Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
PartialPivLU.h
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> 00005 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> 00006 // 00007 // This Source Code Form is subject to the terms of the Mozilla 00008 // Public License v. 2.0. If a copy of the MPL was not distributed 00009 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00010 00011 #ifndef EIGEN_PARTIALLU_H 00012 #define EIGEN_PARTIALLU_H 00013 00014 namespace Eigen { 00015 00016 /** \ingroup LU_Module 00017 * 00018 * \class PartialPivLU 00019 * 00020 * \brief LU decomposition of a matrix with partial pivoting, and related features 00021 * 00022 * \param MatrixType the type of the matrix of which we are computing the LU decomposition 00023 * 00024 * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A 00025 * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P 00026 * is a permutation matrix. 00027 * 00028 * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible 00029 * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class 00030 * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the 00031 * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. 00032 * 00033 * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided 00034 * by class FullPivLU. 00035 * 00036 * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, 00037 * such as rank computation. If you need these features, use class FullPivLU. 00038 * 00039 * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses 00040 * in the general case. 00041 * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. 00042 * 00043 * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). 00044 * 00045 * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU 00046 */ 00047 template<typename _MatrixType> class PartialPivLU 00048 { 00049 public: 00050 00051 typedef _MatrixType MatrixType; 00052 enum { 00053 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 00054 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 00055 Options = MatrixType::Options, 00056 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 00057 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 00058 }; 00059 typedef typename MatrixType::Scalar Scalar; 00060 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 00061 typedef typename internal::traits<MatrixType>::StorageKind StorageKind; 00062 typedef typename MatrixType::Index Index; 00063 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType ; 00064 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType ; 00065 00066 00067 /** 00068 * \brief Default Constructor. 00069 * 00070 * The default constructor is useful in cases in which the user intends to 00071 * perform decompositions via PartialPivLU::compute(const MatrixType&). 00072 */ 00073 PartialPivLU(); 00074 00075 /** \brief Default Constructor with memory preallocation 00076 * 00077 * Like the default constructor but with preallocation of the internal data 00078 * according to the specified problem \a size. 00079 * \sa PartialPivLU() 00080 */ 00081 PartialPivLU(Index size); 00082 00083 /** Constructor. 00084 * 00085 * \param matrix the matrix of which to compute the LU decomposition. 00086 * 00087 * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). 00088 * If you need to deal with non-full rank, use class FullPivLU instead. 00089 */ 00090 PartialPivLU(const MatrixType& matrix); 00091 00092 PartialPivLU& compute(const MatrixType& matrix); 00093 00094 /** \returns the LU decomposition matrix: the upper-triangular part is U, the 00095 * unit-lower-triangular part is L (at least for square matrices; in the non-square 00096 * case, special care is needed, see the documentation of class FullPivLU). 00097 * 00098 * \sa matrixL(), matrixU() 00099 */ 00100 inline const MatrixType& matrixLU () const 00101 { 00102 eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); 00103 return m_lu; 00104 } 00105 00106 /** \returns the permutation matrix P. 00107 */ 00108 inline const PermutationType & permutationP () const 00109 { 00110 eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); 00111 return m_p; 00112 } 00113 00114 /** This method returns the solution x to the equation Ax=b, where A is the matrix of which 00115 * *this is the LU decomposition. 