IMU driver (this thing is a mess).

Dependents:   PM2_Libary PM2_Libary

Committer:
pmic
Date:
Wed Feb 23 07:16:58 2022 +0000
Revision:
0:211f27847e85
Included driver for LSM9DS1 IMU.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 0:211f27847e85 1 /******************************************************************************
pmic 0:211f27847e85 2 SFE_LSM9DS1.cpp
pmic 0:211f27847e85 3 SFE_LSM9DS1 Library Source File
pmic 0:211f27847e85 4 Jim Lindblom @ SparkFun Electronics
pmic 0:211f27847e85 5 Original Creation Date: February 27, 2015
pmic 0:211f27847e85 6 https://github.com/sparkfun/LSM9DS1_Breakout
pmic 0:211f27847e85 7
pmic 0:211f27847e85 8 This file implements all functions of the LSM9DS1 class. Functions here range
pmic 0:211f27847e85 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
pmic 0:211f27847e85 10 hardware reads and writes. Both SPI and I2C handler functions can be found
pmic 0:211f27847e85 11 towards the bottom of this file.
pmic 0:211f27847e85 12
pmic 0:211f27847e85 13 Development environment specifics:
pmic 0:211f27847e85 14 IDE: Arduino 1.6
pmic 0:211f27847e85 15 Hardware Platform: Arduino Uno
pmic 0:211f27847e85 16 LSM9DS1 Breakout Version: 1.0
pmic 0:211f27847e85 17
pmic 0:211f27847e85 18 This code is beerware; if you see me (or any other SparkFun employee) at the
pmic 0:211f27847e85 19 local, and you've found our code helpful, please buy us a round!
pmic 0:211f27847e85 20
pmic 0:211f27847e85 21 Distributed as-is; no warranty is given.
pmic 0:211f27847e85 22
pmic 0:211f27847e85 23 Modified: Nicolas Borla, 20.01.2019
pmic 0:211f27847e85 24 ******************************************************************************/
pmic 0:211f27847e85 25
pmic 0:211f27847e85 26 #include "LSM9DS1_i2c.h"
pmic 0:211f27847e85 27 #include "LSM9DS1_Registers.h"
pmic 0:211f27847e85 28 #include "LSM9DS1_Types.h"
pmic 0:211f27847e85 29 //#include <Wire.h> // Wire library is used for I2C
pmic 0:211f27847e85 30 //#include <SPI.h> // SPI library is used for...SPI.
pmic 0:211f27847e85 31
pmic 0:211f27847e85 32 //#if defined(ARDUINO) && ARDUINO >= 100
pmic 0:211f27847e85 33 // #include "Arduino.h"
pmic 0:211f27847e85 34 //#else
pmic 0:211f27847e85 35 // #include "WProgram.h"
pmic 0:211f27847e85 36 //#endif
pmic 0:211f27847e85 37
pmic 0:211f27847e85 38 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
pmic 0:211f27847e85 39
pmic 0:211f27847e85 40 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
pmic 0:211f27847e85 41 //extern Serial pc;
pmic 0:211f27847e85 42
pmic 0:211f27847e85 43 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
pmic 0:211f27847e85 44 :i2c(sda, scl)
pmic 0:211f27847e85 45 {
pmic 0:211f27847e85 46 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
pmic 0:211f27847e85 47 begin();
pmic 0:211f27847e85 48 }
pmic 0:211f27847e85 49
pmic 0:211f27847e85 50 LSM9DS1::LSM9DS1(PinName sda, PinName scl)
pmic 0:211f27847e85 51 :i2c(sda, scl)
pmic 0:211f27847e85 52 {
pmic 0:211f27847e85 53 init(IMU_MODE_I2C, 0xD6, 0x3C); // dont know about 0xD6 or 0x3B
pmic 0:211f27847e85 54 begin();
pmic 0:211f27847e85 55 }
pmic 0:211f27847e85 56
pmic 0:211f27847e85 57 /*
pmic 0:211f27847e85 58 LSM9DS1::LSM9DS1()
pmic 0:211f27847e85 59 {
pmic 0:211f27847e85 60 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
pmic 0:211f27847e85 61 }
pmic 0:211f27847e85 62
pmic 0:211f27847e85 63 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
pmic 0:211f27847e85 64 {
pmic 0:211f27847e85 65 init(interface, xgAddr, mAddr);
pmic 0:211f27847e85 66 }
pmic 0:211f27847e85 67 */
pmic 0:211f27847e85 68
pmic 0:211f27847e85 69 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
pmic 0:211f27847e85 70 {
pmic 0:211f27847e85 71 settings.device.commInterface = interface;
pmic 0:211f27847e85 72 settings.device.agAddress = xgAddr;
pmic 0:211f27847e85 73 settings.device.mAddress = mAddr;
pmic 0:211f27847e85 74
pmic 0:211f27847e85 75 settings.gyro.enabled = true;
pmic 0:211f27847e85 76 settings.gyro.enableX = true;
pmic 0:211f27847e85 77 settings.gyro.enableY = true;
pmic 0:211f27847e85 78 settings.gyro.enableZ = true;
pmic 0:211f27847e85 79 // gyro scale can be 245, 500, or 2000 dps (degree per second)
pmic 0:211f27847e85 80 settings.gyro.scale = 500;
pmic 0:211f27847e85 81 // gyro sample rate: value between 1-6 in Hz
pmic 0:211f27847e85 82 // 1 = 14.9 4 = 238
pmic 0:211f27847e85 83 // 2 = 59.5 5 = 476
pmic 0:211f27847e85 84 // 3 = 119 6 = 952
pmic 0:211f27847e85 85 settings.gyro.sampleRate = 5;
pmic 0:211f27847e85 86 // gyro cutoff frequency: value between 0-3
pmic 0:211f27847e85 87 // Actual value of cutoff frequency depends
pmic 0:211f27847e85 88 // on sample rate.
pmic 0:211f27847e85 89 // @476 Hz: 0 -> 21 Hz only if LPF2 is enabled, to do so you need to set xgWriteByte(CTRL_REG2_G, 0x02) to enable LPF 2, pmic 11.09.2019
pmic 0:211f27847e85 90 // 1 -> 28 Hz
pmic 0:211f27847e85 91 // 2 -> 57 Hz
pmic 0:211f27847e85 92 // 3 -> 100 Hz
pmic 0:211f27847e85 93 settings.gyro.bandwidth = 1;
pmic 0:211f27847e85 94 settings.gyro.lowPowerEnable = false;
pmic 0:211f27847e85 95 settings.gyro.HPFEnable = false;
pmic 0:211f27847e85 96 // Gyro HPF cutoff frequency: value between 0-9
pmic 0:211f27847e85 97 // Actual value depends on sample rate. Only applies
pmic 0:211f27847e85 98 // if gyroHPFEnable is true.
pmic 0:211f27847e85 99 settings.gyro.HPFCutoff = 0;
pmic 0:211f27847e85 100 settings.gyro.flipX = false;
pmic 0:211f27847e85 101 settings.gyro.flipY = false;
pmic 0:211f27847e85 102 settings.gyro.flipZ = false;
pmic 0:211f27847e85 103 settings.gyro.orientation = 0;
pmic 0:211f27847e85 104 settings.gyro.latchInterrupt = true;
pmic 0:211f27847e85 105
pmic 0:211f27847e85 106 settings.accel.enabled = true;
pmic 0:211f27847e85 107 settings.accel.enableX = true;
pmic 0:211f27847e85 108 settings.accel.enableY = true;
pmic 0:211f27847e85 109 settings.accel.enableZ = true;
pmic 0:211f27847e85 110 // accel scale can be 2, 4, 8, or 16
pmic 0:211f27847e85 111 settings.accel.scale = 2;
pmic 0:211f27847e85 112 // accel sample rate can be 1-6
pmic 0:211f27847e85 113 // 1 = 10 Hz 4 = 238 Hz
pmic 0:211f27847e85 114 // 2 = 50 Hz 5 = 476 Hz
pmic 0:211f27847e85 115 // 3 = 119 Hz 6 = 952 Hz
pmic 0:211f27847e85 116 settings.accel.sampleRate = 5;
pmic 0:211f27847e85 117 // Accel cutoff freqeuncy can be any value between -1 - 3.
