967a01628c 445 mx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 446 my = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
rctaduio 0:89967a01628c 447 mz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
rctaduio 0:89967a01628c 448 }
rctaduio 0:89967a01628c 449 }
rctaduio 0:89967a01628c 450 }
rctaduio 0:89967a01628c 451
rctaduio 0:89967a01628c 452 void readimu() {
rctaduio 0:89967a01628c 453 readAccelData();
rctaduio 0:89967a01628c 454 ax = ax*aRes - accelBias[0];
rctaduio 0:89967a01628c 455 ay = ay*aRes - accelBias[1];
rctaduio 0:89967a01628c 456 az = az*aRes - accelBias[2];
rctaduio 0:89967a01628c 457
rctaduio 0:89967a01628c 458 readGyroData();
rctaduio 0:89967a01628c 459 gx = gx*gRes - gyroBias[0];
rctaduio 0:89967a01628c 460 gy = gy*gRes - gyroBias[1];
rctaduio 0:89967a01628c 461 gz = gz*gRes - gyroBias[2];
rctaduio 0:89967a01628c 462
rctaduio 0:89967a01628c 463 // Calculate the magnetometer values in milliGauss
rctaduio 0:89967a01628c 464 // Include factory calibration per data sheet and user environmental corrections
rctaduio 0:89967a01628c 465 readMagData();
rctaduio 0:89967a01628c 466 mx = mx*mRes*magCalibration[0] - magbias[0];
rctaduio 0:89967a01628c 467 my = my*mRes*magCalibration[1] - magbias[1];
rctaduio 0:89967a01628c 468 mz = mz*mRes*magCalibration[2] - magbias[2];
rctaduio 0:89967a01628c 469
rctaduio 0:89967a01628c 470 checksum = 0;
rctaduio 0:89967a01628c 471 checksum += int(1000*ax) + int(1000*ay) + int(1000*az) +int(gx) + int(gy) + int(gz) +int(mx) + int(my) + int(mz);
rctaduio 0:89967a01628c 472
rctaduio 0:89967a01628c 473 }// end of read IMUData()
rctaduio 0:89967a01628c 474
rctaduio 0:89967a01628c 475 int16_t readTempData() {
rctaduio 0:89967a01628c 476 uint8_t rawData[2]; // x/y/z gyro register data stored here
rctaduio 0:89967a01628c 477 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
rctaduio 0:89967a01628c 478 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
rctaduio 0:89967a01628c 479 }
rctaduio 0:89967a01628c 480
rctaduio 0:89967a01628c 481
rctaduio 0:89967a01628c 482 void resetMPU9250() {
rctaduio 0:89967a01628c 483 // reset device
rctaduio 0:89967a01628c 484 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
rctaduio 0:89967a01628c 485 wait(0.1);
rctaduio 0:89967a01628c 486 }
rctaduio 0:89967a01628c 487
rctaduio 0:89967a01628c 488 void initAK8963(float * destination) {
rctaduio 0:89967a01628c 489 // First extract the factory calibration for each magnetometer axis
rctaduio 0:89967a01628c 490 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
rctaduio 0:89967a01628c 491 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
rctaduio 0:89967a01628c 492 wait(0.01);
rctaduio 0:89967a01628c 493 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
rctaduio 0:89967a01628c 494 wait(0.01);
rctaduio 0:89967a01628c 495 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
rctaduio 0:89967a01628c 496 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
rctaduio 0:89967a01628c 497 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
rctaduio 0:89967a01628c 498 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
rctaduio 0:89967a01628c 499 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
rctaduio 0:89967a01628c 500 wait(0.01);
rctaduio 0:89967a01628c 501 // Configure the magnetometer for continuous read and highest resolution
rctaduio 0:89967a01628c 502 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
rctaduio 0:89967a01628c 503 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
rctaduio 0:89967a01628c 504 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
rctaduio 0:89967a01628c 505 wait(0.01);
rctaduio 0:89967a01628c 506 }
rctaduio 0:89967a01628c 507
rctaduio 0:89967a01628c 508
rctaduio 0:89967a01628c 509 void initMPU9250() {
rctaduio 0:89967a01628c 510 // Initialize MPU9250 device
rctaduio 0:89967a01628c 511 // wake up device
rctaduio 0:89967a01628c 512 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
