Small Internet Protocol Stack using a standard serial port.

Dependencies:   mbed

PPP-Blinky - TCP/IP Networking Over a Serial Port

Note: The source code is at the bottom of this page.

/media/uploads/nixnax/blinky-connected.gif
A Windows desktop showing PPP-Blinky in the network connections list.

Describe PPP-Blinky in Three Sentences

PPP-Blinky is a tiny library that enables Internet protocols (IPv4) to any mbed target hardware by using only a serial port.

The code runs on processors with as little as 8k RAM, for example the Nucleo-L053R8 board.

PPP-Blinky uses the industry-standard PPP (Point-to-Point) Protocol and a tiny "stateless" TCP/IP stack.

No Ethernet Port Required

No ethernet port is required - PPP-Blinky uses a serial port to send IP packets to your PC.

PPP-Blinky emulates a standard dial-up modem and therefore connects to Windows, Linux or Adroid machines.

The code runs on most ARM mbed platforms such as the LPC11U24 shown in the picture below:

/media/uploads/nixnax/blinky-to-laptop1.jpg mbed LPC11u24 acting as a webserver to a Windows laptop.

Webserver

The Webserver and WebSocket functions are ideal for building browser-based GUIs on mbed-enabled hardware.

PPP-Blinky's HTTP webserver works with most web clients such as Internet Explorer, Mozilla Firefox, Google Chrome, Safari, Curl, wget and Lynx as well as Microsoft Powershell Invoke-Webrequest command.

In the image below Firefox web browser displays the main web page embedded into PPP-Blinky's code:

/media/uploads/nixnax/ppp-blinky-firefox.jpg Firefox web browser displays a web page embedded into PPP-Blinky's code

WebSocket Service

WebSocket is the most popular protocol standard for real-time bidirectional TCP/IP communication between clients and servers.
In the image below a small Internet Explorer script has connected to PPP-Blinky's WebSocket Service.
A websocket message was then sent by the browser and was echoed back by the WebSocket, triggering the onmessage event in the script.
The WebSocket service enables bidirectional real-time interaction between PPP-Blinky and any element in the browser DOM via JavaScript.
If you already have PPP-Blinky up and running you can test your WebSocket service using this: http://jsfiddle.net/d26cyuh2/112/embedded/result
Websockets are ideal for building browser-based GUIs for mbed hardware.

/media/uploads/nixnax/ppp-blinky-websocke-2.gif

Trying PPP-Blinky on your mbed board

You will need an mbed-enabled hardware board: https://developer.mbed.org/platforms/

Establish a serial port connection between your host PC and your mbed board. The easiest way is to use mbed hardware with a USB serial debug port. I've tried the ST-Micro Nucleo-L476RG, Nucleo-L152RE, Nucleo-F401RE, Nucleo-L432KC, Nucleo-L053R8, mbed-LPC11U24 and mbed-LPC1768 boards and they all work out of the box. Use the mbed online compiler to compile the software for your target board. Save the compiled binary to your hardware.

Before establishing a network connection, you can verify the operation of the code by opening a terminal program such as Tera Term, and setting the baud rate of the COM port on your mbed board to 115200 baud. LED1 should toggle for every two 0x7E (~) (i.e. tilde) characters you type, as 0x7E is the PPP frame start/end marker. Don't forget to close the port when your'e done testing, or else Windows Dial-up Networking will report that the COM port is in use by another program when you try to connect.

Once you are certain that the serial port and firmware is working, proceed to creating a new network connection on your PC -see below.

Creating a Dial-up Connection in Windows

/media/uploads/nixnax/modem.jpg

Setting up Dial-Up Networking (DUN) on your Windows 7 or 8 PC is essentially a two-step process: First, you create a new modem device, because PPP-blinky partially emulates a standard Windows serial port modem device. Second, you create a new Internet connection (in practice, a new network adapter) which is associated with your new "modem".

Step-by-step description of how to configure Windows for PPP-Blinky here:

/users/nixnax/code/PPP-Blinky/wiki/Configuring-Windows-Dial-Up-Networking

There is also a screen on how to set up Linux dial-up networking near the bottom of this page.

Connecting to PPP-Blinky from your PC

Once Windows networking is configured you can establish a dial-up connection to your mbed board over the USB virtual com port.