pmic 0:211f27847e85 118 // -1 = bandwidth determined by sample rate
pmic 0:211f27847e85 119 // 0 = 408 Hz 2 = 105 Hz
pmic 0:211f27847e85 120 // 1 = 211 Hz 3 = 50 Hz
pmic 0:211f27847e85 121 settings.accel.bandwidth = 3;
pmic 0:211f27847e85 122 settings.accel.highResEnable = false;
pmic 0:211f27847e85 123 // accelHighResBandwidth can be any value between 0-3
pmic 0:211f27847e85 124 // LP cutoff is set to a factor of sample rate
pmic 0:211f27847e85 125 // 0 = ODR/50 2 = ODR/9
pmic 0:211f27847e85 126 // 1 = ODR/100 3 = ODR/400
pmic 0:211f27847e85 127 settings.accel.highResBandwidth = 0;
pmic 0:211f27847e85 128
pmic 0:211f27847e85 129 settings.mag.enabled = true;
pmic 0:211f27847e85 130 // mag scale can be 4, 8, 12, or 16
pmic 0:211f27847e85 131 settings.mag.scale = 4;
pmic 0:211f27847e85 132 // mag data rate can be 0-7
pmic 0:211f27847e85 133 // 0 = 0.625 Hz 4 = 10 Hz
pmic 0:211f27847e85 134 // 1 = 1.25 Hz 5 = 20 Hz
pmic 0:211f27847e85 135 // 2 = 2.5 Hz 6 = 40 Hz
pmic 0:211f27847e85 136 // 3 = 5 Hz 7 = 80 Hz
pmic 0:211f27847e85 137 settings.mag.sampleRate = 7;
pmic 0:211f27847e85 138 settings.mag.tempCompensationEnable = true;
pmic 0:211f27847e85 139 // magPerformance can be any value between 0-3
pmic 0:211f27847e85 140 // 0 = Low power mode 2 = high performance
pmic 0:211f27847e85 141 // 1 = medium performance 3 = ultra-high performance
pmic 0:211f27847e85 142 settings.mag.XYPerformance = 2;
pmic 0:211f27847e85 143 settings.mag.ZPerformance = 2;
pmic 0:211f27847e85 144 settings.mag.lowPowerEnable = false;
pmic 0:211f27847e85 145 // magOperatingMode can be 0-2
pmic 0:211f27847e85 146 // 0 = continuous conversion
pmic 0:211f27847e85 147 // 1 = single-conversion
pmic 0:211f27847e85 148 // 2 = power down
pmic 0:211f27847e85 149 settings.mag.operatingMode = 0;
pmic 0:211f27847e85 150
pmic 0:211f27847e85 151 settings.temp.enabled = true;
pmic 0:211f27847e85 152 for (int i=0; i<3; i++)
pmic 0:211f27847e85 153 {
pmic 0:211f27847e85 154 gBias[i] = 0;
pmic 0:211f27847e85 155 aBias[i] = 0;
pmic 0:211f27847e85 156 mBias[i] = 0;
pmic 0:211f27847e85 157 gBiasRaw[i] = 0;
pmic 0:211f27847e85 158 aBiasRaw[i] = 0;
pmic 0:211f27847e85 159 mBiasRaw[i] = 0;
pmic 0:211f27847e85 160 }
pmic 0:211f27847e85 161 _autoCalc = false;
pmic 0:211f27847e85 162 }
pmic 0:211f27847e85 163
pmic 0:211f27847e85 164
pmic 0:211f27847e85 165 uint16_t LSM9DS1::begin()
pmic 0:211f27847e85 166 {
pmic 0:211f27847e85 167 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
pmic 0:211f27847e85 168 _xgAddress = settings.device.agAddress;
pmic 0:211f27847e85 169 _mAddress = settings.device.mAddress;
pmic 0:211f27847e85 170
pmic 0:211f27847e85 171 constrainScales();
pmic 0:211f27847e85 172 // Once we have the scale values, we can calculate the resolution
pmic 0:211f27847e85 173 // of each sensor. That's what these functions are for. One for each sensor
pmic 0:211f27847e85 174 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
pmic 0:211f27847e85 175 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
pmic 0:211f27847e85 176 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
pmic 0:211f27847e85 177
pmic 0:211f27847e85 178 // Now, initialize our hardware interface.
pmic 0:211f27847e85 179 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
pmic 0:211f27847e85 180 initI2C(); // Initialize I2C
pmic 0:211f27847e85 181 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
pmic 0:211f27847e85 182 initSPI(); // Initialize SPI
pmic 0:211f27847e85 183
pmic 0:211f27847e85 184 // To verify communication, we can read from the WHO_AM_I register of
pmic 0:211f27847e85 185 // each device. Store those in a variable so we can return them.
pmic 0:211f27847e85 186 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
pmic 0:211f27847e85 187 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
pmic 0:211f27847e85 188 printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
pmic 0:211f27847e85 189 uint16_t whoAmICombined = (xgTest << 8) | mTest;
pmic 0:211f27847e85 190
pmic 0:211f27847e85 191 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
pmic 0:211f27847e85 192 return 0;
pmic 0:211f27847e85 193
pmic 0:211f27847e85 194 // Gyro initialization stuff:
pmic 0:211f27847e85 195 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
pmic 0:211f27847e85 196
pmic 0:211f27847e85 197 // Accelerometer initialization stuff:
pmic 0:211f27847e85 198 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
pmic 0:211f27847e85 199
pmic 0:211f27847e85 200 // Magnetometer initialization stuff:
pmic 0:211f27847e85 201 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
pmic 0:211f27847e85 202
pmic 0:211f27847e85 203 // Once everything is initialized, return the WHO_AM_I registers we read:
pmic 0:211f27847e85 204 return whoAmICombined;
pmic 0:211f27847e85 205 }
pmic 0:211f27847e85 206
pmic 0:211f27847e85 207 float LSM9DS1::readGyroX(){return gyroX;}
pmic 0:211f27847e85 208 float LSM9DS1::readGyroY(){return gyroY;}
pmic 0:211f27847e85 209 float LSM9DS1::readGyroZ(){return gyroZ;}
pmic 0:211f27847e85 210 float LSM9DS1::readAccX(){return accX;}
pmic 0:211f27847e85 211 float LSM9DS1::readAccY(){return accY;}
pmic 0:211f27847e85 212 float LSM9DS1::readAccZ(){return accZ;}
pmic 0:211f27847e85 213 float LSM9DS1::readMagX(){return magX;}
pmic 0:211f27847e85 214 float LSM9DS1::readMagY(){return magY;}
pmic 0:211f27847e85 215 float LSM9DS1::readMagZ(){return magZ;}
pmic 0:211f27847e85 216
pmic 0:211f27847e85 217 void LSM9DS1::initGyro()
pmic 0:211f27847e85 218 {
pmic 0:211f27847e85 219 uint8_t tempRegValue = 0;
pmic 0:211f27847e85 220
pmic 0:211f27847e85 221 // CTRL_REG1_G (Default value: 0x00)
pmic 0:211f27847e85 222 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
pmic 0:211f27847e85 223 // ODR_G[2:0] - Output data rate selection
pmic 0:211f27847e85 224 // FS_G[1:0] - Gyroscope full-scale selection
pmic 0:211f27847e85 225 // BW_G[1:0] - Gyroscope bandwidth selection
pmic 0:211f27847e85 226
pmic 0:211f27847e85 227 // To disable gyro, set sample rate bits to 0. We'll only set sample
pmic 0:211f27847e85 228 // rate if the gyro is enabled.
pmic 0:211f27847e85 229 if (settings.gyro.enabled)
pmic 0:211f27847e85 230 {
pmic 0:211f27847e85 231 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
pmic 0:211f27847e85 232 }
pmic 0:211f27847e85 233 switch (settings.gyro.scale)
pmic 0:211f27847e85 234 {
pmic 0:211f27847e85 235 case 500:
pmic 0:211f27847e85 236 tempRegValue |= (0x1 << 3);
pmic 0:211f27847e85 237 break;
pmic 0:211f27847e85 238 case 2000:
pmic 0:211f27847e85 239 tempRegValue |= (0x3 << 3);
pmic 0:211f27847e85 240 break;
pmic 0:211f27847e85 241 // Otherwise we'll set it to 245 dps (0x0 << 4)
pmic 0:211f27847e85 242 }
pmic 0:211f27847e85 243 tempRegValue |= (settings.gyro.bandwidth & 0x3);
pmic 0:211f27847e85 244 xgWriteByte(CTRL_REG1_G, tempRegValue);
pmic 0:211f27847e85 245
pmic 0:211f27847e85 246 // CTRL_REG2_G (Default value: 0x00)
pmic 0:211f27847e85 247 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
pmic 0:211f27847e85 248 // INT_SEL[1:0] - INT selection configuration
pmic 0:211f27847e85 249 // OUT_SEL[1:0] - Out selection configuration
pmic 0:211f27847e85 250 xgWriteByte(CTRL_REG2_G, 0x02); // use xgWriteByte(CTRL_REG2_G, 0x00); to disable LPF 2, pmic 11.09.2019
pmic 0:211f27847e85 251
pmic 0:211f27847e85 252 // CTRL_REG3_G (Default value: 0x00)
pmic 0:211f27847e85 253 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
pmic 0:211f27847e85 254 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
pmic 0:211f27847e85 255 // HP_EN - HPF enable (0:disabled, 1: enabled)
pmic 0:211f27847e85 256 // HPCF_G[3:0] - HPF cutoff frequency
pmic 0:211f27847e85 257 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
pmic 0:211f27847e85 258 if (settings.gyro.HPFEnable)
pmic 0:211f27847e85 259 {
pmic 0:211f27847e85 260 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
pmic 0:211f27847e85 261 }
pmic 0:211f27847e85 262 xgWriteByte(CTRL_REG3_G, tempRegValue);
pmic 0:211f27847e85 263
pmic 0:211f27847e85 264 // CTRL_REG4 (Default value: 0x38)
pmic 0:211f27847e85 265 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
pmic 0:211f27847e85 266 // Zen_G - Z-axis output enable (0:disable, 1:enable)
pmic 0:211f27847e85 267 // Yen_G - Y-axis output enable (0:disable, 1:enable)
pmic 0:211f27847e85 268 // Xen_G - X-axis output enable (0:disable, 1:enable)
pmic 0:211f27847e85 269 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
pmic 0:211f27847e85 270 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
pmic 0:211f27847e85 271 tempRegValue = 0;
pmic 0:211f27847e85 272 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
pmic 0:211f27847e85 273 if (settings.gyro.enableY) tempRegValue |= (1<<4);
pmic 0:211f27847e85 274 if (settings.gyro.enableX) tempRegValue |= (1<<3);
pmic 0:211f27847e85 275 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
pmic 0:211f27847e85 276 xgWriteByte(CTRL_REG4, tempRegValue);
pmic 0:211f27847e85 277
pmic 0:211f27847e85 278 // ORIENT_CFG_G (Default value: 0x00)
pmic 0:211f27847e85 279 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
pmic 0:211f27847e85 280 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
pmic 0:211f27847e85 281 // Orient [2:0] - Directional user orientation selection
pmic 0:211f27847e85 282 tempRegValue = 0;
pmic 0:211f27847e85 283 if (settings.gyro.flipX) tempRegValue |= (1<<5);
pmic 0:211f27847e85 284 if (settings.gyro.flipY) tempRegValue |= (1<<4);
pmic 0:211f27847e85 285 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
pmic 0:211f27847e85 286 xgWriteByte(ORIENT_CFG_G, tempRegValue);
pmic 0:211f27847e85 287 }
pmic 0:211f27847e85 288
pmic 0:211f27847e85 289 void LSM9DS1::initAccel()
pmic 0:211f27847e85 290 {
pmic 0:211f27847e85 291 uint8_t tempRegValue = 0;
pmic 0:211f27847e85 292
pmic 0:211f27847e85 293 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
pmic 0:211f27847e85 294 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
pmic 0:211f27847e85 295 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
pmic 0:211f27847e85 296 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
pmic 0:211f27847e85 297 // Zen_XL - Z-axis output enabled
pmic 0:211f27847e85 298 // Yen_XL - Y-axis output enabled
pmic 0:211f27847e85 299 // Xen_XL - X-axis output enabled
pmic 0:211f27847e85 300 if (settings.accel.enableZ) tempRegValue |= (1<<5);
pmic 0:211f27847e85 301 if (settings.accel.enableY) tempRegValue |= (1<<4);
pmic 0:211f27847e85 302 if (settings.accel.enableX) tempRegValue |= (1<<3);
pmic 0:211f27847e85 303
pmic 0:211f27847e85 304 xgWriteByte(CTRL_REG5_XL, tempRegValue);
pmic 0:211f27847e85 305
pmic 0:211f27847e85 306 // CTRL_REG6_XL (0x20) (Default value: 0x00)
pmic 0:211f27847e85 307 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
pmic 0:211f27847e85 308 // ODR_XL[2:0] - Output data rate & power mode selection
pmic 0:211f27847e85 309 // FS_XL[1:0] - Full-scale selection
pmic 0:211f27847e85 310 // BW_SCAL_ODR - Bandwidth selection
pmic 0:211f27847e85 311 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
pmic 0:211f27847e85 312 tempRegValue = 0;
pmic 0:211f27847e85 313 // To disable the accel, set the sampleRate bits to 0.
