Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
VL53L0X_SH.cpp
00001 // Most of the functionality of this library is based on the VL53L0X API 00002 // provided by ST (STSW-IMG005), and some of the explanatory comments are quoted 00003 // or paraphrased from the API source code, API user manual (UM2039), and the 00004 // VL53L0X datasheet. 00005 00006 #include <VL53L0X_SH.h> 00007 #include "mbed.h" 00008 // Defines ///////////////////////////////////////////////////////////////////// 00009 00010 // The Arduino two-wire interface uses a 7-bit number for the address, 00011 // and sets the last bit correctly based on reads and writes 00012 #define ADDRESS_DEFAULT 0b0101001 00013 00014 // Record the current time to check an upcoming timeout against 00015 //#define startTimeout() (timeout_start_ms = millis()) 00016 00017 // Check if timeout is enabled (set to nonzero value) and has expired 00018 //#define checkTimeoutExpired() (io_timeout > 0 && ((short)millis() - timeout_start_ms) > io_timeout) 00019 00020 // Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs 00021 // from register value 00022 // based on VL53L0X_decode_vcsel_period() 00023 #define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1) 00024 00025 // Encode VCSEL pulse period register value from period in PCLKs 00026 // based on VL53L0X_encode_vcsel_period() 00027 #define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1) 00028 00029 // Calculate macro period in *nanoseconds* from VCSEL period in PCLKs 00030 // based on VL53L0X_calc_macro_period_ps() 00031 // PLL_period_ps = 1655; macro_period_vclks = 2304 00032 #define calcMacroPeriod(vcsel_period_pclks) ((((long)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) 00033 00034 // Constructors //////////////////////////////////////////////////////////////// 00035 I2C i2c(D14, D15); //I2C reg(SDA, SCL) 00036 00037 VL53L0X::VL53L0X(void) 00038 : address(ADDRESS_DEFAULT) 00039 , io_timeout(0) // no timeout 00040 , did_timeout(false) 00041 { 00042 } 00043 00044 // Public Methods ////////////////////////////////////////////////////////////// 00045 00046 void VL53L0X::setAddress(char new_addr) 00047 { 00048 writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F); 00049 address = new_addr; 00050 } 00051 00052 // Initialize sensor using sequence based on VL53L0X_DataInit(), 00053 // VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration(). 00054 // This function does not perform reference SPAD calibration 00055 // (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it 00056 // is performed by ST on the bare modules; it seems like that should work well 00057 // enough unless a cover glass is added. 00058 // If io_2v8 (optional) is true or not given, the sensor is configured for 2V8 00059 // mode. 00060 bool VL53L0X::init(bool io_2v8) 00061 { 00062 if (io_2v8) { 00063 writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, 00064 readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0 00065 } 00066 // "Set I2C standard mode" 00067 writeReg(0x88, 0x00); 00068 writeReg(0x80, 0x01); 00069 writeReg(0xFF, 0x01); 00070 writeReg(0x00, 0x00); 00071 stop_variable = readReg(0x91); 00072 writeReg(0x00, 0x01); 00073 writeReg(0xFF, 0x00); 00074 writeReg(0x80, 0x00); 00075 00076 // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks 00077 writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12); 00078 00079 // set final range signal rate limit to 0.25 MCPS (million counts per second) 00080 setSignalRateLimit(0.25); 00081 00082 writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF); 00083 00084 // VL53L0X_DataInit() end 00085 00086 // VL53L0X_StaticInit() begin 00087 00088 char spad_count; 00089 bool spad_type_is_aperture; 00090 if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { 00091 return false; 00092 } 00093 00094 // The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in 00095 // the API, but the same data seems to be more easily readable from 00096 // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there 00097 char ref_spad_map[6]; 00098 readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); 00099 00100 // -- VL53L0X_set_reference_spads() begin (assume NVM values are valid) 00101 00102 writeReg(0xFF, 0x01); 00103 writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00); 00104 writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C); 00105 writeReg(0xFF, 0x00); 00106 writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4); 00107 00108 char first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad 00109 char spads_enabled = 0; 00110 00111 for (char i = 0; i < 48; i++) { 00112 if (i < first_spad_to_enable || spads_enabled == spad_count) { 00113 // This bit is lower than the first one that should be enabled, or 00114 // (reference_spad_count) bits have already been enabled, so zero this bit 00115 ref_spad_map[i / 8] &= ~(1 << (i % 8)); 00116 } else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) { 00117 spads_enabled++; 00118 } 00119 } 00120 00121 writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); 00122 00123 // -- VL53L0X_set_reference_spads() end 00124 00125 // -- VL53L0X_load_tuning_settings() begin 00126 // DefaultTuningSettings from vl53l0x_tuning.h 00127 00128 writeReg(0xFF, 0x01); 00129 writeReg(0x00, 0x00); 00130 00131 writeReg(0xFF, 0x00); 00132 writeReg(0x09, 0x00); 00133 writeReg(0x10, 0x00); 00134 writeReg(0x11, 0x00); 00135 00136 writeReg(0x24, 0x01); 00137 writeReg(0x25, 0xFF); 00138 writeReg(0x75, 0x00); 00139 00140 writeReg(0xFF, 0x01); 00141 writeReg(0x4E, 0x2C); 00142 writeReg(0x48, 0x00); 00143 writeReg(0x30, 0x20); 00144 00145 writeReg(0xFF, 0x00); 00146 writeReg(0x30, 0x09); 00147 writeReg(0x54, 0x00); 00148 writeReg(0x31, 0x04); 00149 writeReg(0x32, 0x03); 00150 writeReg(0x40, 0x83); 00151 writeReg(0x46, 0x25); 00152 writeReg(0x60, 0x00); 00153 writeReg(0x27, 0x00); 00154 writeReg(0x50, 0x06); 00155 writeReg(0x51, 0x00); 00156 writeReg(0x52, 0x96); 00157 writeReg(0x56, 0x08); 00158 writeReg(0x57, 0x30); 00159 writeReg(0x61, 0x00); 00160 writeReg(0x62, 0x00); 00161 writeReg(0x64, 0x00); 00162 writeReg(0x65, 0x00); 00163 writeReg(0x66, 0xA0); 00164 00165 writeReg(0xFF, 0x01); 00166 writeReg(0x22, 0x32); 00167 writeReg(0x47, 0x14); 00168 writeReg(0x49, 0xFF); 00169 writeReg(0x4A, 0x00); 00170 00171 writeReg(0xFF, 0x00); 00172 writeReg(0x7A, 0x0A); 00173 writeReg(0x7B, 0x00); 00174 writeReg(0x78, 0x21); 00175 00176 writeReg(0xFF, 0x01); 00177 writeReg(0x23, 0x34); 00178 writeReg(0x42, 0x00); 00179 writeReg(0x44, 0xFF); 00180 writeReg(0x45, 0x26); 00181 writeReg(0x46, 0x05); 00182 writeReg(0x40, 0x40); 00183 writeReg(0x0E, 0x06); 00184 writeReg(0x20, 0x1A); 00185 writeReg(0x43, 0x40); 00186 00187 writeReg(0xFF, 0x00); 00188 writeReg(0x34, 0x03); 00189 writeReg(0x35, 0x44); 00190 00191 writeReg(0xFF, 0x01); 00192 writeReg(0x31, 0x04); 00193 writeReg(0x4B, 0x09); 00194 writeReg(0x4C, 0x05); 00195 writeReg(0x4D, 0x04); 00196 00197 writeReg(0xFF, 0x00); 00198 writeReg(0x44, 0x00); 00199 writeReg(0x45, 0x20); 00200 writeReg(0x47, 0x08); 00201 writeReg(0x48, 0x28); 00202 writeReg(0x67, 0x00); 00203 writeReg(0x70, 0x04); 00204 writeReg(0x71, 0x01); 00205 writeReg(0x72, 0xFE); 00206 writeReg(0x76, 0x00); 00207 writeReg(0x77, 0x00); 00208 00209 writeReg(0xFF, 0x01); 00210 writeReg(0x0D, 0x01); 00211 00212 writeReg(0xFF, 0x00); 00213 writeReg(0x80, 0x01); 00214 writeReg(0x01, 0xF8); 00215 00216 writeReg(0xFF, 0x01); 00217 writeReg(0x8E, 0x01); 00218 writeReg(0x00, 0x01); 00219 writeReg(0xFF, 0x00); 00220 writeReg(0x80, 0x00); 00221 00222 // -- VL53L0X_load_tuning_settings() end 00223 00224 // "Set interrupt config to new sample ready" 00225 // -- VL53L0X_SetGpioConfig() begin 00226 00227 writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04); 00228 writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low 00229 writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 00230 00231 // -- VL53L0X_SetGpioConfig() end 00232 00233 measurement_timing_budget_us = getMeasurementTimingBudget(); 00234 00235 // "Disable MSRC and TCC by default" 00236 // MSRC = Minimum Signal Rate Check 00237 // TCC = Target CentreCheck 00238 // -- VL53L0X_SetSequenceStepEnable() begin 00239 00240 writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); 00241 00242 // -- VL53L0X_SetSequenceStepEnable() end 00243 00244 // "Recalculate