rctaduio 0:89967a01628c 513 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
rctaduio 0:89967a01628c 514
rctaduio 0:89967a01628c 515 // get stable time source
rctaduio 0:89967a01628c 516 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
rctaduio 0:89967a01628c 517
rctaduio 0:89967a01628c 518 // Configure Gyro and Accelerometer
rctaduio 0:89967a01628c 519 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
rctaduio 0:89967a01628c 520 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
rctaduio 0:89967a01628c 521 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
rctaduio 0:89967a01628c 522 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
rctaduio 0:89967a01628c 523
rctaduio 0:89967a01628c 524 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
rctaduio 0:89967a01628c 525 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
rctaduio 0:89967a01628c 526
rctaduio 0:89967a01628c 527 // Set gyroscope full scale range
rctaduio 0:89967a01628c 528 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
rctaduio 0:89967a01628c 529 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
rctaduio 0:89967a01628c 530 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
rctaduio 0:89967a01628c 531 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
rctaduio 0:89967a01628c 532 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
rctaduio 0:89967a01628c 533
rctaduio 0:89967a01628c 534 // Set accelerometer configuration
rctaduio 0:89967a01628c 535 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
rctaduio 0:89967a01628c 536 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
rctaduio 0:89967a01628c 537 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
rctaduio 0:89967a01628c 538 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
rctaduio 0:89967a01628c 539
rctaduio 0:89967a01628c 540 // Set accelerometer sample rate configuration
rctaduio 0:89967a01628c 541 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
rctaduio 0:89967a01628c 542 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
rctaduio 0:89967a01628c 543 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
rctaduio 0:89967a01628c 544 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
rctaduio 0:89967a01628c 545 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
rctaduio 0:89967a01628c 546
rctaduio 0:89967a01628c 547 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
rctaduio 0:89967a01628c 548 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
rctaduio 0:89967a01628c 549
rctaduio 0:89967a01628c 550 // Configure Interrupts and Bypass Enable
rctaduio 0:89967a01628c 551 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
rctaduio 0:89967a01628c 552 // can join the I2C bus and all can be controlled by the Arduino as master
rctaduio 0:89967a01628c 553 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
rctaduio 0:89967a01628c 554 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
rctaduio 0:89967a01628c 555 }
rctaduio 0:89967a01628c 556
rctaduio 0:89967a01628c 557 //void calibrateMag(float * dest1, float * dest2, Serial &pc)
rctaduio 0:89967a01628c 558 void calibrateMag(Serial &pc) {
rctaduio 0:89967a01628c 559 uint16_t ii = 0, sample_count = 0;
rctaduio 0:89967a01628c 560 //int32_t mag_bias[3] = {0, 0, 0};
rctaduio 0:89967a01628c 561 int32_t mag_scale[3] = {0, 0, 0};
rctaduio 0:89967a01628c 562 int16_t mag_max[3] = {0x8000, 0x8000, 0x8000};
rctaduio 0:89967a01628c 563 int16_t mag_min[3] = {0x7FFF, 0x7FFF, 0x7FFF};
rctaduio 0:89967a01628c 564 int16_t mag_temp[3] = {0, 0, 0};
rctaduio 0:89967a01628c 565 pc.printf("Pre-Mag Calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]);
rctaduio 0:89967a01628c 566 pc.printf("Mag Calibration: Wave device in a figure eight until done!\n");
rctaduio 0:89967a01628c 567 wait(4);
rctaduio 0:89967a01628c 568
rctaduio 0:89967a01628c 569 sample_count = 500;
rctaduio 0:89967a01628c 570 for(ii = 0; ii < sample_count; ii++) {