pmic 0:211f27847e85 314 if (settings.accel.enabled)
pmic 0:211f27847e85 315 {
pmic 0:211f27847e85 316 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
pmic 0:211f27847e85 317 }
pmic 0:211f27847e85 318 switch (settings.accel.scale)
pmic 0:211f27847e85 319 {
pmic 0:211f27847e85 320 case 4:
pmic 0:211f27847e85 321 tempRegValue |= (0x2 << 3);
pmic 0:211f27847e85 322 break;
pmic 0:211f27847e85 323 case 8:
pmic 0:211f27847e85 324 tempRegValue |= (0x3 << 3);
pmic 0:211f27847e85 325 break;
pmic 0:211f27847e85 326 case 16:
pmic 0:211f27847e85 327 tempRegValue |= (0x1 << 3);
pmic 0:211f27847e85 328 break;
pmic 0:211f27847e85 329 // Otherwise it'll be set to 2g (0x0 << 3)
pmic 0:211f27847e85 330 }
pmic 0:211f27847e85 331 if (settings.accel.bandwidth >= 0)
pmic 0:211f27847e85 332 {
pmic 0:211f27847e85 333 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
pmic 0:211f27847e85 334 tempRegValue |= (settings.accel.bandwidth & 0x03);
pmic 0:211f27847e85 335 }
pmic 0:211f27847e85 336 xgWriteByte(CTRL_REG6_XL, tempRegValue);
pmic 0:211f27847e85 337
pmic 0:211f27847e85 338 // CTRL_REG7_XL (0x21) (Default value: 0x00)
pmic 0:211f27847e85 339 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
pmic 0:211f27847e85 340 // HR - High resolution mode (0: disable, 1: enable)
pmic 0:211f27847e85 341 // DCF[1:0] - Digital filter cutoff frequency
pmic 0:211f27847e85 342 // FDS - Filtered data selection
pmic 0:211f27847e85 343 // HPIS1 - HPF enabled for interrupt function
pmic 0:211f27847e85 344 tempRegValue = 0;
pmic 0:211f27847e85 345 if (settings.accel.highResEnable)
pmic 0:211f27847e85 346 {
pmic 0:211f27847e85 347 tempRegValue |= (1<<7); // Set HR bit
pmic 0:211f27847e85 348 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
pmic 0:211f27847e85 349 }
pmic 0:211f27847e85 350 xgWriteByte(CTRL_REG7_XL, tempRegValue);
pmic 0:211f27847e85 351 }
pmic 0:211f27847e85 352
pmic 0:211f27847e85 353 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
pmic 0:211f27847e85 354 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
pmic 0:211f27847e85 355 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
pmic 0:211f27847e85 356 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
pmic 0:211f27847e85 357 // subtract the biases ourselves. This results in a more accurate measurement in general and can
pmic 0:211f27847e85 358 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
pmic 0:211f27847e85 359 // is good practice.
pmic 0:211f27847e85 360 void LSM9DS1::calibrate(bool autoCalc)
pmic 0:211f27847e85 361 {
pmic 0:211f27847e85 362 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
pmic 0:211f27847e85 363 uint8_t samples = 0;
pmic 0:211f27847e85 364 int ii;
pmic 0:211f27847e85 365 int32_t aBiasRawTemp[3] = {0, 0, 0};
pmic 0:211f27847e85 366 int32_t gBiasRawTemp[3] = {0, 0, 0};
pmic 0:211f27847e85 367
pmic 0:211f27847e85 368 // Turn on FIFO and set threshold to 32 samples
pmic 0:211f27847e85 369 enableFIFO(true);
pmic 0:211f27847e85 370 setFIFO(FIFO_THS, 0x1F);
pmic 0:211f27847e85 371 while (samples < 0x7F)
pmic 0:211f27847e85 372 {
pmic 0:211f27847e85 373 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
pmic 0:211f27847e85 374 }
pmic 0:211f27847e85 375 for(ii = 0; ii < samples ; ii++)
pmic 0:211f27847e85 376 { // Read the gyro data stored in the FIFO
pmic 0:211f27847e85 377 updateGyro();
pmic 0:211f27847e85 378 gBiasRawTemp[0] += gx;
pmic 0:211f27847e85 379 gBiasRawTemp[1] += gy;
pmic 0:211f27847e85 380 gBiasRawTemp[2] += gz;
pmic 0:211f27847e85 381 updateAcc();
pmic 0:211f27847e85 382 aBiasRawTemp[0] += ax;
pmic 0:211f27847e85 383 aBiasRawTemp[1] += ay;
pmic 0:211f27847e85 384 aBiasRawTemp[2] += az - (int32_t)(1.0f/aRes); // Assumes sensor facing up!
pmic 0:211f27847e85 385 }
pmic 0:211f27847e85 386 for (ii = 0; ii < 3; ii++)
pmic 0:211f27847e85 387 {
pmic 0:211f27847e85 388 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
pmic 0:211f27847e85 389 gBias[ii] = calcGyro(gBiasRaw[ii]);
pmic 0:211f27847e85 390 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
pmic 0:211f27847e85 391 aBias[ii] = calcAccel(aBiasRaw[ii]);
pmic 0:211f27847e85 392 }
pmic 0:211f27847e85 393
pmic 0:211f27847e85 394 enableFIFO(false);
pmic 0:211f27847e85 395 setFIFO(FIFO_OFF, 0x00);
pmic 0:211f27847e85 396
pmic 0:211f27847e85 397 if (autoCalc) _autoCalc = true;
pmic 0:211f27847e85 398 }
pmic 0:211f27847e85 399
pmic 0:211f27847e85 400 void LSM9DS1::calibrateMag(bool loadIn)
pmic 0:211f27847e85 401 {
pmic 0:211f27847e85 402 int i, j;
pmic 0:211f27847e85 403 int16_t magMin[3] = {0, 0, 0};
pmic 0:211f27847e85 404 int16_t magMax[3] = {0, 0, 0}; // The road warrior
pmic 0:211f27847e85 405
pmic 0:211f27847e85 406 for (i=0; i<128; i++)
pmic 0:211f27847e85 407 {
pmic 0:211f27847e85 408 while (!magAvailable());
pmic 0:211f27847e85 409 updateMag();
pmic 0:211f27847e85 410 int16_t magTemp[3] = {0, 0, 0};
pmic 0:211f27847e85 411 magTemp[0] = mx;
pmic 0:211f27847e85 412 magTemp[1] = my;
pmic 0:211f27847e85 413 magTemp[2] = mz;
pmic 0:211f27847e85 414 for (j = 0; j < 3; j++)
pmic 0:211f27847e85 415 {
pmic 0:211f27847e85 416 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
pmic 0:211f27847e85 417 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
pmic 0:211f27847e85 418 }
pmic 0:211f27847e85 419 }
pmic 0:211f27847e85 420 for (j = 0; j < 3; j++)
pmic 0:211f27847e85 421 {
pmic 0:211f27847e85 422 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
pmic 0:211f27847e85 423 mBias[j] = calcMag(mBiasRaw[j]);
pmic 0:211f27847e85 424 if (loadIn)
pmic 0:211f27847e85 425 magOffset(j, mBiasRaw[j]);
pmic 0:211f27847e85 426 }
pmic 0:211f27847e85 427
pmic 0:211f27847e85 428 }
pmic 0:211f27847e85 429 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
pmic 0:211f27847e85 430 {
pmic 0:211f27847e85 431 if (axis > 2)
pmic 0:211f27847e85 432 return;
pmic 0:211f27847e85 433 uint8_t msb, lsb;
pmic 0:211f27847e85 434 msb = (offset & 0xFF00) >> 8;
pmic 0:211f27847e85 435 lsb = offset & 0x00FF;
pmic 0:211f27847e85 436 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
pmic 0:211f27847e85 437 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
pmic 0:211f27847e85 438 }
pmic 0:211f27847e85 439
pmic 0:211f27847e85 440 void LSM9DS1::initMag()
pmic 0:211f27847e85 441 {
pmic 0:211f27847e85 442 uint8_t tempRegValue = 0;
pmic 0:211f27847e85 443
pmic 0:211f27847e85 444 // CTRL_REG1_M (Default value: 0x10)
pmic 0:211f27847e85 445 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
pmic 0:211f27847e85 446 // TEMP_COMP - Temperature compensation
pmic 0:211f27847e85 447 // OM[1:0] - X & Y axes op mode selection
pmic 0:211f27847e85 448 // 00:low-power, 01:medium performance
pmic 0:211f27847e85 449 // 10: high performance, 11:ultra-high performance
pmic 0:211f27847e85 450 // DO[2:0] - Output data rate selection
pmic 0:211f27847e85 451 // ST - Self-test enable
pmic 0:211f27847e85 452 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
pmic 0:211f27847e85 453 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
pmic 0:211f27847e85 454 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
pmic 0:211f27847e85 455 // mWriteByte(CTRL_REG1_M, tempRegValue);
pmic 0:211f27847e85 456 // pmic 21.09.2019, settings now static
pmic 0:211f27847e85 457 // use 0xC2 for temperature compensation on, Fast ODR -> 300 Hz undocumented mode high performance
pmic 0:211f27847e85 458 // use 0x42 for temperature compensation off, Fast ODR -> 300 Hz undocumented mode high performance
pmic 0:211f27847e85 459 // use 0xE2 for temperature compensation on, Fast ODR -> 155 Hz undocumented mode ultra high performance
pmic 0:211f27847e85 460 // use 0x62 for temperature compensation off, Fast ODR -> 155 Hz undocumented mode ultra high performance