timing budget" 00245 setMeasurementTimingBudget(measurement_timing_budget_us); 00246 00247 // VL53L0X_StaticInit() end 00248 00249 // VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration()) 00250 00251 // -- VL53L0X_perform_vhv_calibration() begin 00252 00253 writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01); 00254 if (!performSingleRefCalibration(0x40)) { 00255 return false; 00256 } 00257 00258 // -- VL53L0X_perform_vhv_calibration() end 00259 00260 // -- VL53L0X_perform_phase_calibration() begin 00261 00262 writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); 00263 if (!performSingleRefCalibration(0x00)) { 00264 return false; 00265 } 00266 00267 // -- VL53L0X_perform_phase_calibration() end 00268 00269 // "restore the previous Sequence Config" 00270 writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); 00271 00272 // VL53L0X_PerformRefCalibration() end 00273 00274 return true; 00275 } 00276 00277 // Write an 8-bit register 00278 void VL53L0X::writeReg(char reg, char value) 00279 { 00280 data_w_2[0] = reg; 00281 data_w_2[1] = value; 00282 i2c.write( address<<1 | 0x00, data_w_2, 2, 0); 00283 } 00284 00285 // Write a 16-bit register 00286 void VL53L0X::writeReg16Bit(char reg, short value) 00287 { 00288 data_w_3[0] = reg; 00289 data_w_3[1] = (value >> 8) & 0xFF; 00290 data_w_3[2] = (value ) & 0xFF; 00291 i2c.write( address<<1 | 0x00, data_w_3, 3, 0); 00292 } 00293 00294 // Write a 32-bit register 00295 void VL53L0X::writeReg32Bit(char reg, long value) 00296 { 00297 data_w_5[0] = reg; 00298 data_w_5[1] = (value >> 24) & 0xFF; 00299 data_w_5[2] = (value >> 16) & 0xFF; 00300 data_w_5[3] = (value >> 8) & 0xFF; 00301 data_w_5[4] = (value ) & 0xFF; 00302 i2c.write( address<<1 | 0x00, data_w_5, 5, 0); 00303 } 00304 00305 // Read an 8-bit register 00306 char VL53L0X::readReg(char reg) 00307 { 00308 char value[1]; 00309 data_r_1[0] = reg; 00310 i2c.write( address<<1 | 0x00, data_r_1, 1, 0); 00311 i2c.read ( address<<1 | 0x01, value, 1, 0); 00312 return value[0]; 00313 } 00314 00315 // Read a 16-bit register 00316 short VL53L0X::readReg16Bit(char reg) 00317 { 00318 short value; 00319 data_r_1[0] = reg; 00320 i2c.write( address<<1 | 0x00, data_r_1, 1, 0); 00321 i2c.read ( address<<1 | 0x01, data_r_2, 2, 0); 00322 value = data_r_2[0] << 8 | data_r_2[1]; 00323 return value; 00324 } 00325 00326 // Read a 32-bit register 00327 long VL53L0X::readReg32Bit(char reg) 00328 { 00329 long value; 00330 data_r_1[0] = reg; 00331 i2c.write( address<<1 | 0x00, data_r_1, 1, 0); 00332 i2c.read ( address<<1 | 0x01, data_r_4, 4, 0); 00333 value = data_r_4[0] << 24; 00334 value |= data_r_4[1] << 16; 00335 value |= data_r_4[2] << 8; 00336 value |= data_r_4[3] ; 00337 return value; 00338 } 00339 00340 // Write an arbitrary number of bytes from the given array to the sensor, 00341 // starting at the given register 00342 void VL53L0X::writeMulti(char reg, char const * src, char count) 00343 { 00344 char data_w_n[count]; 00345 data_w_n[0] = reg; 00346 for(int i=0; i<count; i++) { 00347 data_w_n[i+1] = *(src+i); 00348 } 00349 i2c.write( address<<1 | 0x00, data_w_n, count, 0); 00350 } 00351 00352 // Read an arbitrary number of bytes from the sensor, starting at the given 00353 // register, into the given array 00354 void VL53L0X::readMulti(char reg, char * dst, char count) 00355 { 00356 char data_r_n[count]; 00357 data_r_1[0] = reg; 00358 i2c.write( address<<1 | 0x00, data_r_1, 1, 0); 00359 i2c.read ( address<<1 | 0x01, data_r_n, count, 0); 00360 for(int i=0; i<count; i++) { 00361 *(dst+i) = data_r_n[i]; 00362 } 00363 } 00364 00365 // Set the return signal rate limit check value in units of MCPS (mega counts 00366 // per second). "This represents the amplitude of the signal reflected from the 00367 // target and detected by the device"; setting this limit presumably determines 00368 // the minimum measurement necessary for the sensor to report a valid reading. 00369 // Setting a lower limit increases the potential range of the sensor but also 00370 // seems to increase the likelihood of getting an inaccurate reading because of 00371 // unwanted reflections from objects other than the intended target. 