Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of pcb_test_v1_1_1 by
HK.cpp
- Committer:
- sakthipriya
- Date:
- 2015-04-07
- Revision:
- 0:e91ee0e99213
- Child:
- 1:bbddd1763652
File content as of revision 0:e91ee0e99213:
#include "HK.h" #include "pin_config.h" //GPIO pins used=> D2-D12, A0-A1 DigitalOut SelectLinesA[]={PIN43,PIN44,PIN45,PIN46}; //to mux1=>voltage mux , PTA 13-16 , CHNGE TO PIN43 LATER DigitalOut SelectLinesB[]={PIN56,PIN57,PIN58,PIN59}; //to mux2=>current mux(differential mux) , PTB 3,7,8,9 DigitalOut SelectLinesC[]={PIN64,PIN65,PIN66,PIN67}; //to mux3=>temp mux PTB 18-21 //--------------------------------------------MSB is SelectLines[0],LSB is SelectLines[3]-------------------------------- AnalogIn CurrentInput(PIN54); // output from Current Mux PTB0 AnalogIn VoltageInput(PIN53); // output from Voltage Multiplexer PTB1 AnalogIn TemperatureInput(PIN55); /*PTB2 output from Temperature Multiplexer,thermistor Multiplexer- same multiplexer for both(lines 1-4 for thermistor,line 0 for temperature sensor)*/ int quantiz(float start,float step,float x) // accepts min and measured values and step->quantises on a scale 0-15..(4 bit quantisation) { int y=(x-start)/step; if(y<=0)y=0; if(y>=15)y=15; return y; } void init_beacon(ShortBeacy* x,SensorDataQuantised y) { (*x).Voltage[0]=2; //quantised value (*x).Temp[0]=y.PanelTemperature[0]; //quantised value (*x).Temp[1]=y.PanelTemperature[1]; //quantised value (*x).AngularSpeed[0]=y.AngularSpeed[0]; (*x).AngularSpeed[1]=y.AngularSpeed[1]; (*x).SubsystemStatus[0]=145; //dummy values----------to be changed------------------- (*x).ErrorFlag[0]=3; //dummy values----------to be changed------------------- } SensorData Sensor; SensorDataQuantised SensorQuantised; ShortBeacy Shortbeacon; void FUNC_HK_MAIN() { //define structure variables //initialise all selectlines to zeroes->1st line of muxes selected SelectLinesA[0]=SelectLinesA[1]=SelectLinesA[2]=SelectLinesA[3]=0; SelectLinesB[0]=SelectLinesB[1]=SelectLinesB[2]=0; SelectLinesC[0]=SelectLinesC[1]=SelectLinesC[2]=SelectLinesC[3]=0; int LoopIterator; int SelectLineIterator; float resistance_thermistor,voltage_thermistor;//for thermistor //measurement from voltage sensor=> 16 sensors in place for(LoopIterator=0; LoopIterator<16; LoopIterator++) { //read the sensor values and stores them in 'SensorData' structure's variable 'Sensor' Sensor.Voltage[LoopIterator]=(VoltageInput.read()*3.3*5.545454);//resistors in voltage divider=>15Mohm,3.3Mohm if(LoopIterator%2==0) SensorQuantised.Voltage[LoopIterator/2]=quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]); else SensorQuantised.Voltage[(LoopIterator)/2]=SensorQuantised.Voltage[(LoopIterator)/2]<<4+quantiz(vstart,vstep,Sensor.Voltage[LoopIterator]); //iterate the select lines from 0 to 15 for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--) { if(SelectLinesA[SelectLineIterator]==0) { SelectLinesA[SelectLineIterator]=1; break; } else SelectLinesA[SelectLineIterator]=0; } wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. } //measurement from current sensor=> 8 sensors in place for(LoopIterator=0; LoopIterator<8; LoopIterator++) { //read the sensor values and stores them in 'SensorData' structure variable 'Sensor' Sensor.Current[LoopIterator]=(CurrentInput.read()*3.3/(50*rsens)); if(LoopIterator%2==0) SensorQuantised.Current[LoopIterator/2]=quantiz(cstart,cstep,Sensor.Current[LoopIterator]); else