pmic 0:211f27847e85 461 // use 0xA2 for temperature compensation on, Fast ODR -> 155 Hz undocumented mode medium performance
pmic 0:211f27847e85 462 // use 0x22 for temperature compensation off, Fast ODR -> 155 Hz undocumented mode medium performance
pmic 0:211f27847e85 463 mWriteByte(CTRL_REG1_M, 0xC2);
pmic 0:211f27847e85 464
pmic 0:211f27847e85 465 // CTRL_REG2_M (Default value 0x00)
pmic 0:211f27847e85 466 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
pmic 0:211f27847e85 467 // FS[1:0] - Full-scale configuration
pmic 0:211f27847e85 468 // REBOOT - Reboot memory content (0:normal, 1:reboot)
pmic 0:211f27847e85 469 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
pmic 0:211f27847e85 470 tempRegValue = 0;
pmic 0:211f27847e85 471 switch (settings.mag.scale)
pmic 0:211f27847e85 472 {
pmic 0:211f27847e85 473 case 8:
pmic 0:211f27847e85 474 tempRegValue |= (0x1 << 5);
pmic 0:211f27847e85 475 break;
pmic 0:211f27847e85 476 case 12:
pmic 0:211f27847e85 477 tempRegValue |= (0x2 << 5);
pmic 0:211f27847e85 478 break;
pmic 0:211f27847e85 479 case 16:
pmic 0:211f27847e85 480 tempRegValue |= (0x3 << 5);
pmic 0:211f27847e85 481 break;
pmic 0:211f27847e85 482 // Otherwise we'll default to 4 gauss (00)
pmic 0:211f27847e85 483 }
pmic 0:211f27847e85 484 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
pmic 0:211f27847e85 485
pmic 0:211f27847e85 486 // CTRL_REG3_M (Default value: 0x03)
pmic 0:211f27847e85 487 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
pmic 0:211f27847e85 488 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
pmic 0:211f27847e85 489 // LP - Low-power mode cofiguration (1:enable)
pmic 0:211f27847e85 490 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
pmic 0:211f27847e85 491 // MD[1:0] - Operating mode
pmic 0:211f27847e85 492 // 00:continuous conversion, 01:single-conversion,
pmic 0:211f27847e85 493 // 10,11: Power-down
pmic 0:211f27847e85 494 tempRegValue = 0;
pmic 0:211f27847e85 495 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
pmic 0:211f27847e85 496 tempRegValue |= (settings.mag.operatingMode & 0x3);
pmic 0:211f27847e85 497 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
pmic 0:211f27847e85 498
pmic 0:211f27847e85 499 // CTRL_REG4_M (Default value: 0x00)
pmic 0:211f27847e85 500 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
pmic 0:211f27847e85 501 // OMZ[1:0] - Z-axis operative mode selection
pmic 0:211f27847e85 502 // 00:low-power mode, 01:medium performance
pmic 0:211f27847e85 503 // 10:high performance, 11:ultra-high performance
pmic 0:211f27847e85 504 // BLE - Big/little endian data
pmic 0:211f27847e85 505 tempRegValue = 0;
pmic 0:211f27847e85 506 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
pmic 0:211f27847e85 507 mWriteByte(CTRL_REG4_M, tempRegValue);
pmic 0:211f27847e85 508
pmic 0:211f27847e85 509 // CTRL_REG5_M (Default value: 0x00)
pmic 0:211f27847e85 510 // [0][BDU][0][0][0][0][0][0]
pmic 0:211f27847e85 511 // BDU - Block data update for magnetic data
pmic 0:211f27847e85 512 // 0:continuous, 1:not updated until MSB/LSB are read
pmic 0:211f27847e85 513 tempRegValue = 0;
pmic 0:211f27847e85 514 mWriteByte(CTRL_REG5_M, tempRegValue);
pmic 0:211f27847e85 515 }
pmic 0:211f27847e85 516
pmic 0:211f27847e85 517 uint8_t LSM9DS1::accelAvailable()
pmic 0:211f27847e85 518 {
pmic 0:211f27847e85 519 uint8_t status = xgReadByte(STATUS_REG_1);
pmic 0:211f27847e85 520
pmic 0:211f27847e85 521 return (status & (1<<0));
pmic 0:211f27847e85 522 }
pmic 0:211f27847e85 523
pmic 0:211f27847e85 524 uint8_t LSM9DS1::gyroAvailable()
pmic 0:211f27847e85 525 {
pmic 0:211f27847e85 526 uint8_t status = xgReadByte(STATUS_REG_1);
pmic 0:211f27847e85 527
pmic 0:211f27847e85 528 return ((status & (1<<1)) >> 1);
pmic 0:211f27847e85 529 }
pmic 0:211f27847e85 530
pmic 0:211f27847e85 531 uint8_t LSM9DS1::tempAvailable()
pmic 0:211f27847e85 532 {
pmic 0:211f27847e85 533 uint8_t status = xgReadByte(STATUS_REG_1);
pmic 0:211f27847e85 534
pmic 0:211f27847e85 535 return ((status & (1<<2)) >> 2);
pmic 0:211f27847e85 536 }
pmic 0:211f27847e85 537
pmic 0:211f27847e85 538 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
pmic 0:211f27847e85 539 {
pmic 0:211f27847e85 540 uint8_t status;
pmic 0:211f27847e85 541 status = mReadByte(STATUS_REG_M);
pmic 0:211f27847e85 542
pmic 0:211f27847e85 543 return ((status & (1<<axis)) >> axis);
pmic 0:211f27847e85 544 }
pmic 0:211f27847e85 545
pmic 0:211f27847e85 546 void LSM9DS1::updateAcc()
pmic 0:211f27847e85 547 {
pmic 0:211f27847e85 548 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
pmic 0:211f27847e85 549 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
pmic 0:211f27847e85 550 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
pmic 0:211f27847e85 551 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
pmic 0:211f27847e85 552 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
pmic 0:211f27847e85 553 if (_autoCalc)
pmic 0:211f27847e85 554 {
pmic 0:211f27847e85 555 ax -= aBiasRaw[X_AXIS];
pmic 0:211f27847e85 556 ay -= aBiasRaw[Y_AXIS];
pmic 0:211f27847e85 557 az -= aBiasRaw[Z_AXIS];
pmic 0:211f27847e85 558 }
pmic 0:211f27847e85 559 accX = static_cast<float>(ax)/32768.0f*2.0f*9.81f;
pmic 0:211f27847e85 560 accY = static_cast<float>(ay)/32768.0f*2.0f*9.81f;
pmic 0:211f27847e85 561 accZ = static_cast<float>(az)/32768.0f*2.0f*9.81f;
pmic 0:211f27847e85 562 }
pmic 0:211f27847e85 563
pmic 0:211f27847e85 564 int16_t LSM9DS1::updateAcc(lsm9ds1_axis axis)
pmic 0:211f27847e85 565 {
pmic 0:211f27847e85 566 uint8_t temp[2];
pmic 0:211f27847e85 567 int16_t value;
pmic 0:211f27847e85 568 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
pmic 0:211f27847e85 569 value = (temp[1] << 8) | temp[0];
pmic 0:211f27847e85 570
pmic 0:211f27847e85 571 if (_autoCalc)
pmic 0:211f27847e85 572 value -= aBiasRaw[axis];
pmic 0:211f27847e85 573
pmic 0:211f27847e85 574 return value;
pmic 0:211f27847e85 575 }
pmic 0:211f27847e85 576
pmic 0:211f27847e85 577 void LSM9DS1::updateMag()
pmic 0:211f27847e85 578 {
pmic 0:211f27847e85 579 uint8_t temp[6]; // We'll read six bytes from the mag into temp
pmic 0:211f27847e85 580 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
pmic 0:211f27847e85 581 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
pmic 0:211f27847e85 582 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
pmic 0:211f27847e85 583 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
pmic 0:211f27847e85 584
pmic 0:211f27847e85 585 magX = static_cast<float>(mx)/32768.0f*4.0f;
pmic 0:211f27847e85 586 magY = static_cast<float>(my)/32768.0f*4.0f;
pmic 0:211f27847e85 587 magZ = static_cast<float>(mz)/32768.0f*4.0f;
pmic 0:211f27847e85 588 }
pmic 0:211f27847e85 589
pmic 0:211f27847e85 590 int16_t LSM9DS1::updateMag(lsm9ds1_axis axis)
pmic 0:211f27847e85 591 {
pmic 0:211f27847e85 592 uint8_t temp[2];
pmic 0:211f27847e85 593 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
pmic 0:211f27847e85 594 return (temp[1] << 8) | temp[0];
pmic 0:211f27847e85 595 }
pmic 0:211f27847e85 596
pmic 0:211f27847e85 597 void LSM9DS1::readTemp()
pmic 0:211f27847e85 598 {
pmic 0:211f27847e85 599 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
pmic 0:211f27847e85 600 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
pmic 0:211f27847e85 601 temperature = ((int16_t)temp[1] << 8) | temp[0];
pmic 0:211f27847e85 602 }
pmic 0:211f27847e85 603
pmic 0:211f27847e85 604 void LSM9DS1::updateGyro()
pmic 0:211f27847e85 605 {
pmic 0:211f27847e85 606 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
pmic 0:211f27847e85 607 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
pmic 0:211f27847e85 608 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
pmic 0:211f27847e85 609 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
pmic 0:211f27847e85 610 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