rctaduio 0:89967a01628c 571 //readMagData(mag_temp); // Read the mag data
rctaduio 0:89967a01628c 572 for (int jj = 0; jj < 3; jj++) {
rctaduio 0:89967a01628c 573 if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
rctaduio 0:89967a01628c 574 if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
rctaduio 0:89967a01628c 575 }// end of inner for
rctaduio 0:89967a01628c 576 wait(.035); // at 8 Hz ODR, new mag data is available every 125 ms
rctaduio 0:89967a01628c 577 pc.printf("%d\t%d\t%d\r\n", mag_temp[0], mag_temp[1], mag_temp[2]);
rctaduio 0:89967a01628c 578 }// end of outer for
rctaduio 0:89967a01628c 579 wait(1);
rctaduio 0:89967a01628c 580 pc.printf("%d\t%d\t%d\t%d\t%d\t%d\r\n", mag_min[0], mag_max[0], mag_min[1], mag_max[1], mag_min[2], mag_max[2]);
rctaduio 0:89967a01628c 581 wait(10);
rctaduio 0:89967a01628c 582 // Get hard iron correction
rctaduio 0:89967a01628c 583 magbias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
rctaduio 0:89967a01628c 584 magbias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
rctaduio 0:89967a01628c 585 magbias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
rctaduio 0:89967a01628c 586
rctaduio 0:89967a01628c 587 //dest1[0] = (float) mag_bias[0]*mRes*MPU9250magCalibration[0]; // save mag biases in G for main program
rctaduio 0:89967a01628c 588 //dest1[1] = (float) mag_bias[1]*mRes*MPU9250magCalibration[1];
rctaduio 0:89967a01628c 589 //dest1[2] = (float) mag_bias[2]*mRes*MPU9250magCalibration[2];
rctaduio 0:89967a01628c 590
rctaduio 0:89967a01628c 591 // Get soft iron correction estimate
rctaduio 0:89967a01628c 592 mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
rctaduio 0:89967a01628c 593 mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
rctaduio 0:89967a01628c 594 mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
rctaduio 0:89967a01628c 595
rctaduio 0:89967a01628c 596 float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
rctaduio 0:89967a01628c 597 avg_rad /= 3.0;
rctaduio 0:89967a01628c 598
rctaduio 0:89967a01628c 599 //dest2[0] = avg_rad/((float)mag_scale[0]);
rctaduio 0:89967a01628c 600 //dest2[1] = avg_rad/((float)mag_scale[1]);
rctaduio 0:89967a01628c 601 //dest2[2] = avg_rad/((float)mag_scale[2]);
rctaduio 0:89967a01628c 602 pc.printf("Post-Mag Calibration: \r\nx:\t%f\r\ny:\t%f\r\nz:\t%f\r\n", magbias[0], magbias[1], magbias[2]);
rctaduio 0:89967a01628c 603 pc.printf("Mag Calibration done!\n");
rctaduio 0:89967a01628c 604 }// end of calibrateMag
rctaduio 0:89967a01628c 605
rctaduio 0:89967a01628c 606 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
rctaduio 0:89967a01628c 607 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
rctaduio 0:89967a01628c 608 void calibrateMPU9250(float * dest1, float * dest2) {
rctaduio 0:89967a01628c 609 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
rctaduio 0:89967a01628c 610 uint16_t ii, packet_count, fifo_count;
rctaduio 0:89967a01628c 611 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
rctaduio 0:89967a01628c 612
rctaduio 0:89967a01628c 613 // reset device, reset all registers, clear gyro and accelerometer bias registers
rctaduio 0:89967a01628c 614 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
rctaduio 0:89967a01628c 615 wait(0.1);
rctaduio 0:89967a01628c 616
rctaduio 0:89967a01628c 617 // get stable time source
rctaduio 0:89967a01628c 618 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
rctaduio 0:89967a01628c 619 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
rctaduio 0:89967a01628c 620 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
rctaduio 0:89967a01628c 621 wait(0.2);
rctaduio 0:89967a01628c 622
rctaduio 0:89967a01628c 623 // Configure device for bias calculation
rctaduio 0:89967a01628c 624 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
rctaduio 0:89967a01628c 625 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
rctaduio 0:89967a01628c 626 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