00116 * 00117 * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, 00118 * the only requirement in order for the equation to make sense is that 00119 * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. 00120 * 00121 * \returns the solution. 00122 * 00123 * Example: \include PartialPivLU_solve.cpp 00124 * Output: \verbinclude PartialPivLU_solve.out 00125 * 00126 * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution 00127 * theoretically exists and is unique regardless of b. 00128 * 00129 * \sa TriangularView::solve(), inverse(), computeInverse() 00130 */ 00131 template<typename Rhs> 00132 inline const internal::solve_retval<PartialPivLU, Rhs> 00133 solve(const MatrixBase<Rhs>& b) const 00134 { 00135 eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); 00136 return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); 00137 } 00138 00139 /** \returns the inverse of the matrix of which *this is the LU decomposition. 00140 * 00141 * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for 00142 * invertibility, use class FullPivLU instead. 00143 * 00144 * \sa MatrixBase::inverse(), LU::inverse() 00145 */ 00146 inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse () const 00147 { 00148 eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); 00149 return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> 00150 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); 00151 } 00152 00153 /** \returns the determinant of the matrix of which 00154 * *this is the LU decomposition. It has only linear complexity 00155 * (that is, O(n) where n is the dimension of the square matrix) 00156 * as the LU decomposition has already been computed. 00157 * 00158 * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers 00159 * optimized paths. 00160 * 00161 * \warning a determinant can be very big or small, so for matrices 00162 * of large enough dimension, there is a risk of overflow/underflow. 00163 * 00164 * \sa MatrixBase::determinant() 00165 */ 00166 typename internal::traits<MatrixType>::Scalar determinant () const; 00167 00168 MatrixType reconstructedMatrix () const; 00169 00170 inline Index rows() const { return m_lu.rows(); } 00171 inline Index cols() const { return m_lu.cols(); } 00172 00173 protected: 00174 00175 static void check_template_parameters() 00176 { 00177 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 00178 } 00179 00180 MatrixType m_lu; 00181 PermutationType m_p; 00182 TranspositionType m_rowsTranspositions; 00183 Index m_det_p; 00184 bool m_isInitialized; 00185 }; 00186 00187 template<typename MatrixType> 00188 PartialPivLU<MatrixType>::PartialPivLU() 00189 : m_lu(), 00190 m_p(), 00191 m_rowsTranspositions(), 00192 m_det_p(0), 00193 m_isInitialized(false) 00194 { 00195 } 00196 00197 template<typename MatrixType> 00198 PartialPivLU<MatrixType>::PartialPivLU(Index size) 00199 : m_lu(size, size), 00200 m_p(size), 00201 m_rowsTranspositions(size), 00202 m_det_p(0), 00203 m_isInitialized(false) 00204 { 00205 } 00206 00207 template<typename MatrixType> 00208 PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) 00209 : m_lu(matrix.rows(), matrix.rows()), 00210 m_p(matrix.rows()), 00211 m_rowsTranspositions(matrix.rows()), 00212 m_det_p(0), 00213 m_isInitialized(false) 00214 { 00215 compute(matrix); 00216 } 00217 00218 namespace internal { 00219 00220 /** \internal This is the blocked version of fullpivlu_unblocked() */ 00221 template<typename Scalar, int StorageOrder, typename PivIndex> 00222 struct partial_lu_impl 00223 { 00224 // FIXME add a stride to Map, so that the following mapping becomes easier, 00225 // another option would be to create an expression being able to automatically 00226 // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly 00227 // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, 00228 // and Block. 00229 typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; 00230 typedef Block<MapLU, Dynamic, Dynamic> MatrixType; 00231 typedef Block<MatrixType,Dynamic,Dynamic> BlockType; 00232 typedef typename MatrixType::RealScalar RealScalar; 00233 typedef typename MatrixType::Index Index; 00234 00235 /** \internal performs the LU decomposition in-place of the matrix \a lu 00236 * using an unblocked algorithm. 00237 * 00238 * In addition, this function returns the row transpositions in the 00239 * vector \a row_transpositions which must have a size equal to the number 00240 * of columns of the matrix \a lu, and an integer \a nb_transpositions 00241 * which returns the actual number of transpositions. 