pmic 0:211f27847e85 611 if (_autoCalc)
pmic 0:211f27847e85 612 {
pmic 0:211f27847e85 613 gx -= gBiasRaw[X_AXIS];
pmic 0:211f27847e85 614 gy -= gBiasRaw[Y_AXIS];
pmic 0:211f27847e85 615 gz -= gBiasRaw[Z_AXIS];
pmic 0:211f27847e85 616 }
pmic 0:211f27847e85 617 gyroX = static_cast<float>(gx)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f; // measured correction 1.17, pmic 04.09.2019
pmic 0:211f27847e85 618 gyroY = static_cast<float>(gy)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f;
pmic 0:211f27847e85 619 gyroZ = static_cast<float>(gz)/32768.0f*(float)settings.gyro.scale*3.14159265358979323846f/180.0f * 1.17f;
pmic 0:211f27847e85 620 }
pmic 0:211f27847e85 621
pmic 0:211f27847e85 622 int16_t LSM9DS1::updateGyro(lsm9ds1_axis axis)
pmic 0:211f27847e85 623 {
pmic 0:211f27847e85 624 uint8_t temp[2];
pmic 0:211f27847e85 625 int16_t value;
pmic 0:211f27847e85 626
pmic 0:211f27847e85 627 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
pmic 0:211f27847e85 628
pmic 0:211f27847e85 629 value = (temp[1] << 8) | temp[0];
pmic 0:211f27847e85 630
pmic 0:211f27847e85 631 if (_autoCalc)
pmic 0:211f27847e85 632 value -= gBiasRaw[axis];
pmic 0:211f27847e85 633
pmic 0:211f27847e85 634 return value;
pmic 0:211f27847e85 635 }
pmic 0:211f27847e85 636
pmic 0:211f27847e85 637 float LSM9DS1::calcGyro(int16_t gyro)
pmic 0:211f27847e85 638 {
pmic 0:211f27847e85 639 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
pmic 0:211f27847e85 640 return gRes * gyro;
pmic 0:211f27847e85 641 }
pmic 0:211f27847e85 642
pmic 0:211f27847e85 643 float LSM9DS1::calcAccel(int16_t accel)
pmic 0:211f27847e85 644 {
pmic 0:211f27847e85 645 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
pmic 0:211f27847e85 646 return aRes * accel;
pmic 0:211f27847e85 647 }
pmic 0:211f27847e85 648
pmic 0:211f27847e85 649 float LSM9DS1::calcMag(int16_t mag)
pmic 0:211f27847e85 650 {
pmic 0:211f27847e85 651 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
pmic 0:211f27847e85 652 return mRes * mag;
pmic 0:211f27847e85 653 }
pmic 0:211f27847e85 654
pmic 0:211f27847e85 655 void LSM9DS1::setGyroScale(uint16_t gScl)
pmic 0:211f27847e85 656 {
pmic 0:211f27847e85 657 // Read current value of CTRL_REG1_G:
pmic 0:211f27847e85 658 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
pmic 0:211f27847e85 659 // Mask out scale bits (3 & 4):
pmic 0:211f27847e85 660 ctrl1RegValue &= 0xE7;
pmic 0:211f27847e85 661 switch (gScl)
pmic 0:211f27847e85 662 {
pmic 0:211f27847e85 663 case 500:
pmic 0:211f27847e85 664 ctrl1RegValue |= (0x1 << 3);
pmic 0:211f27847e85 665 settings.gyro.scale = 500;
pmic 0:211f27847e85 666 break;
pmic 0:211f27847e85 667 case 2000:
pmic 0:211f27847e85 668 ctrl1RegValue |= (0x3 << 3);
pmic 0:211f27847e85 669 settings.gyro.scale = 2000;
pmic 0:211f27847e85 670 break;
pmic 0:211f27847e85 671 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
pmic 0:211f27847e85 672 settings.gyro.scale = 245;
pmic 0:211f27847e85 673 break;
pmic 0:211f27847e85 674 }
pmic 0:211f27847e85 675 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
pmic 0:211f27847e85 676
pmic 0:211f27847e85 677 calcgRes();
pmic 0:211f27847e85 678 }
pmic 0:211f27847e85 679
pmic 0:211f27847e85 680 void LSM9DS1::setAccelScale(uint8_t aScl)
pmic 0:211f27847e85 681 {
pmic 0:211f27847e85 682 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
pmic 0:211f27847e85 683 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
pmic 0:211f27847e85 684 // Mask out accel scale bits:
pmic 0:211f27847e85 685 tempRegValue &= 0xE7;
pmic 0:211f27847e85 686
pmic 0:211f27847e85 687 switch (aScl)
pmic 0:211f27847e85 688 {
pmic 0:211f27847e85 689 case 4:
pmic 0:211f27847e85 690 tempRegValue |= (0x2 << 3);
pmic 0:211f27847e85 691 settings.accel.scale = 4;
pmic 0:211f27847e85 692 break;
pmic 0:211f27847e85 693 case 8:
pmic 0:211f27847e85 694 tempRegValue |= (0x3 << 3);
pmic 0:211f27847e85 695 settings.accel.scale = 8;
pmic 0:211f27847e85 696 break;
pmic 0:211f27847e85 697 case 16:
pmic 0:211f27847e85 698 tempRegValue |= (0x1 << 3);
pmic 0:211f27847e85 699 settings.accel.scale = 16;
pmic 0:211f27847e85 700 break;
pmic 0:211f27847e85 701 default: // Otherwise it'll be set to 2g (0x0 << 3)
pmic 0:211f27847e85 702 settings.accel.scale = 2;
pmic 0:211f27847e85 703 break;
pmic 0:211f27847e85 704 }
pmic 0:211f27847e85 705 xgWriteByte(CTRL_REG6_XL, tempRegValue);
pmic 0:211f27847e85 706
pmic 0:211f27847e85 707 // Then calculate a new aRes, which relies on aScale being set correctly:
pmic 0:211f27847e85 708 calcaRes();
pmic 0:211f27847e85 709 }
pmic 0:211f27847e85 710
pmic 0:211f27847e85 711 void LSM9DS1::setMagScale(uint8_t mScl)
pmic 0:211f27847e85 712 {
pmic 0:211f27847e85 713 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
pmic 0:211f27847e85 714 uint8_t temp = mReadByte(CTRL_REG2_M);
pmic 0:211f27847e85 715 // Then mask out the mag scale bits:
pmic 0:211f27847e85 716 temp &= 0xFF^(0x3 << 5);
pmic 0:211f27847e85 717
pmic 0:211f27847e85 718 switch (mScl)
pmic 0:211f27847e85 719 {
pmic 0:211f27847e85 720 case 8:
pmic 0:211f27847e85 721 temp |= (0x1 << 5);
pmic 0:211f27847e85 722 settings.mag.scale = 8;
pmic 0:211f27847e85 723 break;
pmic 0:211f27847e85 724 case 12:
pmic 0:211f27847e85 725 temp |= (0x2 << 5);
pmic 0:211f27847e85 726 settings.mag.scale = 12;
pmic 0:211f27847e85 727 break;
pmic 0:211f27847e85 728 case 16:
pmic 0:211f27847e85 729 temp |= (0x3 << 5);
pmic 0:211f27847e85 730 settings.mag.scale = 16;
pmic 0:211f27847e85 731 break;
pmic 0:211f27847e85 732 default: // Otherwise we'll default to 4 gauss (00)
pmic 0:211f27847e85 733 settings.mag.scale = 4;
pmic 0:211f27847e85 734 break;
pmic 0:211f27847e85 735 }
pmic 0:211f27847e85 736
pmic 0:211f27847e85 737 // And write the new register value back into CTRL_REG6_XM:
pmic 0:211f27847e85 738 mWriteByte(CTRL_REG2_M, temp);
pmic 0:211f27847e85 739
pmic 0:211f27847e85 740 // We've updated the sensor, but we also need to update our class variables
pmic 0:211f27847e85 741 // First update mScale:
pmic 0:211f27847e85 742 //mScale = mScl;
pmic 0:211f27847e85 743 // Then calculate a new mRes, which relies on mScale being set correctly:
pmic 0:211f27847e85 744 calcmRes();
pmic 0:211f27847e85 745 }
pmic 0:211f27847e85 746
pmic 0:211f27847e85 747 void LSM9DS1::setGyroODR(uint8_t gRate)
pmic 0:211f27847e85 748 {
pmic 0:211f27847e85 749 // Only do this if gRate is not 0 (which would disable the gyro)
pmic 0:211f27847e85 750 if ((gRate & 0x07) != 0)
pmic 0:211f27847e85 751 {
pmic 0:211f27847e85 752 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
pmic 0:211f27847e85 753 uint8_t temp = xgReadByte(CTRL_REG1_G);
pmic 0:211f27847e85 754 // Then mask out the gyro ODR bits:
pmic 0:211f27847e85 755 temp &= 0xFF^(0x7 << 5);
pmic 0:211f27847e85 756 temp |= (gRate & 0x07) << 5;
pmic 0:211f27847e85 757 // Update our settings struct
pmic 0:211f27847e85 758 settings.gyro.sampleRate = gRate & 0x07;
pmic 0:211f27847e85 759 // And write the new register value back into CTRL_REG1_G:
pmic 0:211f27847e85 760 xgWriteByte(CTRL_REG1_G, temp);
pmic 0:211f27847e85 761 }
pmic 0:211f27847e85 762 }
pmic 0:211f27847e85 763
pmic 0:211f27847e85 764 void LSM9DS1::setAccelODR(uint8_t aRate)
pmic 0:211f27847e85 765 {
pmic 0:211f27847e85 766 // Only do this if aRate is not 0 (which would disable the accel)
pmic 0:211f27847e85 767 if ((aRate & 0x07) != 0)
pmic 0:211f27847e85 768 {
pmic 0:211f27847e85 769 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
pmic 0:211f27847e85 770 uint8_t temp = xgReadByte(CTRL_REG6_XL);
pmic 0:211f27847e85 771 // Then mask out the accel ODR bits:
pmic 0:211f27847e85 772 temp &= 0x1F;
pmic 0:211f27847e85 773 // Then shift in our new ODR bits:
pmic 0:211f27847e85 774 temp |= ((aRate & 0x07) << 5);