rctaduio 0:89967a01628c 627 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
rctaduio 0:89967a01628c 628 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
rctaduio 0:89967a01628c 629 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
rctaduio 0:89967a01628c 630 wait(0.015);
rctaduio 0:89967a01628c 631
rctaduio 0:89967a01628c 632 // Configure MPU9250 gyro and accelerometer for bias calculation
rctaduio 0:89967a01628c 633 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
rctaduio 0:89967a01628c 634 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
rctaduio 0:89967a01628c 635 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
rctaduio 0:89967a01628c 636 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
rctaduio 0:89967a01628c 637
rctaduio 0:89967a01628c 638 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
rctaduio 0:89967a01628c 639 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
rctaduio 0:89967a01628c 640
rctaduio 0:89967a01628c 641 // Configure FIFO to capture accelerometer and gyro data for bias calculation
rctaduio 0:89967a01628c 642 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
rctaduio 0:89967a01628c 643 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
rctaduio 0:89967a01628c 644 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
rctaduio 0:89967a01628c 645
rctaduio 0:89967a01628c 646 // At end of sample accumulation, turn off FIFO sensor read
rctaduio 0:89967a01628c 647 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
rctaduio 0:89967a01628c 648 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
rctaduio 0:89967a01628c 649 fifo_count = ((uint16_t)data[0] << 8) | data[1];
rctaduio 0:89967a01628c 650 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
rctaduio 0:89967a01628c 651
rctaduio 0:89967a01628c 652 for (ii = 0; ii < packet_count; ii++) {
rctaduio 0:89967a01628c 653 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
rctaduio 0:89967a01628c 654 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
rctaduio 0:89967a01628c 655 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
rctaduio 0:89967a01628c 656 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
rctaduio 0:89967a01628c 657 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
rctaduio 0:89967a01628c 658 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
rctaduio 0:89967a01628c 659 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
rctaduio 0:89967a01628c 660 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
rctaduio 0:89967a01628c 661
rctaduio 0:89967a01628c 662 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
rctaduio 0:89967a01628c 663 accel_bias[1] += (int32_t) accel_temp[1];
rctaduio 0:89967a01628c 664 accel_bias[2] += (int32_t) accel_temp[2];
rctaduio 0:89967a01628c 665 gyro_bias[0] += (int32_t) gyro_temp[0];
rctaduio 0:89967a01628c 666 gyro_bias[1] += (int32_t) gyro_temp[1];
rctaduio 0:89967a01628c 667 gyro_bias[2] += (int32_t) gyro_temp[2];
rctaduio 0:89967a01628c 668
rctaduio 0:89967a01628c 669 }
rctaduio 0:89967a01628c 670 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
rctaduio 0:89967a01628c 671 accel_bias[1] /= (int32_t) packet_count;
rctaduio 0:89967a01628c 672 accel_bias[2] /= (int32_t) packet_count;
rctaduio 0:89967a01628c 673 gyro_bias[0] /= (int32_t) packet_count;
rctaduio 0:89967a01628c 674 gyro_bias[1] /= (int32_t) packet_count;
rctaduio 0:89967a01628c 675 gyro_bias[2] /= (int32_t) packet_count;
rctaduio 0:89967a01628c 676
rctaduio 0:89967a01628c 677 if(accel_bias[2] > 0L) {
rctaduio 0:89967a01628c 678 accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
rctaduio 0:89967a01628c 679 } else {
rctaduio 0:89967a01628c 680 accel_bias[2] += (int32_t) accelsensitivity;
rctaduio 0:89967a01628c 681 }
rctaduio 0:89967a01628c 682
rctaduio 0:89967a01628c 683 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
rctaduio 0:89967a01628c 684 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