00372 // Defaults to 0.25 MCPS as initialized by the ST API and this library. 00373 bool VL53L0X::setSignalRateLimit(float limit_Mcps) 00374 { 00375 if (limit_Mcps < 0 || limit_Mcps > 511.99f) { 00376 return false; 00377 } 00378 00379 // Q9.7 fixed point format (9 integer bits, 7 fractional bits) 00380 writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7)); 00381 return true; 00382 } 00383 00384 // Get the return signal rate limit check value in MCPS 00385 float VL53L0X::getSignalRateLimit(void) 00386 { 00387 return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7); 00388 } 00389 00390 // Set the measurement timing budget in microseconds, which is the time allowed 00391 // for one measurement; the ST API and this library take care of splitting the 00392 // timing budget among the sub-steps in the ranging sequence. A longer timing 00393 // budget allows for more accurate measurements. Increasing the budget by a 00394 // factor of N decreases the range measurement standard deviation by a factor of 00395 // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms. 00396 // based on VL53L0X_set_measurement_timing_budget_micro_seconds() 00397 bool VL53L0X::setMeasurementTimingBudget(long budget_us) 00398 { 00399 SequenceStepEnables enables; 00400 SequenceStepTimeouts timeouts; 00401 00402 short const StartOverhead = 1320; // note that this is different than the value in get_ 00403 short const EndOverhead = 960; 00404 short const MsrcOverhead = 660; 00405 short const TccOverhead = 590; 00406 short const DssOverhead = 690; 00407 short const PreRangeOverhead = 660; 00408 short const FinalRangeOverhead = 550; 00409 00410 long const MinTimingBudget = 20000; 00411 00412 if (budget_us < MinTimingBudget) { 00413 return false; 00414 } 00415 00416 long used_budget_us = StartOverhead + EndOverhead; 00417 00418 getSequenceStepEnables(&enables); 00419 getSequenceStepTimeouts(&enables, &timeouts); 00420 00421 if (enables.tcc) { 00422 used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); 00423 } 00424 00425 if (enables.dss) { 00426 used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); 00427 } else if (enables.msrc) { 00428 used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); 00429 } 00430 00431 if (enables.pre_range) { 00432 used_budget_us += (timeouts.pre_range_us + PreRangeOverhead); 00433 } 00434 00435 if (enables.final_range) { 00436 used_budget_us += FinalRangeOverhead; 00437 00438 // "Note that the final range timeout is determined by the timing 00439 // budget and the sum of all other timeouts within the sequence. 00440 // If there is no room for the final range timeout, then an error 00441 // will be set. Otherwise the remaining time will be applied to 00442 // the final range." 00443 00444 if (used_budget_us > budget_us) { 00445 // "Requested timeout too big." 00446 return false; 00447 } 00448 00449 long final_range_timeout_us = budget_us - used_budget_us; 00450 00451 // set_sequence_step_timeout() begin 00452 // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) 00453 00454 // "For the final range timeout, the pre-range timeout 00455 // must be added. To do this both final and pre-range 00456 // timeouts must be expressed in macro periods MClks 00457 // because they have different vcsel periods." 00458 00459 short final_range_timeout_mclks = 00460 timeoutMicrosecondsToMclks(final_range_timeout_us, 00461 timeouts.final_range_vcsel_period_pclks); 00462 00463 if (enables.pre_range) { 00464 final_range_timeout_mclks += timeouts.pre_range_mclks; 00465 } 00466 00467 writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, 00468 encodeTimeout(final_range_timeout_mclks)); 00469 00470 // set_sequence_step_timeout() end 00471 00472 measurement_timing_budget_us = budget_us; // store for internal reuse 00473 } 00474 return true; 00475 } 00476 00477 // Get the measurement timing budget in microseconds 00478 // based on VL53L0X_get_measurement_timing_budget_micro_seconds() 00479 // in us 00480 long VL53L0X::getMeasurementTimingBudget(void) 00481 { 00482 SequenceStepEnables enables; 00483 SequenceStepTimeouts timeouts; 00484 00485 short const StartOverhead = 1910; // note that this is different than