pmic 0:211f27847e85 775 settings.accel.sampleRate = aRate & 0x07;
pmic 0:211f27847e85 776 // And write the new register value back into CTRL_REG1_XM:
pmic 0:211f27847e85 777 xgWriteByte(CTRL_REG6_XL, temp);
pmic 0:211f27847e85 778 }
pmic 0:211f27847e85 779 }
pmic 0:211f27847e85 780
pmic 0:211f27847e85 781 void LSM9DS1::setMagODR(uint8_t mRate)
pmic 0:211f27847e85 782 {
pmic 0:211f27847e85 783 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
pmic 0:211f27847e85 784 uint8_t temp = mReadByte(CTRL_REG1_M);
pmic 0:211f27847e85 785 // Then mask out the mag ODR bits:
pmic 0:211f27847e85 786 temp &= 0xFF^(0x7 << 2);
pmic 0:211f27847e85 787 // Then shift in our new ODR bits:
pmic 0:211f27847e85 788 temp |= ((mRate & 0x07) << 2);
pmic 0:211f27847e85 789 settings.mag.sampleRate = mRate & 0x07;
pmic 0:211f27847e85 790 // And write the new register value back into CTRL_REG5_XM:
pmic 0:211f27847e85 791 mWriteByte(CTRL_REG1_M, temp);
pmic 0:211f27847e85 792 }
pmic 0:211f27847e85 793
pmic 0:211f27847e85 794 void LSM9DS1::calcgRes()
pmic 0:211f27847e85 795 {
pmic 0:211f27847e85 796 gRes = ((float) settings.gyro.scale) / 32768.0f;
pmic 0:211f27847e85 797 }
pmic 0:211f27847e85 798
pmic 0:211f27847e85 799 void LSM9DS1::calcaRes()
pmic 0:211f27847e85 800 {
pmic 0:211f27847e85 801 aRes = ((float) settings.accel.scale) / 32768.0f;
pmic 0:211f27847e85 802 }
pmic 0:211f27847e85 803
pmic 0:211f27847e85 804 void LSM9DS1::calcmRes()
pmic 0:211f27847e85 805 {
pmic 0:211f27847e85 806 //mRes = ((float) settings.mag.scale) / 32768.0;
pmic 0:211f27847e85 807 switch (settings.mag.scale)
pmic 0:211f27847e85 808 {
pmic 0:211f27847e85 809 case 4:
pmic 0:211f27847e85 810 mRes = magSensitivity[0];
pmic 0:211f27847e85 811 break;
pmic 0:211f27847e85 812 case 8:
pmic 0:211f27847e85 813 mRes = magSensitivity[1];
pmic 0:211f27847e85 814 break;
pmic 0:211f27847e85 815 case 12:
pmic 0:211f27847e85 816 mRes = magSensitivity[2];
pmic 0:211f27847e85 817 break;
pmic 0:211f27847e85 818 case 16:
pmic 0:211f27847e85 819 mRes = magSensitivity[3];
pmic 0:211f27847e85 820 break;
pmic 0:211f27847e85 821 }
pmic 0:211f27847e85 822
pmic 0:211f27847e85 823 }
pmic 0:211f27847e85 824
pmic 0:211f27847e85 825 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
pmic 0:211f27847e85 826 h_lactive activeLow, pp_od pushPull)
pmic 0:211f27847e85 827 {
pmic 0:211f27847e85 828 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
pmic 0:211f27847e85 829 // those two values.
pmic 0:211f27847e85 830 // [generator] should be an OR'd list of values from the interrupt_generators enum
pmic 0:211f27847e85 831 xgWriteByte(interrupt, generator);
pmic 0:211f27847e85 832
pmic 0:211f27847e85 833 // Configure CTRL_REG8
pmic 0:211f27847e85 834 uint8_t temp;
pmic 0:211f27847e85 835 temp = xgReadByte(CTRL_REG8);
pmic 0:211f27847e85 836
pmic 0:211f27847e85 837 if (activeLow) temp |= (1<<5);
pmic 0:211f27847e85 838 else temp &= ~(1<<5);
pmic 0:211f27847e85 839
pmic 0:211f27847e85 840 if (pushPull) temp &= ~(1<<4);
pmic 0:211f27847e85 841 else temp |= (1<<4);
pmic 0:211f27847e85 842
pmic 0:211f27847e85 843 xgWriteByte(CTRL_REG8, temp);
pmic 0:211f27847e85 844 }
pmic 0:211f27847e85 845
pmic 0:211f27847e85 846 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
pmic 0:211f27847e85 847 {
pmic 0:211f27847e85 848 uint8_t temp = 0;
pmic 0:211f27847e85 849
pmic 0:211f27847e85 850 temp = threshold & 0x7F;
pmic 0:211f27847e85 851 if (sleepOn) temp |= (1<<7);
pmic 0:211f27847e85 852 xgWriteByte(ACT_THS, temp);
pmic 0:211f27847e85 853
pmic 0:211f27847e85 854 xgWriteByte(ACT_DUR, duration);
pmic 0:211f27847e85 855 }
pmic 0:211f27847e85 856
pmic 0:211f27847e85 857 uint8_t LSM9DS1::getInactivity()
pmic 0:211f27847e85 858 {
pmic 0:211f27847e85 859 uint8_t temp = xgReadByte(STATUS_REG_0);
pmic 0:211f27847e85 860 temp &= (0x10);
pmic 0:211f27847e85 861 return temp;
pmic 0:211f27847e85 862 }
pmic 0:211f27847e85 863
pmic 0:211f27847e85 864 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
pmic 0:211f27847e85 865 {
pmic 0:211f27847e85 866 // Use variables from accel_interrupt_generator, OR'd together to create
pmic 0:211f27847e85 867 // the [generator]value.
pmic 0:211f27847e85 868 uint8_t temp = generator;
pmic 0:211f27847e85 869 if (andInterrupts) temp |= 0x80;
pmic 0:211f27847e85 870 xgWriteByte(INT_GEN_CFG_XL, temp);
pmic 0:211f27847e85 871 }
pmic 0:211f27847e85 872
pmic 0:211f27847e85 873 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
pmic 0:211f27847e85 874 {
pmic 0:211f27847e85 875 // Write threshold value to INT_GEN_THS_?_XL.
pmic 0:211f27847e85 876 // axis will be 0, 1, or 2 (x, y, z respectively)
pmic 0:211f27847e85 877 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
pmic 0:211f27847e85 878
pmic 0:211f27847e85 879 // Write duration and wait to INT_GEN_DUR_XL
pmic 0:211f27847e85 880 uint8_t temp;
pmic 0:211f27847e85 881 temp = (duration & 0x7F);
pmic 0:211f27847e85 882 if (wait) temp |= 0x80;
pmic 0:211f27847e85 883 xgWriteByte(INT_GEN_DUR_XL, temp);
pmic 0:211f27847e85 884 }
pmic 0:211f27847e85 885
pmic 0:211f27847e85 886 uint8_t LSM9DS1::getAccelIntSrc()
pmic 0:211f27847e85 887 {
pmic 0:211f27847e85 888 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
pmic 0:211f27847e85 889
pmic 0:211f27847e85 890 // Check if the IA_XL (interrupt active) bit is set
pmic 0:211f27847e85 891 if (intSrc & (1<<6))
pmic 0:211f27847e85 892 {
pmic 0:211f27847e85 893 return (intSrc & 0x3F);
pmic 0:211f27847e85 894 }
pmic 0:211f27847e85 895
pmic 0:211f27847e85 896 return 0;
pmic 0:211f27847e85 897 }
pmic 0:211f27847e85 898
pmic 0:211f27847e85 899 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
pmic 0:211f27847e85 900 {
pmic 0:211f27847e85 901 // Use variables from accel_interrupt_generator, OR'd together to create
pmic 0:211f27847e85 902 // the [generator]value.
pmic 0:211f27847e85 903 uint8_t temp = generator;
pmic 0:211f27847e85 904 if (aoi) temp |= 0x80;
pmic 0:211f27847e85 905 if (latch) temp |= 0x40;
pmic 0:211f27847e85 906 xgWriteByte(INT_GEN_CFG_G, temp);
pmic 0:211f27847e85 907 }
pmic 0:211f27847e85 908
pmic 0:211f27847e85 909 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
pmic 0:211f27847e85 910 {
pmic 0:211f27847e85 911 uint8_t buffer[2];
pmic 0:211f27847e85 912 buffer[0] = (threshold & 0x7F00) >> 8;
pmic 0:211f27847e85 913 buffer[1] = (threshold & 0x00FF);
pmic 0:211f27847e85 914 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
pmic 0:211f27847e85 915 // axis will be 0, 1, or 2 (x, y, z respectively)
pmic 0:211f27847e85 916 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
pmic 0:211f27847e85 917 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
pmic 0:211f27847e85 918
pmic 0:211f27847e85 919 // Write duration and wait to INT_GEN_DUR_XL
pmic 0:211f27847e85 920 uint8_t temp;
pmic 0:211f27847e85 921 temp = (duration & 0x7F);
pmic 0:211f27847e85 922 if (wait) temp |= 0x80;
pmic 0:211f27847e85 923 xgWriteByte(INT_GEN_DUR_G, temp);
pmic 0:211f27847e85 924 }
pmic 0:211f27847e85 925
pmic 0:211f27847e85 926 uint8_t LSM9DS1::getGyroIntSrc()
pmic 0:211f27847e85 927 {
pmic 0:211f27847e85 928 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
pmic 0:211f27847e85 929
pmic 0:211f27847e85 930 // Check if the IA_G (interrupt active) bit is set
pmic 0:211f27847e85 931 if (intSrc & (1<<6))
pmic 0:211f27847e85 932 {
pmic 0:211f27847e85 933 return (intSrc & 0x3F);
pmic 0:211f27847e85 934 }
pmic 0:211f27847e85 935
pmic 0:211f27847e85 936 return 0;
pmic 0:211f27847e85 937 }
pmic 0:211f27847e85 938
pmic 0:211f27847e85 939 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
pmic 0:211f27847e85 940 {
pmic 0:211f27847e85 941 // Mask out non-generator bits (0-4)
pmic 0:211f27847e85 942 uint8_t config = (generator & 0xE0);
pmic 0:211f27847e85 943 // IEA bit is 0 for active-low, 1 for active-high.
