test

Dependencies:   mbed TFT_fonts SPI_TFT_ILI9341 ST_401_84MHZ SDFileSystem FATFileSystem DebouncedInterrupt VS1053

main.cpp

Committer:
PKnevermind
Date:
2015-12-08
Revision:
2:c4b198e96ded
Parent:
1:28ecafb2b832
Child:
3:c58fe0902900

File content as of revision 2:c4b198e96ded:

#include "mbed.h"
#include "player.h"
#include "DebouncedInterrupt.h"
//#include "MPU9250.h"
#include "SPI_TFT_ILI9341.h"
#include "stdio.h"
#include "string"
#include "Arial12x12.h"
#include "Arial24x23.h"
#include "Arial28x28.h"
#include "font_big.h"

DigitalIn Mode(A5);

extern char list[20][50];            //song list
extern unsigned char vlume;     //vlume
extern unsigned char vlumeflag; //set vlume flag
extern char index;              //song play index
extern char index_MAX;          //how many song in all
extern playerStatetype  playerState;

Serial pc(SERIAL_TX, SERIAL_RX);
Player player;

DebouncedInterrupt KEY_PS(D3);
InterruptIn KEY_Next(D4);
extern unsigned char p1[];
extern unsigned char p2[];
extern unsigned char p3[];
int mark=10,list_nowplay=0;
SPI_TFT_ILI9341 TFT(PA_7,PA_6,PA_5,PA_13,PA_14,PA_15,"TFT"); // mosi, miso, sclk, cs, reset, dc

float sum = 0;
uint32_t sumCount = 0;
char buffer[14];
uint8_t dato_leido[2];
uint8_t whoami;
void riseFlip()
{
    if(playerState == PS_PAUSE)playerState = PS_PLAY;
    else playerState = PS_PAUSE;
    //a=!a;
}

void letplay()
{
    TFT.cls();
    TFT.foreground(White);
    TFT.background(Black);
    TFT.cls();
    TFT.set_orientation(1);
    TFT.Bitmap(60,1,200,173,p1);
}

void angry()
{
    TFT.cls();
    TFT.foreground(White);
    TFT.background(Black);
    TFT.cls();
    TFT.set_orientation(1);
    TFT.Bitmap(60,1,200,173,p2);
}

void cry()
{
    TFT.cls();
    TFT.foreground(White);
    TFT.background(Black);
    TFT.cls();
    TFT.set_orientation(1);
    TFT.Bitmap(60,1,200,173,p3);
}

void print_list()
{
    int i=0,j=0;
    TFT.claim(stdout);
    TFT.cls();
    TFT.foreground(White);
    TFT.background(Black);
    TFT.cls();

    TFT.set_orientation(3);
    TFT.set_font((unsigned char*) Arial28x28);
    TFT.locate(150,120);
    TFT.printf("Manual Mode:");
    TFT.cls();
    TFT.set_orientation(3);
    TFT.set_font((unsigned char*) Arial12x12);
    //list[5]='\0';
    do {
        TFT.locate(5,j);
        TFT.printf("%2d . %s\r\n", i,list[i]);
        i++;
        j=j+23;
    } while(i<5);

}

void Next()
{
    playerState = PS_STOP; 
}

int main()
{

    KEY_PS.attach(&riseFlip ,IRQ_RISE ,100);
    KEY_Next.fall(&Next);
    if(Mode.read() == 0) {

        player.begin();
        print_list();
        while(1) {
           player.playFile(list[index]);
        }
    }
}

/*//___ Set up I2C: use fast (400 kHz) I2C ___
i2c.frequency(400000);

pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);

t.start(); // Timer ON

// Read the WHO_AM_I register, this is a good test of communication
whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);

pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
if (I2Cstate != 0) // error on I2C
  pc.printf("I2C failure while reading WHO_AM_I register");

if (whoami == 0x71) // WHO_AM_I should always be 0x71
{
  pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
  pc.printf("MPU9250 is online...\n\r");
  sprintf(buffer, "0x%x", whoami);
  wait(1);

  mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration

  mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test)
  pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
  pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
  pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
  pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
  pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
  pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);

  mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers
  pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
  pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
  pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
  pc.printf("x accel bias = %f\n\r", accelBias[0]);
  pc.printf("y accel bias = %f\n\r", accelBias[1]);
  pc.printf("z accel bias = %f\n\r", accelBias[2]);
  wait(2);

