Sample program of sakura.io Evalution board.

Dependencies:   AQM0802A BME280 MPU9250_SPI SakuraIO gps mbed

Fork of SakuraIO_Evaluation_Board_Standard by SAKURA Internet

main.cpp

Committer:
misodengaku
Date:
2017-11-29
Revision:
1:faf04d99f302
Parent:
0:db3ec2781484
Child:
3:e5e53c1f6fda

File content as of revision 1:faf04d99f302:

#include <mbed.h>
#include <AQM0802A.h>
#include <BME280.h>
#include <MPU9250.h>
#include <SakuraIO.h>
#include "SakuraPinNames.h"
#include "sensors.h"
#include "gps.h"

// Serial over CMSIS_DAP
Serial pc(DAP_UART_TX, DAP_UART_RX, 9600);

// GPS
Serial gps(GPS_TX, GPS_RX, 9600);
DigitalOut gps_en(GPS_EN);

// LED
DigitalOut led_1(LED1);
DigitalOut led_2(LED2);
DigitalOut led_3(LED3);
DigitalOut led_4(LED4);

// LCD backlight
DigitalOut lcd_led(LED_LCD);

// Switch
DigitalIn sw_1(SW1);
DigitalIn sw_2(SW2);
DigitalIn sw_3(SW3);
DigitalIn sw_4(SW4);
DigitalIn sw_5(SW5);
DigitalIn sw_6(SW6);

// Internal I2C
I2C internal_i2c(I2C_INTERNAL_SDA, I2C_INTERNAL_SCL);
AQM0802A lcd(internal_i2c);
BME280 bme280(internal_i2c);

// SPI
SPI internal_mpu9250_spi(SPI_MPU_MOSI, SPI_MPU_MISO, SPI_MPU_SCK);
mpu9250_spi mpu9250(internal_mpu9250_spi, SPI_MPU_CS);

// sakura.io
SakuraIO_I2C sakuraio(I2C_SDA, I2C_SCL);

SensorData sensor_data;

// GPS UART buffer
char uart_buffer[128] = {0};
int uart_buffer_index = 0;

// NMEA Decoder
GPSDecoder gps_decoder;

void gps_uart_buffering_handler();

void setup()
{
    lcd_led = 1;
    pc.printf("Hello World !\r\n");
    lcd.cls();
    lcd.printf("Hello");

    // Initialize sensors
    bme280.initialize();
    pc.printf("BME280 ok.\r\n");
    mpu9250.init(1, BITS_DLPF_CFG_188HZ);
    pc.printf("MPU9250 ok. WHOAMI=%02x\r\n", mpu9250.whoami());
    if (mpu9250.whoami() != 0x71) {
        pc.printf("[ERROR] MPU9250 init fail.\r\n");
    }

    mpu9250.set_gyro_scale(BITS_FS_2000DPS);    //Set full scale range for gyros
    mpu9250.set_acc_scale(BITS_FS_16G);          //Set full scale range for accs
    mpu9250.calib_acc();
    mpu9250.AK8963_calib_Magnetometer();

    // active high
    gps_en = 1;
    gps.attach(&gps_uart_buffering_handler, Serial::RxIrq);
}

void read_sensor_data()
{
    sensor_data.bme280.temperature = bme280.getTemperature();
    sensor_data.bme280.pressure = bme280.getPressure();
    sensor_data.bme280.humidity = bme280.getHumidity();

    mpu9250.read_all();
    sensor_data.mpu9250.temperature = mpu9250.Temperature;
    for (int i = 0; i < 3; i++) {
        sensor_data.mpu9250.accelerometer[i] = mpu9250.accelerometer_data[i];
        sensor_data.mpu9250.gyroscope[i] = mpu9250.gyroscope_data[i];
        sensor_data.mpu9250.magnetometer[i] =  mpu9250.Magnetometer[i];
    }
}