rctaduio 0:89967a01628c 685 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
rctaduio 0:89967a01628c 686 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
rctaduio 0:89967a01628c 687 data[3] = (-gyro_bias[1]/4) & 0xFF;
rctaduio 0:89967a01628c 688 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
rctaduio 0:89967a01628c 689 data[5] = (-gyro_bias[2]/4) & 0xFF;
rctaduio 0:89967a01628c 690
rctaduio 0:89967a01628c 691 /// Push gyro biases to hardware registers
rctaduio 0:89967a01628c 692 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
rctaduio 0:89967a01628c 693 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
rctaduio 0:89967a01628c 694 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
rctaduio 0:89967a01628c 695 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
rctaduio 0:89967a01628c 696 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
rctaduio 0:89967a01628c 697 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
rctaduio 0:89967a01628c 698 */
rctaduio 0:89967a01628c 699 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
rctaduio 0:89967a01628c 700 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
rctaduio 0:89967a01628c 701 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
rctaduio 0:89967a01628c 702
rctaduio 0:89967a01628c 703 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
rctaduio 0:89967a01628c 704 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
rctaduio 0:89967a01628c 705 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
rctaduio 0:89967a01628c 706 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
rctaduio 0:89967a01628c 707 // the accelerometer biases calculated above must be divided by 8.
rctaduio 0:89967a01628c 708
rctaduio 0:89967a01628c 709 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
rctaduio 0:89967a01628c 710 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
rctaduio 0:89967a01628c 711 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rctaduio 0:89967a01628c 712 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
rctaduio 0:89967a01628c 713 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rctaduio 0:89967a01628c 714 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
rctaduio 0:89967a01628c 715 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rctaduio 0:89967a01628c 716
rctaduio 0:89967a01628c 717 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
rctaduio 0:89967a01628c 718 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
rctaduio 0:89967a01628c 719
rctaduio 0:89967a01628c 720 for(ii = 0; ii < 3; ii++) {
rctaduio 0:89967a01628c 721 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
rctaduio 0:89967a01628c 722 }
rctaduio 0:89967a01628c 723
rctaduio 0:89967a01628c 724 // Construct total accelerometer bias, including calculated average accelerometer bias from above
rctaduio 0:89967a01628c 725 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
rctaduio 0:89967a01628c 726 accel_bias_reg[1] -= (accel_bias[1]/8);
rctaduio 0:89967a01628c 727 accel_bias_reg[2] -= (accel_bias[2]/8);
rctaduio 0:89967a01628c 728
rctaduio 0:89967a01628c 729 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
rctaduio 0:89967a01628c 730 data[1] = (accel_bias_reg[0]) & 0xFF;
rctaduio 0:89967a01628c 731 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rctaduio 0:89967a01628c 732 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
rctaduio 0:89967a01628c 733 data[3] = (accel_bias_reg[1]) & 0xFF;
rctaduio 0:89967a01628c 734 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rctaduio 0:89967a01628c 735 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
rctaduio 0:89967a01628c 736 data[5] = (accel_bias_reg[2]) & 0xFF;
rctaduio 0:89967a01628c 737 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rctaduio 0:89967a01628c 738
rctaduio 0:89967a01628c 739 // Apparently this is not working for the acceleration biases in the MPU-9250
rctaduio 0:89967a01628c 740 // Are we handling the temperature correction bit properly?