The IP address you manually assigned to the new dial-up network adapter (172.10.10.1) functions as a gateway to any valid IP address on that subnet. In the screen capture below, I'm sending pings from the Windows 8 command line to my ST-Micro Nucleo-L476RG board over the USB virtual serial Port. I'm also using a second serial port and Tera Term to capture the debug output from a second serial port on the hardware. The optional debug output from the board prints out the IP source and destination address and the first few bytes of the data payload. Note that the source is the adapter IP address, (172.10.10.1 in this case) and the destination is some other address on that subnet - all packets to the subnet are sent to our mbed hardware. For example, you could also ping 172.10.10.123 or, if your PPP-Blinky is running, simply click on this link: http://172.10.10.123

/media/uploads/nixnax/ping-cap-3.gif

One Million Pings!

In the image below the ICMP ("ping") echo reply service was tested by sending one million pings to ppp-Blinky. This took over two hours.
The ping tool used on the Windows 8 PC was psping.exe from PsTools by Mark Russinovich - http://bit.ly/PingFast
The average reply time for a short ping (1 byte of payload data) was 11 milliseconds at 115200 baud on the $10 Nucleo-L053R8 board - barely enough time for 130 bytes to be sent over the port!

/media/uploads/nixnax/ppp-blinky-ping-results.jpg

Monitoring PPP-Blinky Packets

The image below is from a Microsoft Network Monitor 3.4 capture session.

Responses from PPP-Blinky are shown in blue.

Frame 2 - Internet Explorer at IP 172.10.10.1 (the Dial-Up Adapter IP) requests a TCP connection by sending an S (SYN) flag.
Frame 3 - PPP-Blinky at IP 172.10.10.2 responds with an ACK in frame 3. One direction of the link is now established.
Frame 4 - The PC acknowledges the SYN sent by PPP-Blinky in frame 3. The TCP link is now fully established.
Frame 5 - The browser "pushes" (P flag is set) an HTTP GET request to PPP-Blinky.
Frame 6 - PPP-Blinky responds with a standard HTTP response "pushes" (P flag set) back a small web page. It also sets the A (ACK) flag to acknowledge the message sent in frame 6.
Frame 7 - The PC acknowledges reception of the HTTP payload.
Frame 8 - The PC starts to shut down the TCP connection by sending a FIN flag.
Frame 9 - PPP-Blinky acknowledges the FIN request - the connection is now closed in one direction. It also sets a FIN flag in the response to request closure of the opposite direction of the connection.
Frame 10 - The PC acknowledges the FIN request. The closing of the TCP connection is now confirmed in both directions.

/media/uploads/nixnax/ms-network-monitor-http-get-1.gif

Debug Output

PPP-Blinky can output handy debug information to an optional second serial port.
The image below shows the debug output (Ident, Source, Destination, TCP Flags) for a complete HTTP conversation.
The PC messages are displayed in black. PPP-Blinky messages are blue.
Notice how PPP-blinky automatically inserts a blank line after each full HTTP conversation.

/media/uploads/nixnax/tcp-data-3.gif

Creating a Dial-Up Connection in Linux

The screen below shows the required pppd command to connect to PPP-Blinky from a Linux machine. This was much simpler than Windows! The USB serial port of the mbed LPC1768 board registered as /dev/ttyACM0 on my Linux box. Do a websearch on pppd if you want to learn more about pppd, the Linux PPP handler. Near the bottom of the screen below, two webpages are fetched (/ and /y) by using the curl command on the command line. Gnome Webkit and Firefox work fine, too. Also try echo GET / HTTP/1.1 | nc 172.10.10.2 which uses netcat, the "Swiss army knife" of networking tools. PPP-Blinky was also tested with ApacheBench, the Apache server benchmark software. After 100000 fetches, the mean page fetch rate was reported as 6 page fetches per second for a small page.

/media/uploads/nixnax/pppd-screen.png

Caveats

PPP Blinky is an extremely sparse implementation (1.5k lines) of HTTP,WebSocket,TCP, UDP, ICMP, IPCP and LCP over PPP, requiring around 8kB of RAM. The minimum functionality required to establish connectivity is implemented. These are often acceptable tradeoffs for embedded projects as well as a handy tool to learn the practical details of everyday networking implementations.

Committer:
nixnax
Date:
Sun Oct 18 17:30:29 2020 +0000
Revision:
275:bb2d582c20d6
Parent:
265:b05d78e226a9
Formatting

Who changed what in which revision?