SensorQuantised.Current[(LoopIterator)/2]=SensorQuantised.Current[(LoopIterator)/2]<<4+quantiz(cstart,cstep,Sensor.Current[LoopIterator]); //iterate the select lines from 0 to 7 for(SelectLineIterator=2;SelectLineIterator>=0;SelectLineIterator--) { if(SelectLinesB[SelectLineIterator]==0) { SelectLinesB[SelectLineIterator]=1; break; } else SelectLinesB[SelectLineIterator]=0; } wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. } //measurement of temperature //temperature measurement=> 4 thermistors, 1 temperature sensor //mux line 1=>temp sensor, mux lines 2 to 5 =>thermistors for(LoopIterator=0; LoopIterator<5; LoopIterator++) { //read the sensor values and stores them in 'SensorData' structure variable 'Sensor' Sensor.Temperature[LoopIterator]=(-90.7*3.3*TemperatureInput.read()+190.1543); voltage_thermistor=TemperatureInput.read()*3.3;//voltage across thermistor resistance_thermistor=24000*voltage_thermistor/(3.3-voltage_thermistor);//resistance of thermistor if (LoopIterator==0) { printf(" \n\rTemp =%f",-90.7*3.3*TemperatureInput.read()+190.1543); } if(LoopIterator%2==0) { if(LoopIterator<1) //->corresponding to temperature sensor SensorQuantised.Temperature[(LoopIterator)/2]=quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]); else //->corresponding to thermistor { if(voltage_thermistor<1.378) //Temperature>12 degC Sensor.PanelTemperature[(LoopIterator-1)]=(3694/log(24.032242*resistance_thermistor)); else Sensor.PanelTemperature[(LoopIterator-1)]=(3365.4792/log(7.60404*resistance_thermistor)); SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[(LoopIterator-1)]); } } else { if(LoopIterator<1) SensorQuantised.Temperature[(LoopIterator)/2]=SensorQuantised.Temperature[(LoopIterator)/2]<<4+quantiz(tstart,tstep,Sensor.Temperature[LoopIterator]); else { if(voltage_thermistor<1.378) //Temperature>12 degC Sensor.PanelTemperature[LoopIterator-1]=(3694/log(24.032242*resistance_thermistor)); else Sensor.PanelTemperature[LoopIterator-1]=(3365.4792/log(7.60404*resistance_thermistor)); SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=SensorQuantised.PanelTemperature[(LoopIterator-1)/2]<<4+quantiz(tstart_thermistor,tstep_thermistor,Sensor.PanelTemperature[LoopIterator-1]); } } // The following lines are used to iterate the select lines from 0 to 4 for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--) { if(SelectLinesC[SelectLineIterator]==0) { SelectLinesC[SelectLineIterator]=1; break; } else SelectLinesC[SelectLineIterator]=0; } wait_us(10.0); // A delay of 10 microseconds between each sensor output. Can be changed. } //update magnetometer data-> //populate values in structure variable 'Sensor' from data to be given by Green SensorQuantised.AngularSpeed[0]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[1]); SensorQuantised.AngularSpeed[0]=SensorQuantised.AngularSpeed[0]<<4+quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[0]); SensorQuantised.AngularSpeed[1]=quantiz(AngularSpeed_start,AngularSpeed_step,Sensor.AngularSpeed[2]); //update gyro data-> //populate values in structure variable 'Sensor' from data to be given by Green SensorQuantised.Bnewvalue[0]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[1]); SensorQuantised.Bnewvalue[0]=SensorQuantised.Bnewvalue[0]<<4+quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[0]); SensorQuantised.Bnewvalue[1]=quantiz(Bnewvalue_start,Bnewvalue_step,Sensor.Bnewvalue[2]); //update beacon structure init_beacon(&Shortbeacon,SensorQuantised);//Shortbeacon is passed printf("\n here temperature :%d",SensorQuantised.Temperature); }