pmic 0:211f27847e85 944 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
pmic 0:211f27847e85 945 // IEL bit is 0 for latched, 1 for not-latched
pmic 0:211f27847e85 946 if (!latch) config |= (1<<1);
pmic 0:211f27847e85 947 // As long as we have at least 1 generator, enable the interrupt
pmic 0:211f27847e85 948 if (generator != 0) config |= (1<<0);
pmic 0:211f27847e85 949
pmic 0:211f27847e85 950 mWriteByte(INT_CFG_M, config);
pmic 0:211f27847e85 951 }
pmic 0:211f27847e85 952
pmic 0:211f27847e85 953 void LSM9DS1::configMagThs(uint16_t threshold)
pmic 0:211f27847e85 954 {
pmic 0:211f27847e85 955 // Write high eight bits of [threshold] to INT_THS_H_M
pmic 0:211f27847e85 956 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
pmic 0:211f27847e85 957 // Write low eight bits of [threshold] to INT_THS_L_M
pmic 0:211f27847e85 958 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
pmic 0:211f27847e85 959 }
pmic 0:211f27847e85 960
pmic 0:211f27847e85 961 uint8_t LSM9DS1::getMagIntSrc()
pmic 0:211f27847e85 962 {
pmic 0:211f27847e85 963 uint8_t intSrc = mReadByte(INT_SRC_M);
pmic 0:211f27847e85 964
pmic 0:211f27847e85 965 // Check if the INT (interrupt active) bit is set
pmic 0:211f27847e85 966 if (intSrc & (1<<0))
pmic 0:211f27847e85 967 {
pmic 0:211f27847e85 968 return (intSrc & 0xFE);
pmic 0:211f27847e85 969 }
pmic 0:211f27847e85 970
pmic 0:211f27847e85 971 return 0;
pmic 0:211f27847e85 972 }
pmic 0:211f27847e85 973
pmic 0:211f27847e85 974 void LSM9DS1::sleepGyro(bool enable)
pmic 0:211f27847e85 975 {
pmic 0:211f27847e85 976 uint8_t temp = xgReadByte(CTRL_REG9);
pmic 0:211f27847e85 977 if (enable) temp |= (1<<6);
pmic 0:211f27847e85 978 else temp &= ~(1<<6);
pmic 0:211f27847e85 979 xgWriteByte(CTRL_REG9, temp);
pmic 0:211f27847e85 980 }
pmic 0:211f27847e85 981
pmic 0:211f27847e85 982 void LSM9DS1::enableFIFO(bool enable)
pmic 0:211f27847e85 983 {
pmic 0:211f27847e85 984 uint8_t temp = xgReadByte(CTRL_REG9);
pmic 0:211f27847e85 985 if (enable) temp |= (1<<1);
pmic 0:211f27847e85 986 else temp &= ~(1<<1);
pmic 0:211f27847e85 987 xgWriteByte(CTRL_REG9, temp);
pmic 0:211f27847e85 988 }
pmic 0:211f27847e85 989
pmic 0:211f27847e85 990 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
pmic 0:211f27847e85 991 {
pmic 0:211f27847e85 992 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
pmic 0:211f27847e85 993 // limit it to the maximum.
pmic 0:211f27847e85 994 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
pmic 0:211f27847e85 995 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
pmic 0:211f27847e85 996 }
pmic 0:211f27847e85 997
pmic 0:211f27847e85 998 uint8_t LSM9DS1::getFIFOSamples()
pmic 0:211f27847e85 999 {
pmic 0:211f27847e85 1000 return (xgReadByte(FIFO_SRC) & 0x3F);
pmic 0:211f27847e85 1001 }
pmic 0:211f27847e85 1002
pmic 0:211f27847e85 1003 void LSM9DS1::constrainScales()
pmic 0:211f27847e85 1004 {
pmic 0:211f27847e85 1005 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
pmic 0:211f27847e85 1006 (settings.gyro.scale != 2000))
pmic 0:211f27847e85 1007 {
pmic 0:211f27847e85 1008 settings.gyro.scale = 245;
pmic 0:211f27847e85 1009 }
pmic 0:211f27847e85 1010
pmic 0:211f27847e85 1011 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
pmic 0:211f27847e85 1012 (settings.accel.scale != 8) && (settings.accel.scale != 16))
pmic 0:211f27847e85 1013 {
pmic 0:211f27847e85 1014 settings.accel.scale = 2;
pmic 0:211f27847e85 1015 }
pmic 0:211f27847e85 1016
pmic 0:211f27847e85 1017 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
pmic 0:211f27847e85 1018 (settings.mag.scale != 12) && (settings.mag.scale != 16))
pmic 0:211f27847e85 1019 {
pmic 0:211f27847e85 1020 settings.mag.scale = 4;
pmic 0:211f27847e85 1021 }
pmic 0:211f27847e85 1022 }
pmic 0:211f27847e85 1023
pmic 0:211f27847e85 1024 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
pmic 0:211f27847e85 1025 {
pmic 0:211f27847e85 1026 // Whether we're using I2C or SPI, write a byte using the
pmic 0:211f27847e85 1027 // gyro-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1028 if (settings.device.commInterface == IMU_MODE_I2C) {
pmic 0:211f27847e85 1029 printf("yo");
pmic 0:211f27847e85 1030 I2CwriteByte(_xgAddress, subAddress, data);
pmic 0:211f27847e85 1031 } else if (settings.device.commInterface == IMU_MODE_SPI) {
pmic 0:211f27847e85 1032 SPIwriteByte(_xgAddress, subAddress, data);
pmic 0:211f27847e85 1033 }
pmic 0:211f27847e85 1034 }
pmic 0:211f27847e85 1035
pmic 0:211f27847e85 1036 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
pmic 0:211f27847e85 1037 {
pmic 0:211f27847e85 1038 // Whether we're using I2C or SPI, write a byte using the
pmic 0:211f27847e85 1039 // accelerometer-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1040 if (settings.device.commInterface == IMU_MODE_I2C)
pmic 0:211f27847e85 1041 return I2CwriteByte(_mAddress, subAddress, data);
pmic 0:211f27847e85 1042 else if (settings.device.commInterface == IMU_MODE_SPI)
pmic 0:211f27847e85 1043 return SPIwriteByte(_mAddress, subAddress, data);
pmic 0:211f27847e85 1044 }
pmic 0:211f27847e85 1045
pmic 0:211f27847e85 1046 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
pmic 0:211f27847e85 1047 {
pmic 0:211f27847e85 1048 // Whether we're using I2C or SPI, read a byte using the
pmic 0:211f27847e85 1049 // gyro-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1050
pmic 0:211f27847e85 1051 if (settings.device.commInterface == IMU_MODE_I2C)
pmic 0:211f27847e85 1052 return I2CreadByte(_xgAddress, subAddress);
pmic 0:211f27847e85 1053 else if (settings.device.commInterface == IMU_MODE_SPI)
pmic 0:211f27847e85 1054 return SPIreadByte(_xgAddress, subAddress);
pmic 0:211f27847e85 1055 else
pmic 0:211f27847e85 1056 return 0;
pmic 0:211f27847e85 1057 }
pmic 0:211f27847e85 1058
pmic 0:211f27847e85 1059 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
pmic 0:211f27847e85 1060 {
pmic 0:211f27847e85 1061 // Whether we're using I2C or SPI, read multiple bytes using the
pmic 0:211f27847e85 1062 // gyro-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1063 if (settings.device.commInterface == IMU_MODE_I2C) {
pmic 0:211f27847e85 1064 I2CreadBytes(_xgAddress, subAddress, dest, count);
pmic 0:211f27847e85 1065 } else if (settings.device.commInterface == IMU_MODE_SPI) {
pmic 0:211f27847e85 1066 SPIreadBytes(_xgAddress, subAddress, dest, count);
pmic 0:211f27847e85 1067 }
pmic 0:211f27847e85 1068 }
pmic 0:211f27847e85 1069
pmic 0:211f27847e85 1070 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
pmic 0:211f27847e85 1071 {
pmic 0:211f27847e85 1072 // Whether we're using I2C or SPI, read a byte using the
pmic 0:211f27847e85 1073 // accelerometer-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1074 if (settings.device.commInterface == IMU_MODE_I2C)
pmic 0:211f27847e85 1075 return I2CreadByte(_mAddress, subAddress);
pmic 0:211f27847e85 1076 else if (settings.device.commInterface == IMU_MODE_SPI)
pmic 0:211f27847e85 1077 return SPIreadByte(_mAddress, subAddress);
pmic 0:211f27847e85 1078 else
pmic 0:211f27847e85 1079 return 0;
pmic 0:211f27847e85 1080 }
pmic 0:211f27847e85 1081
pmic 0:211f27847e85 1082 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
pmic 0:211f27847e85 1083 {
pmic 0:211f27847e85 1084 // Whether we're using I2C or SPI, read multiple bytes using the
pmic 0:211f27847e85 1085 // accelerometer-specific I2C address or SPI CS pin.