the value in set_ 00486 short const EndOverhead = 960; 00487 short const MsrcOverhead = 660; 00488 short const TccOverhead = 590; 00489 short const DssOverhead = 690; 00490 short const PreRangeOverhead = 660; 00491 short const FinalRangeOverhead = 550; 00492 00493 // "Start and end overhead times always present" 00494 long budget_us = StartOverhead + EndOverhead; 00495 00496 getSequenceStepEnables(&enables); 00497 getSequenceStepTimeouts(&enables, &timeouts); 00498 00499 if (enables.tcc) { 00500 budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); 00501 } 00502 00503 if (enables.dss) { 00504 budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); 00505 } else if (enables.msrc) { 00506 budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); 00507 } 00508 00509 if (enables.pre_range) { 00510 budget_us += (timeouts.pre_range_us + PreRangeOverhead); 00511 } 00512 00513 if (enables.final_range) { 00514 budget_us += (timeouts.final_range_us + FinalRangeOverhead); 00515 } 00516 00517 measurement_timing_budget_us = budget_us; // store for internal reuse 00518 return budget_us; 00519 } 00520 00521 // Set the VCSEL (vertical cavity surface emitting laser) pulse period for the 00522 // given period type (pre-range or final range) to the given value in PCLKs. 00523 // Longer periods seem to increase the potential range of the sensor. 00524 // Valid values are (even numbers only): 00525 // pre: 12 to 18 (initialized default: 14) 00526 // final: 8 to 14 (initialized default: 10) 00527 // based on VL53L0X_set_vcsel_pulse_period() 00528 bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, char period_pclks) 00529 { 00530 char vcsel_period_reg = encodeVcselPeriod(period_pclks); 00531 00532 SequenceStepEnables enables; 00533 SequenceStepTimeouts timeouts; 00534 00535 getSequenceStepEnables(&enables); 00536 getSequenceStepTimeouts(&enables, &timeouts); 00537 00538 // "Apply specific settings for the requested clock period" 00539 // "Re-calculate and apply timeouts, in macro periods" 00540 00541 // "When the VCSEL period for the pre or final range is changed, 00542 // the corresponding timeout must be read from the device using 00543 // the current VCSEL period, then the new VCSEL period can be 00544 // applied. The timeout then must be written back to the device 00545 // using the new VCSEL period. 00546 // 00547 // For the MSRC timeout, the same applies - this timeout being 00548 // dependant on the pre-range vcsel period." 00549 00550 00551 if (type == VcselPeriodPreRange) { 00552 // "Set phase check limits" 00553 switch (period_pclks) { 00554 case 12: 00555 writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18); 00556 break; 00557 00558 case 14: 00559 writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30); 00560 break; 00561 00562 case 16: 00563 writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40); 00564 break; 00565 00566 case 18: 00567 writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50); 00568 break; 00569 00570 default: 00571 // invalid period 00572 return false; 00573 } 00574 writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 00575 00576 // apply new VCSEL period 00577 writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); 00578 00579 // update timeouts 00580 00581 // set_sequence_step_timeout() begin 00582 // (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) 00583 00584 short new_pre_range_timeout_mclks = 00585 timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks); 00586 00587 writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, 00588 encodeTimeout(new_pre_range_timeout_mclks)); 00589 00590 // set_sequence_step_timeout() end 00591 00592 // set_sequence_step_timeout() begin 00593 // (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC) 00594 00595 short new_msrc_timeout_mclks = 00596 timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks); 00597 00598 writeReg(MSRC_CONFIG_TIMEOUT_MACROP, 00599 (new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1)); 00600 00601 // set_sequence_step_timeout() end 00602 } else if (type == VcselPeriodFinalRange) { 00603 switch (period_pclks) { 00604 case 8: 00605 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10); 