void enqueue_sensor_data(int counter)
{
    sakuraio.enqueueTx(0, counter);
    sakuraio.enqueueTx(1, sensor_data.bme280.temperature);
    sakuraio.enqueueTx(2, sensor_data.bme280.pressure);
    sakuraio.enqueueTx(3, sensor_data.bme280.humidity);
    sakuraio.enqueueTx(4, sensor_data.mpu9250.accelerometer[0]);
    sakuraio.enqueueTx(5, sensor_data.mpu9250.accelerometer[1]);
    sakuraio.enqueueTx(6, sensor_data.mpu9250.accelerometer[2]);
    sakuraio.enqueueTx(7, sensor_data.mpu9250.gyroscope[0]);
    sakuraio.enqueueTx(8, sensor_data.mpu9250.gyroscope[1]);
    sakuraio.enqueueTx(9, sensor_data.mpu9250.gyroscope[2]);
    sakuraio.enqueueTx(10, sensor_data.mpu9250.magnetometer[0]);
    sakuraio.enqueueTx(11, sensor_data.mpu9250.magnetometer[1]);
    sakuraio.enqueueTx(12, sensor_data.mpu9250.magnetometer[2]);
    sakuraio.enqueueTx(13, gps_decoder.get_longitude());
    sakuraio.enqueueTx(14, gps_decoder.get_latitude());
    sakuraio.enqueueTx(15, gps_decoder.get_unixtime());
}

void gps_uart_buffering_handler()
{
    while (gps.readable() == 1) {
        char c = gps.getc();
        if (c == '\r') {
            continue;
        }
        uart_buffer[uart_buffer_index] = c;
        uart_buffer_index++;
        if (c == '\n') {
            uart_buffer[uart_buffer_index - 1] = '\0';
            gps_decoder.set_nmea_message(uart_buffer);
            gps_decoder.decode();
            uart_buffer_index = 0;
        }
    }
}


void loop()
{
    pc.printf("\r\n\r\n--------------------\r\n");

    static int i = 1;
    read_sensor_data();
    wait(1);
    pc.printf("This program runs since %d seconds.\r\n", i);
    pc.printf("BME280\r\n");
    pc.printf("\tTemp: %.2fC\r\n", sensor_data.bme280.temperature);
    pc.printf("\tPres: %.2fhPa\r\n", sensor_data.bme280.pressure);
    pc.printf("\tHum: %.2f%%\r\n", sensor_data.bme280.humidity);
    pc.printf("MPU9250\r\n");
    pc.printf("\tTemp: %.2fC\r\n", sensor_data.mpu9250.temperature);
    for (int j = 0; j < 3; j++) {
        pc.printf("\tacc[%d]: %.2f\r\n", j, sensor_data.mpu9250.accelerometer[j]);
        pc.printf("\tgyro[%d]: %.2f\r\n", j, sensor_data.mpu9250.gyroscope[j]);
        pc.printf("\tmag[%d]: %.2f\r\n", j, sensor_data.mpu9250.magnetometer[j]);
    }
    pc.printf("GPS\r\n");
    pc.printf("\tlat: %f%c\r\n", 
            gps_decoder.get_latitude(), 
            gps_decoder.get_latitude() >= 0 ? 'N' : 'S');
    pc.printf("\tlon: %f%c\r\n", 
            gps_decoder.get_longitude(),
            gps_decoder.get_longitude() >= 0 ? 'E' : 'W');
    pc.printf("\tspeed: %fkm/h\r\n", gps_decoder.get_speed());
    pc.printf("\tmove_direction: %f\r\n", gps_decoder.get_move_direction());
    pc.printf("\tdate: %d/%02d/%02d %02d:%02d:%02d (UTC)\r\n",
              gps_decoder.get_year(), gps_decoder.get_month(), gps_decoder.get_day(),
              gps_decoder.get_hour(), gps_decoder.get_min(), gps_decoder.get_sec());
    pc.printf("\tUNIX time: %d\r\n", gps_decoder.get_unixtime());
    lcd.cls();
    if( (sakuraio.getConnectionStatus() & 0x80) == 0x80 ) {
        lcd.printf("Online\n", i);
    } else {
        lcd.printf("Offline\n", i);
    }
    lcd.printf("%d", i);
    i++;
    led_1 = !led_1;
    led_4 = !sw_4;

    enqueue_sensor_data(i);
    sakuraio.send();
}


int main()
{
    setup();
    while(1) {
        loop();
    }
}