Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: Controller.cpp
- Revision:
- 0:1a972ed770da
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Controller.cpp Mon Mar 09 16:23:04 2020 +0000
@@ -0,0 +1,205 @@
+/*
+ * Controller.cpp
+ * Copyright (c) 2020, ZHAW
+ * All rights reserved.
+ */
+
+#include "Controller.h"
+
+using namespace std;
+
+const float Controller::PERIOD = 0.001f; // period of 1 ms
+const float Controller::PI = 3.14159265f; // the constant PI
+const float Controller::WHEEL_DISTANCE = 0.185f; // distance between wheels, given in [m]
+const float Controller::WHEEL_RADIUS = 0.038f; // radius of wheels, given in [m]
+const float Controller::COUNTS_PER_TURN = 1200.0f; // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f)
+const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // given in [rad/s]
+const float Controller::KN = 40.0f; // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f)
+const float Controller::KP = 0.25f; // speed control parameter
+const float Controller::MAX_VOLTAGE = 12.0f; // battery voltage in [V]
+const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum duty-cycle
+const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum duty-cycle
+
+/**
+ * Creates and initialises the robot controller.
+ * @param pwmLeft a reference to the pwm output for the left motor.
+ * @param pwmRight a reference to the pwm output for the right motor.
+ * @param counterLeft a reference to the encoder counter of the left motor.
+ * @param counterRight a reference to the encoder counter of the right motor.
+ */
+Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) {
+
+ // initialise pwm outputs
+
+ pwmLeft.period(0.00005f); // pwm period of 50 us
+ pwmLeft = 0.5f; // duty-cycle of 50%
+
+ pwmRight.period(0.00005f); // pwm period of 50 us
+ pwmRight = 0.5f; // duty-cycle of 50%
+
+ // initialise local variables
+
+ translationalMotion.setProfileVelocity(1.0f);
+ translationalMotion.setProfileAcceleration(2.0f);
+ translationalMotion.setProfileDeceleration(3.0f);
+
+ rotationalMotion.setProfileVelocity(1.5f);
+ rotationalMotion.setProfileAcceleration(20.0f);
+ rotationalMotion.setProfileDeceleration(20.0f);
+
+ translationalVelocity = 0.0f;
+ rotationalVelocity = 0.0f;
+ actualTranslationalVelocity = 0.0f;
+ actualRotationalVelocity = 0.0f;
+
+ previousValueCounterLeft = counterLeft.read();
+ previousValueCounterRight = counterRight.read();
+
+ speedLeftFilter.setPeriod(PERIOD);
+ speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+
+ speedRightFilter.setPeriod(PERIOD);
+ speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY);
+
+ desiredSpeedLeft = 0.0f;
+ desiredSpeedRight = 0.0f;
+
+ actualSpeedLeft = 0.0f;
+ actualSpeedRight = 0.0f;
+
+ // start the periodic task
+
+ ticker.attach(callback(this, &Controller::run), PERIOD);
+}
+
+/**
+ * Deletes this Controller object.
+ */
+Controller::~Controller() {
+
+ ticker.detach(); // stop the periodic task
+}
+
+/**
+ * Sets the desired translational velocity of the robot.
+ * @param velocity the desired translational velocity, given in [m/s].
+ */
+void Controller::setTranslationalVelocity(float velocity) {
+
+ this->translationalVelocity = velocity;
+}
+
+/**
+ * Sets the desired rotational velocity of the robot.
+ * @param velocity the desired rotational velocity, given in [rad/s].
+ */
+void Controller::setRotationalVelocity(float velocity) {
+
+ this->rotationalVelocity = velocity;
+}
+
+/**
+ * Gets the actual translational velocity of the robot.
+ * @return the actual translational velocity, given in [m/s].
+ */
+float Controller::getActualTranslationalVelocity() {
+
+ return actualTranslationalVelocity;
+}
+
+/**
+ * Gets the actual rotational velocity of the robot.
+ * @return the actual rotational velocity, given in [rad/s].
+ */
+float Controller::getActualRotationalVelocity() {
+
+ return actualRotationalVelocity;
+}
+
+/**
+ * Sets the desired speed of the left motor.
+ * @param desiredSpeedLeft desired speed given in [rpm].
+ */
+void Controller::setDesiredSpeedLeft(float desiredSpeedLeft) {
+
+ this->desiredSpeedLeft = desiredSpeedLeft;
+}
+
+/**
+ * Sets the desired speed of the right motor.
+ * @param desiredSpeedRight desired speed given in [rpm].
+ */
+void Controller::setDesiredSpeedRight(float desiredSpeedRight) {
+
+ this->desiredSpeedRight = desiredSpeedRight;
+}
+
+/**
+ * Gets the actual speed of the left motor.
+ * @return the actual speed given in [rpm].
+ */
+float Controller::getActualSpeedLeft() {
+
+ return actualSpeedLeft;
+}
+
+/**
+ * Gets the actual speed of the right motor.
+ * @return the actual speed given in [rpm].
+ */
+float Controller::getActualSpeedRight() {
+
+ return actualSpeedRight;
+}
+
+/**
+ * This is an internal method of the controller that is running periodically.
+ */
+void Controller::run() {
+
+ // calculate the planned velocities using the motion planner
+ translationalMotion.incrementToVelocity(translationalVelocity, PERIOD); // Schnelligkeit 0.5 m/s, Periode 0.001 Sek.
+ rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD);
+
+ // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model
+ desiredSpeedLeft = translationalVelocity - (WHEEL_DISTANCE/2)*rotationalVelocity;
+ desiredSpeedRight = translationalVelocity + (WHEEL_DISTANCE/2)*rotationalVelocity;
+
+ // calculate the actual speed of the motors in [rpm]
+ desiredSpeedLeft = (60/(2*PI*WHEEL_RADIUS))*desiredSpeedLeft;
+ desiredSpeedRight = (-60/(2*PI*WHEEL_RADIUS))*desiredSpeedRight;
+
+ short valueCounterLeft = counterLeft.read();
+ short valueCounterRight = counterRight.read();
+
+ short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft;
+ short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight;
+
+ previousValueCounterLeft = valueCounterLeft;
+ previousValueCounterRight = valueCounterRight;
+
+ actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f);
+ actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f);
+
+ // calculate desired motor voltages Uout
+
+ float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN;
+ float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN;
+
+ // calculate, limit and set the duty-cycle
+
+ float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE;
+ if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE;
+ else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE;
+ pwmLeft = dutyCycleLeft;
+
+ float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE;
+ if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE;
+ else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE;
+ pwmRight = dutyCycleRight;
+
+ // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model
+ actualTranslationalVelocity = 0.5*(actualSpeedLeft+actualSpeedRight);
+ actualRotationalVelocity = 1/(WHEEL_DISTANCE)*(actualSpeedRight-actualSpeedLeft);
+}
+