00606 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 00607 writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02); 00608 writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C); 00609 writeReg(0xFF, 0x01); 00610 writeReg(ALGO_PHASECAL_LIM, 0x30); 00611 writeReg(0xFF, 0x00); 00612 break; 00613 00614 case 10: 00615 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28); 00616 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 00617 writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 00618 writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09); 00619 writeReg(0xFF, 0x01); 00620 writeReg(ALGO_PHASECAL_LIM, 0x20); 00621 writeReg(0xFF, 0x00); 00622 break; 00623 00624 case 12: 00625 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38); 00626 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 00627 writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 00628 writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08); 00629 writeReg(0xFF, 0x01); 00630 writeReg(ALGO_PHASECAL_LIM, 0x20); 00631 writeReg(0xFF, 0x00); 00632 break; 00633 00634 case 14: 00635 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48); 00636 writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 00637 writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 00638 writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07); 00639 writeReg(0xFF, 0x01); 00640 writeReg(ALGO_PHASECAL_LIM, 0x20); 00641 writeReg(0xFF, 0x00); 00642 break; 00643 00644 default: 00645 // invalid period 00646 return false; 00647 } 00648 00649 // apply new VCSEL period 00650 writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); 00651 00652 // update timeouts 00653 00654 // set_sequence_step_timeout() begin 00655 // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) 00656 00657 // "For the final range timeout, the pre-range timeout 00658 // must be added. To do this both final and pre-range 00659 // timeouts must be expressed in macro periods MClks 00660 // because they have different vcsel periods." 00661 00662 short new_final_range_timeout_mclks = 00663 timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks); 00664 00665 if (enables.pre_range) { 00666 new_final_range_timeout_mclks += timeouts.pre_range_mclks; 00667 } 00668 00669 writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, 00670 encodeTimeout(new_final_range_timeout_mclks)); 00671 00672 // set_sequence_step_timeout end 00673 } else { 00674 // invalid type 00675 return false; 00676 } 00677 00678 // "Finally, the timing budget must be re-applied" 00679 00680 setMeasurementTimingBudget(measurement_timing_budget_us); 00681 00682 // "Perform the phase calibration. This is needed after changing on vcsel period." 00683 // VL53L0X_perform_phase_calibration() begin 00684 00685 char sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); 00686 writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); 00687 performSingleRefCalibration(0x0); 00688 writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config); 00689 00690 // VL53L0X_perform_phase_calibration() end 00691 00692 return true; 00693 } 00694 00695 // Get the VCSEL pulse period in PCLKs for the given period type. 00696 // based on VL53L0X_get_vcsel_pulse_period() 00697 char VL53L0X::getVcselPulsePeriod(vcselPeriodType type) 00698 { 00699 if (type == VcselPeriodPreRange) { 00700 return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD)); 00701 } else if (type == VcselPeriodFinalRange) { 00702 return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD)); 00703 } else { 00704 return 255; 00705 } 00706 } 00707 00708 // Start continuous ranging measurements. If period_ms (optional) is 0 or not 00709 // given, continuous back-to-back mode is used (the sensor takes measurements as 00710 // often as possible); otherwise, continuous timed mode is used, with the given 00711 // inter-measurement period in milliseconds determining how often the sensor 00712 // takes a measurement. 