sdfa

Dependencies:   AnglePosition2 Encoder FastPWM MODSERIAL Movement PIDController Servo SignalNumber2 biquadFilter mbed

Fork of kinematics_controlv4 by Peter Knoben

main.cpp

Committer:
peterknoben
Date:
2017-10-30
Revision:
3:c768a37620c9
Parent:
1:406519ff0f17
Child:
4:e15fc329b88b

File content as of revision 3:c768a37620c9:

#include "MODSERIAL.h"
#include "AnglePosition.h"
#include "PIDControl.h"
#include "BiQuad.h"
#include "signalnumber.h"
#include "mbed.h"
#include "encoder.h"
#include "Servo.h"
#include "FastPWM.h"

//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
MODSERIAL pc(USBTX, USBRX);         //Establish connection
Ticker MyControllerTicker1;         //Declare Ticker Motor 1
Ticker MyControllerTicker2;         //Declare Ticker Motor 2
Ticker MySampleTicker;                //Declare Ticker HIDscope
Ticker MyTickerMean;                //Declare Ticker Signalprocessing

InterruptIn But2(PTC6);             //Declare button for calibration

AnglePosition Angle;                //Declare Angle calculater
PIDControl PID;                     //Declare PID Controller
SignalNumber Signal;                //Declare Signal determiner

AnalogIn potmeter1(A5);
AnalogIn potmeter5(A3);             //Set Inputpin
AnalogIn potmeter2(A4);             //Set Inputpin
AnalogIn    emg0( A0 );             //Set Inputpin
AnalogIn    emg1( A1 );             //Set Inputpin


const float CONTROLLER_TS = 0.02;   //Motor frequency
const float MEAN_TS = 0.1;          //Mean value frequency
const float SAMPLE_TS = 0.02;        //BiQuad frequency


//------------------------------------------------------------------------------
//-----------------------------EMG Signals--------------------------------------
//------------------------------------------------------------------------------
const int n = 10;                   //Window size for the mean value, also adjust in signalnumber.cpp
const int action =50;               //Number of same mean values to change the signalnumber
const int m = 10;                   //Number of samples for calibration
int mode;
float emg_offset;
float meanx;

//BiQuad filter
BiQuad LP1( 0.6389437261127493, 1.2778874522254986, 0.6389437261127493, 1.1429772843080919, 0.4127976201429053 ); //Lowpass filter Biquad
BiQuad HP2( 0.8370879899975344, -1.6741759799950688, 0.8370879899975344, -1.6474576182593796, 0.7008943417307579 ); //Highpass filter Biquad
BiQuad NO3( 0.7063988100714527, -1.1429772843080923, 0.7063988100714527, -1.1429772843080923,  0.41279762014290533); //Notch filter Biquad 
BiQuadChain BiQuad_filter;

// Calibration function
void calibration(){
    emg_offset = Signal.calibrate(m, potmeter5);
    pc.printf("offset = %f \r\n", emg_offset);
}

/*
//Sample function
void sample()
{
    float Signal=((emg0+emg1)/2)-emg_offset;
    float Signal_filtered= BiQuad_filter.step(Signal);
    /* scope
    scope.set(0, emg0.read() );
    scope.set(1, emg1.read() );
    scope.set(2, Signal_filtered);
    scope.send();
    led = !led;
    /
}
*/

float Filter(float input0, float input1, float offset){
    float Signal=((input0+input1)/2)-offset;
    float Signal_filtered= BiQuad_filter.step(Signal);
    return Signal_filtered;
}

void signalnumber(){
    float Signal_filtered = Filter(emg0, emg1, emg_offset);
    meanx = Signal.getmean(n, Signal_filtered);
    mode = Signal.getnumber(n, action, Signal_filtered);
    pc.printf("pot = %d  after filtering = %f   mean = %f  Signalnumber = %i \r\n" , potmeter5,  meanx, mode);
}


//------------------------------------------------------------------------------
//-------------------------Kinematic Constants----------------------------------
//------------------------------------------------------------------------------
const double RAD_PER_PULSE = 0.00074799825*2;
const double PI = 3.14159265358979323846;
const float max_rangex = 500.0;
const float max_rangey = 300.0;
const float x_offset = 156.15;
const float y_offset = -76.97;
const float alpha_offset = -(21.52/180)*PI;
const float beta_offset  = 0.0;
const float L1 = 450.0;
const float L2 = 490.0;