rctaduio 0:89967a01628c 741 // Push accelerometer biases to hardware registers
rctaduio 0:89967a01628c 742 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
rctaduio 0:89967a01628c 743 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
rctaduio 0:89967a01628c 744 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
rctaduio 0:89967a01628c 745 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
rctaduio 0:89967a01628c 746 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
rctaduio 0:89967a01628c 747 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
rctaduio 0:89967a01628c 748 */
rctaduio 0:89967a01628c 749 // Output scaled accelerometer biases for manual subtraction in the main program
rctaduio 0:89967a01628c 750 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
rctaduio 0:89967a01628c 751 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
rctaduio 0:89967a01628c 752 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
rctaduio 0:89967a01628c 753 }
rctaduio 0:89967a01628c 754
rctaduio 0:89967a01628c 755
rctaduio 0:89967a01628c 756 // Accelerometer and gyroscope self test; check calibration wrt factory settings
rctaduio 0:89967a01628c 757 void MPU9250SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
rctaduio 0:89967a01628c 758 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
rctaduio 0:89967a01628c 759 uint8_t selfTest[6];
rctaduio 0:89967a01628c 760 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
rctaduio 0:89967a01628c 761 float factoryTrim[6];
rctaduio 0:89967a01628c 762 uint8_t FS = 0;
rctaduio 0:89967a01628c 763
rctaduio 0:89967a01628c 764 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
rctaduio 0:89967a01628c 765 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
rctaduio 0:89967a01628c 766 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
rctaduio 0:89967a01628c 767 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
rctaduio 0:89967a01628c 768 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
rctaduio 0:89967a01628c 769
rctaduio 0:89967a01628c 770 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
rctaduio 0:89967a01628c 771
rctaduio 0:89967a01628c 772 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
rctaduio 0:89967a01628c 773 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 774 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 775 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 776
rctaduio 0:89967a01628c 777 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
rctaduio 0:89967a01628c 778 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 779 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 780 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 781 }
rctaduio 0:89967a01628c 782
rctaduio 0:89967a01628c 783 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
rctaduio 0:89967a01628c 784 aAvg[ii] /= 200;
rctaduio 0:89967a01628c 785 gAvg[ii] /= 200;
rctaduio 0:89967a01628c 786 }
rctaduio 0:89967a01628c 787
rctaduio 0:89967a01628c 788 // Configure the accelerometer for self-test
rctaduio 0:89967a01628c 789 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
rctaduio 0:89967a01628c 790 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
rctaduio 0:89967a01628c 791 wait_ms(25); // Delay a while to let the device stabilize
rctaduio 0:89967a01628c 792
rctaduio 0:89967a01628c 793 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
rctaduio 0:89967a01628c 794
rctaduio 0:89967a01628c 795 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
rctaduio 0:89967a01628c 796 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 797 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 798 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 799
rctaduio 0:89967a01628c 800 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
rctaduio 0:89967a01628c 801 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rctaduio 0:89967a01628c 802 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rctaduio 0:89967a01628c 803 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rctaduio 0:89967a01628c 804 }
rctaduio 0:89967a01628c 805