00713 // based on VL53L0X_StartMeasurement() 00714 void VL53L0X::startContinuous(long period_ms) 00715 { 00716 writeReg(0x80, 0x01); 00717 writeReg(0xFF, 0x01); 00718 writeReg(0x00, 0x00); 00719 writeReg(0x91, stop_variable); 00720 writeReg(0x00, 0x01); 00721 writeReg(0xFF, 0x00); 00722 writeReg(0x80, 0x00); 00723 00724 if (period_ms != 0) { 00725 // continuous timed mode 00726 00727 // VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin 00728 00729 short osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL); 00730 00731 if (osc_calibrate_val != 0) { 00732 period_ms *= osc_calibrate_val; 00733 } 00734 00735 writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms); 00736 00737 // VL53L0X_SetInterMeasurementPeriodMilliSeconds() end 00738 00739 writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED 00740 } else { 00741 // continuous back-to-back mode 00742 writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK 00743 } 00744 } 00745 00746 // Stop continuous measurements 00747 // based on VL53L0X_StopMeasurement() 00748 void VL53L0X::stopContinuous(void) 00749 { 00750 writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT 00751 00752 writeReg(0xFF, 0x01); 00753 writeReg(0x00, 0x00); 00754 writeReg(0x91, 0x00); 00755 writeReg(0x00, 0x01); 00756 writeReg(0xFF, 0x00); 00757 } 00758 00759 // Returns a range reading in millimeters when continuous mode is active 00760 // (readRangeSingleMillimeters() also calls this function after starting a 00761 // single-shot range measurement) 00762 short VL53L0X::readRangeContinuousMillimeters(void) 00763 { 00764 // startTimeout(); 00765 // while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) { 00766 // if (checkTimeoutExpired()) { 00767 // did_timeout = true; 00768 // return 32767; 00769 // } 00770 // } 00771 00772 // assumptions: Linearity Corrective Gain is 1000 (default); 00773 // fractional ranging is not enabled 00774 short range = readReg16Bit(RESULT_RANGE_STATUS + 10); 00775 00776 writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 00777 00778 return range; 00779 } 00780 00781 // Performs a single-shot range measurement and returns the reading in 00782 // millimeters 00783 // based on VL53L0X_PerformSingleRangingMeasurement() 00784 short VL53L0X::readRangeSingleMillimeters(void) 00785 { 00786 writeReg(0x80, 0x01); 00787 writeReg(0xFF, 0x01); 00788 writeReg(0x00, 0x00); 00789 writeReg(0x91, stop_variable); 00790 writeReg(0x00, 0x01); 00791 writeReg(0xFF, 0x00); 00792 writeReg(0x80, 0x00); 00793 00794 writeReg(SYSRANGE_START, 0x01); 00795 00796 // "Wait until start bit has been cleared" 00797 // startTimeout(); 00798 // while (readReg(SYSRANGE_START) & 0x01) { 00799 // if (checkTimeoutExpired()) { 00800 // did_timeout = true; 00801 // return 32767; 00802 // } 00803 // } 00804 00805 return readRangeContinuousMillimeters(); 00806 } 00807 00808 // Did a timeout occur in one of the read functions since the last call to 00809 // timeoutOccurred()? 00810 bool VL53L0X::timeoutOccurred() 00811 { 00812 bool tmp = did_timeout; 00813 did_timeout = false; 00814 return tmp; 00815 } 00816 00817 // Private Methods ///////////////////////////////////////////////////////////// 00818 00819 // Get reference SPAD (single photon avalanche diode) count and type 00820 // based on VL53L0X_get_info_from_device(), 00821 // but only gets reference SPAD count and type 00822 bool VL53L0X::getSpadInfo(char * count, bool * type_is_aperture) 00823 { 00824 char tmp; 00825 00826 writeReg(0x80, 0x01); 00827 writeReg(0xFF, 0x01); 00828 writeReg(0x00, 0x00); 00829 00830 writeReg(0xFF, 0x06); 00831 writeReg(0x83, readReg(0x83) | 0x04); 00832 writeReg(0xFF, 0x07); 00833 writeReg(0x81, 0x01); 00834 00835 writeReg(0x80, 0x01); 00836 00837 writeReg(0x94, 0x6b); 00838 writeReg(0x83, 0x00); 00839 // startTimeout(); 00840 wait_ms(1); 00841 while (readReg(0x83) == 0x00) { 00842 // if (checkTimeoutExpired()) { 00843 // return false; 00844 // } 00845 } 00846 writeReg(0x83, 0x01); 00847 tmp = readReg(0x92); 00848 00849 *count = tmp & 0x7f; 00850 *type_is_aperture = (tmp >> 7) & 0x01; 00851 00852 writeReg(0x81, 0x00); 00853 writeReg(0xFF, 0x06); 00854 writeReg(0x83, readReg( 0x83 & ~0x04)); 00855 writeReg(0xFF, 0x01); 00856 writeReg(0x00, 0x01); 00857 00858 writeReg(0xFF, 0x00); 00859 writeReg(0x80, 0x00); 00860 00861 return true; 00862 } 00863 00864 // Get sequence step