//------------------------------------------------------------------------------
//--------------------------------Servo-----------------------------------------
//------------------------------------------------------------------------------
// This will be programmed on a different Mbed
Servo MyServo(D9);                  //Declare button
InterruptIn But1(D8);               //Declare used button
int k=0;                            //Position flag

void servo_control (){
    if (k==0){
        MyServo = 0;
        k=1;
    }
    else{
        MyServo = 2;
        k=0;
    }
}


//------------------------------------------------------------------------------
//--------------------------------Motor1----------------------------------------
//------------------------------------------------------------------------------
FastPWM motor1(D5);
DigitalOut motor1DirectionPin(D4);
DigitalIn ENC2A(D12);
DigitalIn ENC2B(D13);
Encoder encoder1(D13,D12);
const float MOTOR1_KP = 40.0;
const float MOTOR1_KI = 0.0;
const float MOTOR1_KD = 15.0;
double M1_v1 = 0.0;
double M1_v2 = 0.0;
const double motor1_gain = 2*PI;
const float M1_N = 0.5;


void motor1_control(){
    float reference_alpha = Angle.getbeta(max_rangex, max_rangey, x_offset, y_offset, beta_offset, L1, L2, potmeter1, potmeter2);
    float position_alpha = RAD_PER_PULSE * encoder1.getPosition();
    float error_alpha = reference_alpha-position_alpha;
    float magnitude1 = PID.get(error_alpha, MOTOR1_KP, MOTOR1_KI, MOTOR1_KD, CONTROLLER_TS, M1_N, M1_v1, M1_v2) / motor1_gain;
    motor1 = fabs(magnitude1);
//    pc.printf("err_a = %f  alpha = %f   mag1 = %f\r\n", error_alpha, reference_alpha, magnitude1);
//    pc.printf("\r\n");
    // Determine Motor Direction 
    if (magnitude1  < 0){
        motor1DirectionPin = 1;
    }
    else{
        motor1DirectionPin = 0;
    }
}

//------------------------------------------------------------------------------
//--------------------------------Motor2----------------------------------------
//------------------------------------------------------------------------------
FastPWM motor2(D6);
DigitalOut motor2DirectionPin(D7);
DigitalIn ENC1A(D10);
DigitalIn ENC1B(D11);
Encoder encoder2(D10,D11);
const float MOTOR2_KP = 60.0;
const float MOTOR2_KI = 0.0;
const float MOTOR2_KD = 15.0;
double m2_err_int = 0;
const double motor2_gain = 2*PI;
const float M2_N = 0.5;
double M2_v1 = 0.0;
double M2_v2 = 0.0;


void motor2_control(){
    float reference_beta = Angle.getalpha(max_rangex, max_rangey, x_offset, y_offset, alpha_offset, L1, L2, potmeter1, potmeter2);
    float position_beta = RAD_PER_PULSE * -encoder2.getPosition();
    float error_beta = reference_beta-position_beta;
    float magnitude2 = PID.get(error_beta, MOTOR2_KP, MOTOR2_KI, MOTOR2_KD, CONTROLLER_TS, M2_N, M1_v1, M1_v2) / motor2_gain;
    motor2 = fabs(magnitude2);
//    pc.printf("err2 = %f  beta = %f   mag2 = %f\r\n", error_beta, reference_beta, magnitude2);
//    pc.printf("\r\n");
    //Determine Motor Direction
    if (magnitude2 > 0){
        motor2DirectionPin = 1;
    }
    else{
        motor2DirectionPin = 0;
    }
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------

int main(){
    pc.baud(115200);
    BiQuad_filter.add( &LP1 ).add( &HP2 ).add( &NO3);
    motor1.period(0.0001f);
    motor2.period(0.0001f);
    MyControllerTicker1.attach(&motor1_control, CONTROLLER_TS); 
    MyControllerTicker2.attach(&motor2_control, CONTROLLER_TS);
    MyTickerMean.attach(&signalnumber, MEAN_TS);
//  MySampleTicker.attach(&sample, SAMPLE_TS);
    But1.rise(&servo_control);      
    But2.rise(&calibration);
    while(1) {}   
}