rctaduio 0:89967a01628c 806 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
rctaduio 0:89967a01628c 807 aSTAvg[ii] /= 200;
rctaduio 0:89967a01628c 808 gSTAvg[ii] /= 200;
rctaduio 0:89967a01628c 809 }
rctaduio 0:89967a01628c 810
rctaduio 0:89967a01628c 811 // Configure the gyro and accelerometer for normal operation
rctaduio 0:89967a01628c 812 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
rctaduio 0:89967a01628c 813 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
rctaduio 0:89967a01628c 814 wait_ms(25); // Delay a while to let the device stabilize
rctaduio 0:89967a01628c 815
rctaduio 0:89967a01628c 816 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
rctaduio 0:89967a01628c 817 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
rctaduio 0:89967a01628c 818 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
rctaduio 0:89967a01628c 819 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
rctaduio 0:89967a01628c 820 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
rctaduio 0:89967a01628c 821 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
rctaduio 0:89967a01628c 822 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
rctaduio 0:89967a01628c 823
rctaduio 0:89967a01628c 824 // Retrieve factory self-test value from self-test code reads
rctaduio 0:89967a01628c 825 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
rctaduio 0:89967a01628c 826 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
rctaduio 0:89967a01628c 827 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
rctaduio 0:89967a01628c 828 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
rctaduio 0:89967a01628c 829 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
rctaduio 0:89967a01628c 830 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
rctaduio 0:89967a01628c 831
rctaduio 0:89967a01628c 832 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
rctaduio 0:89967a01628c 833 // To get percent, must multiply by 100
rctaduio 0:89967a01628c 834 for (int i = 0; i < 3; i++) {
rctaduio 0:89967a01628c 835 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
rctaduio 0:89967a01628c 836 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
rctaduio 0:89967a01628c 837 }
rctaduio 0:89967a01628c 838
rctaduio 0:89967a01628c 839 }
rctaduio 0:89967a01628c 840
rctaduio 0:89967a01628c 841 // use the madgwick open source version
rctaduio 0:89967a01628c 842 void Madgwickupdate()
rctaduio 0:89967a01628c 843 {
rctaduio 0:89967a01628c 844 // need to convert the gyro measurements
rctaduio 0:89967a01628c 845 // need to flip the mag x/y coordinates and invert the z axis to match the acell and gyro axis
rctaduio 0:89967a01628c 846 MadgwickAHRSupdate( gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, ax, ay, az, my, mx, -1.0f*mz, q[0], q[1], q[2], q[3]);
rctaduio 0:89967a01628c 847 }
rctaduio 0:89967a01628c 848
rctaduio 0:89967a01628c 849 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
rctaduio 0:89967a01628c 850 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
rctaduio 0:89967a01628c 851 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
rctaduio 0:89967a01628c 852 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
rctaduio 0:89967a01628c 853 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
rctaduio 0:89967a01628c 854 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
rctaduio 0:89967a01628c 855 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) {
rctaduio 0:89967a01628c 856 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
rctaduio 0:89967a01628c 857 float norm;
rctaduio 0:89967a01628c 858 float hx, hy, _2bx, _2bz;
rctaduio 0:89967a01628c 859 float s1, s2, s3, s4;
rctaduio 0:89967a01628c 860 float qDot1, qDot2, qDot3, qDot4;
rctaduio 0:89967a01628c 861
rctaduio 0:89967a01628c 862 // Auxiliary variables to avoid repeated arithmetic
rctaduio 0:89967a01628c 863 float _2q1mx;
rctaduio 0:89967a01628c 864 float _2q1my;
rctaduio 0:89967a01628c 865 float _2q1mz;
rctaduio 0:89967a01628c 866 float _2q2mx;
rctaduio 0:89967a01628c 867 float _4bx;
rctaduio 0:89967a01628c 868 float _4bz;
rctaduio 0:89967a01628c 869 float _2q1 = 2.0f * q1;
rctaduio 0:89967a01628c 870 float _2q2 = 2.0f * q2;