  // Initialize device for active mode read of acclerometer, gyroscope, and temperature
  mpu9250.initMPU9250();
  pc.printf("MPU9250 initialized for active data mode....\n\r");

  // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz.
  mpu9250.initAK8963(magCalibration);
  pc.printf("AK8963 initialized for active data mode....\n\r");
  pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
  pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
  if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
  if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
  if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
  if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
  wait(1);
 }

 else // Connection failure
 {
  pc.printf("Could not connect to MPU9250: \n\r");
  pc.printf("%#x \n",  whoami);
  sprintf(buffer, "WHO_AM_I 0x%x", whoami);
  while(1) ; // Loop forever if communication doesn't happen
  }

  mpu9250.getAres(); // Get accelerometer sensitivity
  mpu9250.getGres(); // Get gyro sensitivity
  mpu9250.getMres(); // Get magnetometer sensitivity
  pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
  pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
  pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
  magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
  magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
  magbias[2] = +125.;  // User environmental x-axis correction in milliGauss

  while(1) {

      // If intPin goes high, all data registers have new data
      if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt

          mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
          // Now we'll calculate the accleration value into actual g's
          if (I2Cstate != 0) //error on I2C
              pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate);
          else{ // I2C read or write ok
              I2Cstate = 1;
              ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
              ay = (float)accelCount[1]*aRes - accelBias[1];
              az = (float)accelCount[2]*aRes - accelBias[2];
          }

          mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
          // Calculate the gyro value into actual degrees per second
          if (I2Cstate != 0) //error on I2C
              pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate);
          else{ // I2C read or write ok
              I2Cstate = 1;
              gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
              gy = (float)gyroCount[1]*gRes - gyroBias[1];
              gz = (float)gyroCount[2]*gRes - gyroBias[2];
          }

          mpu9250.readMagData(magCount);  // Read the x/y/z adc values
          // Calculate the magnetometer values in milliGauss
          // Include factory calibration per data sheet and user environmental corrections
          if (I2Cstate != 0) //error on I2C
              pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate);
          else{ // I2C read or write ok
              I2Cstate = 1;
              mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
              my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
              mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
          }

          mpu9250.getCompassOrientation(orientation);
      }

      Now = t.read_us();
      deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
      lastUpdate = Now;
      sum += deltat;
      sumCount++;

      // Pass gyro rate as rad/s
      // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
      mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);


      // Serial print and/or display at 1.5 s rate independent of data rates
      delt_t = t.read_ms() - count;
      if (delt_t > 1500) { // update LCD once per half-second independent of read rate
          pc.printf("ax = %f", 1000*ax);
          pc.printf(" ay = %f", 1000*ay);
          pc.printf(" az = %f  mg\n\r", 1000*az);
          pc.printf("gx = %f", gx);
          pc.printf(" gy = %f", gy);
          pc.printf(" gz = %f  deg/s\n\r", gz);
          pc.printf("mx = %f", mx);
          pc.printf(" my = %f", my);
          pc.printf(" mz = %f  mG\n\r", mz);


          tempCount = mpu9250.readTempData();  // Read the adc values
          if (I2Cstate != 0) //error on I2C
              pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate);
          else{ // I2C read or write ok
              I2Cstate = 1;
              temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
              pc.printf(" temperature = %f  C\n\r", temperature);
          }
          pc.printf("q0 = %f\n\r", q[0]);
          pc.printf("q1 = %f\n\r", q[1]);
          pc.printf("q2 = %f\n\r", q[2]);
          pc.printf("q3 = %f\n\r", q[3]);

          pc.printf("Compass orientation: %f\n", orientation[0]);




          // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
          // In this coordinate system, the positive z-axis is down toward Earth.
          // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
          // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
          // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
          // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
          // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
          // applied in the correct order which for this configuration is yaw, pitch, and then roll.
          // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.

          yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
          pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
          roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
          pitch *= 180.0f / PI;
          yaw   *= 180.0f / PI;
          yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
          roll  *= 180.0f / PI;

          /*
          pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
          pc.printf("average rate = %f\n\r", (float) sumCount/sum);
          */


/*myled= !myled;
count = t.read_ms();

if(count > 1<<21) {
    t.start(); // start the timer over again if ~30 minutes has passed
    count = 0;
    deltat= 0;
    lastUpdate = t.read_us();
}
sum = 0;
sumCount = 0;
}
}*/