pmic 0:211f27847e85 1086 if (settings.device.commInterface == IMU_MODE_I2C)
pmic 0:211f27847e85 1087 I2CreadBytes(_mAddress, subAddress, dest, count);
pmic 0:211f27847e85 1088 else if (settings.device.commInterface == IMU_MODE_SPI)
pmic 0:211f27847e85 1089 SPIreadBytes(_mAddress, subAddress, dest, count);
pmic 0:211f27847e85 1090 }
pmic 0:211f27847e85 1091
pmic 0:211f27847e85 1092 void LSM9DS1::initSPI()
pmic 0:211f27847e85 1093 {
pmic 0:211f27847e85 1094 /*
pmic 0:211f27847e85 1095 pinMode(_xgAddress, OUTPUT);
pmic 0:211f27847e85 1096 digitalWrite(_xgAddress, HIGH);
pmic 0:211f27847e85 1097 pinMode(_mAddress, OUTPUT);
pmic 0:211f27847e85 1098 digitalWrite(_mAddress, HIGH);
pmic 0:211f27847e85 1099
pmic 0:211f27847e85 1100 SPI.begin();
pmic 0:211f27847e85 1101 // Maximum SPI frequency is 10MHz, could divide by 2 here:
pmic 0:211f27847e85 1102 SPI.setClockDivider(SPI_CLOCK_DIV2);
pmic 0:211f27847e85 1103 // Data is read and written MSb first.
pmic 0:211f27847e85 1104 SPI.setBitOrder(MSBFIRST);
pmic 0:211f27847e85 1105 // Data is captured on rising edge of clock (CPHA = 0)
pmic 0:211f27847e85 1106 // Base value of the clock is HIGH (CPOL = 1)
pmic 0:211f27847e85 1107 SPI.setDataMode(SPI_MODE0);
pmic 0:211f27847e85 1108 */
pmic 0:211f27847e85 1109 }
pmic 0:211f27847e85 1110
pmic 0:211f27847e85 1111 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
pmic 0:211f27847e85 1112 {
pmic 0:211f27847e85 1113 /*
pmic 0:211f27847e85 1114 digitalWrite(csPin, LOW); // Initiate communication
pmic 0:211f27847e85 1115
pmic 0:211f27847e85 1116 // If write, bit 0 (MSB) should be 0
pmic 0:211f27847e85 1117 // If single write, bit 1 should be 0
pmic 0:211f27847e85 1118 SPI.transfer(subAddress & 0x3F); // Send Address
pmic 0:211f27847e85 1119 SPI.transfer(data); // Send data
pmic 0:211f27847e85 1120
pmic 0:211f27847e85 1121 digitalWrite(csPin, HIGH); // Close communication
pmic 0:211f27847e85 1122 */
pmic 0:211f27847e85 1123 }
pmic 0:211f27847e85 1124
pmic 0:211f27847e85 1125 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
pmic 0:211f27847e85 1126 {
pmic 0:211f27847e85 1127 uint8_t temp;
pmic 0:211f27847e85 1128 // Use the multiple read function to read 1 byte.
pmic 0:211f27847e85 1129 // Value is returned to `temp`.
pmic 0:211f27847e85 1130 SPIreadBytes(csPin, subAddress, &temp, 1);
pmic 0:211f27847e85 1131 return temp;
pmic 0:211f27847e85 1132 }
pmic 0:211f27847e85 1133
pmic 0:211f27847e85 1134 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
pmic 0:211f27847e85 1135 uint8_t * dest, uint8_t count)
pmic 0:211f27847e85 1136 {
pmic 0:211f27847e85 1137 // To indicate a read, set bit 0 (msb) of first byte to 1
pmic 0:211f27847e85 1138 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
pmic 0:211f27847e85 1139 // Mag SPI port is different. If we're reading multiple bytes,
pmic 0:211f27847e85 1140 // set bit 1 to 1. The remaining six bytes are the address to be read
pmic 0:211f27847e85 1141 if ((csPin == _mAddress) && count > 1)
pmic 0:211f27847e85 1142 rAddress |= 0x40;
pmic 0:211f27847e85 1143
pmic 0:211f27847e85 1144 /*
pmic 0:211f27847e85 1145 digitalWrite(csPin, LOW); // Initiate communication
pmic 0:211f27847e85 1146 SPI.transfer(rAddress);
pmic 0:211f27847e85 1147 for (int i=0; i<count; i++)
pmic 0:211f27847e85 1148 {
pmic 0:211f27847e85 1149 dest[i] = SPI.transfer(0x00); // Read into destination array
pmic 0:211f27847e85 1150 }
pmic 0:211f27847e85 1151 digitalWrite(csPin, HIGH); // Close communication
pmic 0:211f27847e85 1152 */
pmic 0:211f27847e85 1153 }
pmic 0:211f27847e85 1154
pmic 0:211f27847e85 1155 void LSM9DS1::initI2C()
pmic 0:211f27847e85 1156 {
pmic 0:211f27847e85 1157 /*
pmic 0:211f27847e85 1158 Wire.begin(); // Initialize I2C library
pmic 0:211f27847e85 1159 */
pmic 0:211f27847e85 1160
pmic 0:211f27847e85 1161 //already initialized in constructor!
pmic 0:211f27847e85 1162 }
pmic 0:211f27847e85 1163
pmic 0:211f27847e85 1164 // Wire.h read and write protocols
pmic 0:211f27847e85 1165 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
pmic 0:211f27847e85 1166 {
pmic 0:211f27847e85 1167 /*
pmic 0:211f27847e85 1168 Wire.beginTransmission(address); // Initialize the Tx buffer
pmic 0:211f27847e85 1169 Wire.write(subAddress); // Put slave register address in Tx buffer
pmic 0:211f27847e85 1170 Wire.write(data); // Put data in Tx buffer
pmic 0:211f27847e85 1171 Wire.endTransmission(); // Send the Tx buffer
pmic 0:211f27847e85 1172 */
pmic 0:211f27847e85 1173 char temp_data[2] = {subAddress, data};
pmic 0:211f27847e85 1174 i2c.write(address, temp_data, 2);
pmic 0:211f27847e85 1175 }
pmic 0:211f27847e85 1176
pmic 0:211f27847e85 1177 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
pmic 0:211f27847e85 1178 {
pmic 0:211f27847e85 1179 /*
pmic 0:211f27847e85 1180 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
pmic 0:211f27847e85 1181 uint8_t data; // `data` will store the register data
pmic 0:211f27847e85 1182
pmic 0:211f27847e85 1183 Wire.beginTransmission(address); // Initialize the Tx buffer
pmic 0:211f27847e85 1184 Wire.write(subAddress); // Put slave register address in Tx buffer
pmic 0:211f27847e85 1185 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
pmic 0:211f27847e85 1186 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
pmic 0:211f27847e85 1187 while ((Wire.available() < 1) && (timeout-- > 0))
pmic 0:211f27847e85 1188 delay(1);
pmic 0:211f27847e85 1189
pmic 0:211f27847e85 1190 if (timeout <= 0)
pmic 0:211f27847e85 1191 return 255; //! Bad! 255 will be misinterpreted as a good value.
pmic 0:211f27847e85 1192
pmic 0:211f27847e85 1193 data = Wire.read(); // Fill Rx buffer with result
pmic 0:211f27847e85 1194 return data; // Return data read from slave register
pmic 0:211f27847e85 1195 */
pmic 0:211f27847e85 1196 char data;
pmic 0:211f27847e85 1197 char temp[1] = {subAddress};
pmic 0:211f27847e85 1198
pmic 0:211f27847e85 1199 i2c.write(address, temp, 1);
pmic 0:211f27847e85 1200 //i2c.write(address & 0xFE);
pmic 0:211f27847e85 1201 temp[0] = 0x00;
pmic 0:211f27847e85 1202 i2c.write(address, temp, 1);
pmic 0:211f27847e85 1203 //i2c.write( address | 0x01);
pmic 0:211f27847e85 1204 int a = i2c.read(address, &data, 1);
pmic 0:211f27847e85 1205 return data;
pmic 0:211f27847e85 1206 }
pmic 0:211f27847e85 1207
pmic 0:211f27847e85 1208 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
pmic 0:211f27847e85 1209 {
pmic 0:211f27847e85 1210 /*
pmic 0:211f27847e85 1211 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
pmic 0:211f27847e85 1212 Wire.beginTransmission(address); // Initialize the Tx buffer
pmic 0:211f27847e85 1213 // Next send the register to be read. OR with 0x80 to indicate multi-read.
pmic 0:211f27847e85 1214 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
pmic 0:211f27847e85 1215
pmic 0:211f27847e85 1216 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
pmic 0:211f27847e85 1217 uint8_t i = 0;
pmic 0:211f27847e85 1218 Wire.requestFrom(address, count); // Read bytes from slave register address
pmic 0:211f27847e85 1219 while ((Wire.available() < count) && (timeout-- > 0))
pmic 0:211f27847e85 1220 delay(1);
pmic 0:211f27847e85 1221 if (timeout <= 0)
pmic 0:211f27847e85 1222 return -1;
pmic 0:211f27847e85 1223
pmic 0:211f27847e85 1224 for (int i=0; i<count;)
pmic 0:211f27847e85 1225 {
pmic 0:211f27847e85 1226 if (Wire.available())
pmic 0:211f27847e85 1227 {
pmic 0:211f27847e85 1228 dest[i++] = Wire.read();
pmic 0:211f27847e85 1229 }
pmic 0:211f27847e85 1230 }
pmic 0:211f27847e85 1231 return count;
pmic 0:211f27847e85 1232 */
pmic 0:211f27847e85 1233 int i;
pmic 0:211f27847e85 1234 char temp_dest[count];
pmic 0:211f27847e85 1235 char temp[1] = {subAddress};
pmic 0:211f27847e85 1236 i2c.write(address, temp, 1);
pmic 0:211f27847e85 1237 i2c.read(address, temp_dest, count);
pmic 0:211f27847e85 1238
pmic 0:211f27847e85 1239 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
pmic 0:211f27847e85 1240 for (i=0; i < count; i++) {
pmic 0:211f27847e85 1241 dest[i] = temp_dest[i];
pmic 0:211f27847e85 1242 }
pmic 0:211f27847e85 1243 return count;
pmic 0:211f27847e85 1244 }
pmic 0:211f27847e85 1245
pmic 0:211f27847e85 1246