enables 00865 // based on VL53L0X_GetSequenceStepEnables() 00866 void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables) 00867 { 00868 char sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); 00869 00870 enables->tcc = (sequence_config >> 4) & 0x1; 00871 enables->dss = (sequence_config >> 3) & 0x1; 00872 enables->msrc = (sequence_config >> 2) & 0x1; 00873 enables->pre_range = (sequence_config >> 6) & 0x1; 00874 enables->final_range = (sequence_config >> 7) & 0x1; 00875 } 00876 00877 // Get sequence step timeouts 00878 // based on get_sequence_step_timeout(), 00879 // but gets all timeouts instead of just the requested one, and also stores 00880 // intermediate values 00881 void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts) 00882 { 00883 timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange); 00884 00885 timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1; 00886 timeouts->msrc_dss_tcc_us = 00887 timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks, 00888 timeouts->pre_range_vcsel_period_pclks); 00889 00890 timeouts->pre_range_mclks = 00891 decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)); 00892 timeouts->pre_range_us = 00893 timeoutMclksToMicroseconds(timeouts->pre_range_mclks, 00894 timeouts->pre_range_vcsel_period_pclks); 00895 00896 timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange); 00897 00898 timeouts->final_range_mclks = 00899 decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)); 00900 00901 if (enables->pre_range) { 00902 timeouts->final_range_mclks -= timeouts->pre_range_mclks; 00903 } 00904 00905 timeouts->final_range_us = 00906 timeoutMclksToMicroseconds(timeouts->final_range_mclks, 00907 timeouts->final_range_vcsel_period_pclks); 00908 } 00909 00910 // Decode sequence step timeout in MCLKs from register value 00911 // based on VL53L0X_decode_timeout() 00912 // Note: the original function returned a long, but the return value is 00913 // always stored in a short. 00914 short VL53L0X::decodeTimeout(short reg_val) 00915 { 00916 // format: "(LSByte * 2^MSByte) + 1" 00917 return (short)((reg_val & 0x00FF) << 00918 (short)((reg_val & 0xFF00) >> 8)) + 1; 00919 } 00920 00921 // Encode sequence step timeout register value from timeout in MCLKs 00922 // based on VL53L0X_encode_timeout() 00923 // Note: the original function took a short, but the argument passed to it 00924 // is always a short. 00925 short VL53L0X::encodeTimeout(short timeout_mclks) 00926 { 00927 // format: "(LSByte * 2^MSByte) + 1" 00928 00929 long ls_byte = 0; 00930 short ms_byte = 0; 00931 00932 if (timeout_mclks > 0) { 00933 ls_byte = timeout_mclks - 1; 00934 00935 while ((ls_byte & 0xFFFFFF00) > 0) { 00936 ls_byte >>= 1; 00937 ms_byte++; 00938 } 00939 00940 return (ms_byte << 8) | (ls_byte & 0xFF); 00941 } else { 00942 return 0; 00943 } 00944 } 00945 00946 // Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs 00947 // based on VL53L0X_calc_timeout_us() 00948 long VL53L0X::timeoutMclksToMicroseconds(short timeout_period_mclks, char vcsel_period_pclks) 00949 { 00950 long macro_period_ns = calcMacroPeriod(vcsel_period_pclks); 00951 00952 return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000; 00953 } 00954 00955 // Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs 00956 // based on VL53L0X_calc_timeout_mclks() 00957 long VL53L0X::timeoutMicrosecondsToMclks(long timeout_period_us, char vcsel_period_pclks) 00958 { 00959 long macro_period_ns = calcMacroPeriod(vcsel_period_pclks); 00960 00961 return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns); 00962 } 00963 00964 00965 // based on VL53L0X_perform_single_ref_calibration() 00966 bool VL53L0X::performSingleRefCalibration(char vhv_init_byte) 00967 { 00968 writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP 00969 00970 // startTimeout(); 00971 wait_ms(1); 00972 while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) { 00973 // if (checkTimeoutExpired()) { 00974 // return false; 00975 // } 00976 } 00977 00978 writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 00979 00980 writeReg(SYSRANGE_START, 0x00); 00981 00982 return true; 00983 }
Generated on Wed Jul 13 2022 11:42:53 by
1.7.2