00242 * 00243 * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. 00244 */ 00245 static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) 00246 { 00247 const Index rows = lu.rows(); 00248 const Index cols = lu.cols(); 00249 const Index size = (std::min)(rows,cols); 00250 nb_transpositions = 0; 00251 Index first_zero_pivot = -1; 00252 for(Index k = 0; k < size; ++k) 00253 { 00254 Index rrows = rows-k-1; 00255 Index rcols = cols-k-1; 00256 00257 Index row_of_biggest_in_col; 00258 RealScalar biggest_in_corner 00259 = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); 00260 row_of_biggest_in_col += k; 00261 00262 row_transpositions[k] = PivIndex(row_of_biggest_in_col); 00263 00264 if(biggest_in_corner != RealScalar(0)) 00265 { 00266 if(k != row_of_biggest_in_col) 00267 { 00268 lu.row(k).swap(lu.row(row_of_biggest_in_col)); 00269 ++nb_transpositions; 00270 } 00271 00272 // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) 00273 // overflow but not the actual quotient? 00274 lu.col(k).tail(rrows) /= lu.coeff(k,k); 00275 } 00276 else if(first_zero_pivot==-1) 00277 { 00278 // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, 00279 // and continue the factorization such we still have A = PLU 00280 first_zero_pivot = k; 00281 } 00282 00283 if(k<rows-1) 00284 lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); 00285 } 00286 return first_zero_pivot; 00287 } 00288 00289 /** \internal performs the LU decomposition in-place of the matrix represented 00290 * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a 00291 * recursive, blocked algorithm. 00292 * 00293 * In addition, this function returns the row transpositions in the 00294 * vector \a row_transpositions which must have a size equal to the number 00295 * of columns of the matrix \a lu, and an integer \a nb_transpositions 00296 * which returns the actual number of transpositions. 00297 * 00298 * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. 00299 * 00300 * \note This very low level interface using pointers, etc. is to: 00301 * 1 - reduce the number of instanciations to the strict minimum 00302 * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > 00303 */ 00304 static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) 00305 { 00306 MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); 00307 MatrixType lu(lu1,0,0,rows,cols); 00308 00309 const Index size = (std::min)(rows,cols); 00310 00311 // if the matrix is too small, no blocking: 00312 if(size<=16) 00313 { 00314 return unblocked_lu(lu, row_transpositions, nb_transpositions); 00315 } 00316 00317 // automatically adjust the number of subdivisions to the size 00318 // of the matrix so that there is enough sub blocks: 00319 Index blockSize; 00320 { 00321 blockSize = size/8; 00322 blockSize = (blockSize/16)*16; 00323 blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); 00324 } 00325 00326 nb_transpositions = 0; 00327 Index first_zero_pivot = -1; 00328 for(Index k = 0; k < size; k+=blockSize) 00329 { 00330 Index bs = (std::min)(size-k,blockSize); // actual size of the block 00331 Index trows = rows - k - bs; // trailing rows 00332 Index tsize = size - k - bs; // trailing size 00333 00334 // partition the matrix: 00335 // A00 | A01 | A02 00336 // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 00337 // A20 | A21 | A22 00338 BlockType A_0(lu,0,0,rows,k); 00339 BlockType A_2(lu,0,k+bs,rows,tsize); 00340 BlockType A11(lu,k,k,bs,bs); 00341 BlockType A12(lu,k,k+bs,bs,tsize); 00342 BlockType A21(lu,k+bs,k,trows,bs); 00343 BlockType A22(lu,k+bs,k+bs,trows,tsize); 00344 00345 PivIndex nb_transpositions_in_panel; 00346 // recursively call the blocked LU algorithm on [A11^T A21^T]^T 00347 // with a very small blocking size: 00348 Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, 00349 row_transpositions+k, nb_transpositions_in_panel, 16); 00350 if(ret>=0 && first_zero_pivot==-1) 00351 first_zero_pivot = k+ret; 00352 00353 nb_transpositions += nb_transpositions_in_panel; 00354 // update permutations and apply them to A_0 00355 for(Index i=k; i<k+bs; ++i) 00356 { 00357 Index piv = (row_transpositions[i] += k); 00358 A_0.row(i).swap(A_0.row(piv)); 00359 } 00360 00361 if(trows) 00362 { 00363 // apply permutations to A_2 00364 for(Index i=k;i<k+bs; ++i) 00365 A_2.row(i).swap(A_2.row(row_transpositions[i])); 00366 00367 // A12 = A11^-1 A12 00368 A11.template triangularView<UnitLower>().solveInPlace(A12); 00369 00370 A22.noalias() -= A21 * A12; 00371 } 00372 } 00373 return first_zero_pivot; 00374 } 00375 }; 00376 00377 /** \internal performs the LU decomposition with partial pivoting in-place. 