rctaduio 0:89967a01628c 871 float _2q3 = 2.0f * q3;
rctaduio 0:89967a01628c 872 float _2q4 = 2.0f * q4;
rctaduio 0:89967a01628c 873 float _2q1q3 = 2.0f * q1 * q3;
rctaduio 0:89967a01628c 874 float _2q3q4 = 2.0f * q3 * q4;
rctaduio 0:89967a01628c 875 float q1q1 = q1 * q1;
rctaduio 0:89967a01628c 876 float q1q2 = q1 * q2;
rctaduio 0:89967a01628c 877 float q1q3 = q1 * q3;
rctaduio 0:89967a01628c 878 float q1q4 = q1 * q4;
rctaduio 0:89967a01628c 879 float q2q2 = q2 * q2;
rctaduio 0:89967a01628c 880 float q2q3 = q2 * q3;
rctaduio 0:89967a01628c 881 float q2q4 = q2 * q4;
rctaduio 0:89967a01628c 882 float q3q3 = q3 * q3;
rctaduio 0:89967a01628c 883 float q3q4 = q3 * q4;
rctaduio 0:89967a01628c 884 float q4q4 = q4 * q4;
rctaduio 0:89967a01628c 885
rctaduio 0:89967a01628c 886 // Normalise accelerometer measurement
rctaduio 0:89967a01628c 887 norm = sqrt(ax * ax + ay * ay + az * az);
rctaduio 0:89967a01628c 888 if (norm == 0.0f) return; // handle NaN
rctaduio 0:89967a01628c 889 norm = 1.0f/norm;
rctaduio 0:89967a01628c 890 ax *= norm;
rctaduio 0:89967a01628c 891 ay *= norm;
rctaduio 0:89967a01628c 892 az *= norm;
rctaduio 0:89967a01628c 893
rctaduio 0:89967a01628c 894 // Normalise magnetometer measurement
rctaduio 0:89967a01628c 895 norm = sqrt(mx * mx + my * my + mz * mz);
rctaduio 0:89967a01628c 896 if (norm == 0.0f) return; // handle NaN
rctaduio 0:89967a01628c 897 norm = 1.0f/norm;
rctaduio 0:89967a01628c 898 mx *= norm;
rctaduio 0:89967a01628c 899 my *= norm;
rctaduio 0:89967a01628c 900 mz *= norm;
rctaduio 0:89967a01628c 901
rctaduio 0:89967a01628c 902 // Reference direction of Earth's magnetic field
rctaduio 0:89967a01628c 903 _2q1mx = 2.0f * q1 * mx;
rctaduio 0:89967a01628c 904 _2q1my = 2.0f * q1 * my;
rctaduio 0:89967a01628c 905 _2q1mz = 2.0f * q1 * mz;
rctaduio 0:89967a01628c 906 _2q2mx = 2.0f * q2 * mx;
rctaduio 0:89967a01628c 907 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
rctaduio 0:89967a01628c 908 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
rctaduio 0:89967a01628c 909 _2bx = sqrt(hx * hx + hy * hy);
rctaduio 0:89967a01628c 910 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
rctaduio 0:89967a01628c 911 _4bx = 2.0f * _2bx;
rctaduio 0:89967a01628c 912 _4bz = 2.0f * _2bz;
rctaduio 0:89967a01628c 913
rctaduio 0:89967a01628c 914 // Gradient decent algorithm corrective step
rctaduio 0:89967a01628c 915 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
rctaduio 0:89967a01628c 916 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
rctaduio 0:89967a01628c 917 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
rctaduio 0:89967a01628c 918 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
rctaduio 0:89967a01628c 919 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
rctaduio 0:89967a01628c 920 norm = 1.0f/norm;
rctaduio 0:89967a01628c 921 s1 *= norm;
rctaduio 0:89967a01628c 922 s2 *= norm;
rctaduio 0:89967a01628c 923 s3 *= norm;
rctaduio 0:89967a01628c 924 s4 *= norm;
rctaduio 0:89967a01628c 925
rctaduio 0:89967a01628c 926 // Compute rate of change of quaternion
rctaduio 0:89967a01628c 927 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
rctaduio 0:89967a01628c 928 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
rctaduio 0:89967a01628c 929 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
rctaduio 0:89967a01628c 930 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
rctaduio 0:89967a01628c 931
rctaduio 0:89967a01628c 932 // Integrate to yield quaternion
rctaduio 0:89967a01628c 933 q1 += qDot1 * deltat;
rctaduio 0:89967a01628c 934 q2 += qDot2 * deltat;
rctaduio 0:89967a01628c 935 q3 += qDot3 * deltat;
rctaduio 0:89967a01628c 936 q4 += qDot4 * deltat;
rctaduio 0:89967a01628c 937 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
rctaduio 0:89967a01628c 938 norm = 1.0f/norm;
rctaduio 0:89967a01628c 939 q[0] = q1 * norm;
rctaduio 0:89967a01628c 940 q[1] = q2 * norm;
rctaduio 0:89967a01628c 941 q[2] = q3 * norm;
rctaduio 0:89967a01628c 942 q[3] = q4 * norm;
rctaduio 0:89967a01628c 943
rctaduio 0:89967a01628c 944 }
rctaduio 0:89967a01628c 945 };
rctaduio 0:89967a01628c 946 #endif