00378 */ 00379 template<typename MatrixType, typename TranspositionType> 00380 void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) 00381 { 00382 eigen_assert(lu.cols() == row_transpositions.size()); 00383 eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); 00384 00385 partial_lu_impl 00386 <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> 00387 ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); 00388 } 00389 00390 } // end namespace internal 00391 00392 template<typename MatrixType> 00393 PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) 00394 { 00395 check_template_parameters(); 00396 00397 // the row permutation is stored as int indices, so just to be sure: 00398 eigen_assert(matrix.rows()<NumTraits<int>::highest()); 00399 00400 m_lu = matrix; 00401 00402 eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); 00403 const Index size = matrix.rows(); 00404 00405 m_rowsTranspositions.resize(size); 00406 00407 typename TranspositionType::Index nb_transpositions; 00408 internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); 00409 m_det_p = (nb_transpositions%2) ? -1 : 1; 00410 00411 m_p = m_rowsTranspositions; 00412 00413 m_isInitialized = true; 00414 return *this; 00415 } 00416 00417 template<typename MatrixType> 00418 typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant () const 00419 { 00420 eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); 00421 return Scalar(m_det_p) * m_lu.diagonal().prod(); 00422 } 00423 00424 /** \returns the matrix represented by the decomposition, 00425 * i.e., it returns the product: P^{-1} L U. 00426 * This function is provided for debug purpose. */ 00427 template<typename MatrixType> 00428 MatrixType PartialPivLU<MatrixType>::reconstructedMatrix () const 00429 { 00430 eigen_assert(m_isInitialized && "LU is not initialized."); 00431 // LU 00432 MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() 00433 * m_lu.template triangularView<Upper>(); 00434 00435 // P^{-1}(LU) 00436 res = m_p.inverse() * res; 00437 00438 return res; 00439 } 00440 00441 /***** Implementation of solve() *****************************************************/ 00442 00443 namespace internal { 00444 00445 template<typename _MatrixType, typename Rhs> 00446 struct solve_retval<PartialPivLU<_MatrixType>, Rhs> 00447 : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> 00448 { 00449 EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) 00450 00451 template<typename Dest> void evalTo(Dest& dst) const 00452 { 00453 /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. 00454 * So we proceed as follows: 00455 * Step 1: compute c = Pb. 00456 * Step 2: replace c by the solution x to Lx = c. 00457 * Step 3: replace c by the solution x to Ux = c. 00458 */ 00459 00460 eigen_assert(rhs().rows() == dec().matrixLU().rows()); 00461 00462 // Step 1 00463 dst = dec().permutationP() * rhs(); 00464 00465 // Step 2 00466 dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); 00467 00468 // Step 3 00469 dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); 00470 } 00471 }; 00472 00473 } // end namespace internal 00474 00475 /******** MatrixBase methods *******/ 00476 00477 /** \lu_module 00478 * 00479 * \return the partial-pivoting LU decomposition of \c *this. 00480 * 00481 * \sa class PartialPivLU 00482 */ 00483 template<typename Derived> 00484 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> 00485 MatrixBase<Derived>::partialPivLu () const 00486 { 00487 return PartialPivLU<PlainObject>(eval()); 00488 } 00489 00490 #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS 00491 /** \lu_module 00492 * 00493 * Synonym of partialPivLu(). 00494 * 00495 * \return the partial-pivoting LU decomposition of \c *this. 00496 * 00497 * \sa class PartialPivLU 00498 */ 00499 template<typename Derived> 00500 inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> 00501 MatrixBase<Derived>::lu () const 00502 { 00503 return PartialPivLU<PlainObject>(eval()); 00504 } 00505 #endif 00506 00507 } // end namespace Eigen 00508 00509 #endif // EIGEN_PARTIALLU_H
Generated on Thu Nov 17 2022 22:01:30 by
1.7.2