UserRevisionLine numberNew contents of line
nixnax 142:54d1543e23e5 1 /// ppp-blinky.h
nixnax 142:54d1543e23e5 2
nixnax 142:54d1543e23e5 3 #include "mbed.h"
nixnax 142:54d1543e23e5 4
nixnax 144:01d98cf7738e 5 void initializePpp();
nixnax 150:3366bf3d294e 6 int connectedPpp();
nixnax 153:7993def8663f 7 void waitForPcConnectString();
nixnax 142:54d1543e23e5 8 void waitForPppFrame();
nixnax 152:025c73b6c0a9 9 void determinePacketType();
nixnax 174:e5a3f16421a5 10 void sendUdpData();
nixnax 152:025c73b6c0a9 11
nixnax 159:4d1bf96a59cd 12 /// PPP header
nixnax 153:7993def8663f 13 typedef struct { // [ff 03 00 21]
nixnax 167:ff8a2d8beeb1 14 unsigned int address : 8; // always 0xff
nixnax 167:ff8a2d8beeb1 15 unsigned int control : 8; // always 03
nixnax 167:ff8a2d8beeb1 16 unsigned int protocolR : 16; // byte reversed, 0x0021 for ip
nixnax 152:025c73b6c0a9 17 } pppHeaderType;
nixnax 152:025c73b6c0a9 18
nixnax 167:ff8a2d8beeb1 19 /// LCP and IPCP header
nixnax 167:ff8a2d8beeb1 20 typedef struct {
nixnax 167:ff8a2d8beeb1 21 // ppp part
nixnax 167:ff8a2d8beeb1 22 unsigned int address : 8; // always 0xff
nixnax 167:ff8a2d8beeb1 23 unsigned int control : 8; // always 03
nixnax 167:ff8a2d8beeb1 24 unsigned int protocolR : 16; // byte reversed, 0x0021 for ip
nixnax 167:ff8a2d8beeb1 25
nixnax 167:ff8a2d8beeb1 26 // ipcp and lcp part
nixnax 167:ff8a2d8beeb1 27 unsigned int code : 8; // IPCP and LCP contain a code field which identifies the requested action or response
nixnax 167:ff8a2d8beeb1 28 unsigned int identifier : 8 ;
nixnax 167:ff8a2d8beeb1 29 unsigned int lengthR : 16;
nixnax 173:6774a0c851c4 30 char request [0];
nixnax 167:ff8a2d8beeb1 31 } ipcpHeaderType;
nixnax 167:ff8a2d8beeb1 32
nixnax 159:4d1bf96a59cd 33 /// IP header
nixnax 152:025c73b6c0a9 34 typedef struct {
nixnax 154:18b2bd92f557 35 unsigned int headerLength : 4; // ip headerlength / 4
nixnax 154:18b2bd92f557 36 unsigned int version : 4; // ip version number
nixnax 154:18b2bd92f557 37 unsigned int ect : 1; // ecn capable transport
nixnax 154:18b2bd92f557 38 unsigned int ce : 1; // ecn-ce
nixnax 154:18b2bd92f557 39 unsigned int dscp : 6; // differentiated services
nixnax 160:bd701ad564cb 40 unsigned int lengthR : 16; // ip packet length (byte-reversed)
nixnax 167:ff8a2d8beeb1 41
nixnax 160:bd701ad564cb 42 unsigned int identR : 16; // ident, byte reversed
nixnax 160:bd701ad564cb 43 unsigned int fragmentOffsHi : 5;
nixnax 154:18b2bd92f557 44 unsigned int lastFragment : 1;
nixnax 160:bd701ad564cb 45 unsigned int dontFragment : 1;
nixnax 160:bd701ad564cb 46 unsigned int reservedIP : 1;
nixnax 160:bd701ad564cb 47 unsigned int fragmentOffsLo : 8;
nixnax 167:ff8a2d8beeb1 48
nixnax 160:bd701ad564cb 49 unsigned int ttl : 8;
nixnax 154:18b2bd92f557 50 unsigned int protocol : 8; // next protocol
nixnax 161:d59f778bc8ab 51 unsigned int checksumR : 16; // ip checksum, byte reversed
nixnax 167:ff8a2d8beeb1 52 union {
nixnax 167:ff8a2d8beeb1 53 unsigned int srcAdrR; // source IP address
nixnax 167:ff8a2d8beeb1 54 char srcAdrPtr [0]; // so we also have a char * to srcAdrR
nixnax 167:ff8a2d8beeb1 55 };
nixnax 167:ff8a2d8beeb1 56 union {
nixnax 167:ff8a2d8beeb1 57 unsigned int dstAdrR; // destination IP address
nixnax 167:ff8a2d8beeb1 58 char dstAdrPtr [0]; // so we also have a char * to dstAdrR
nixnax 167:ff8a2d8beeb1 59 };
nixnax 152:025c73b6c0a9 60 } ipHeaderType;
nixnax 152:025c73b6c0a9 61
nixnax 164:c3de3d212c4b 62 /// IP pseudoheader. Used in TCP/UDP checksum calculations.
nixnax 152:025c73b6c0a9 63 typedef struct {
nixnax 159:4d1bf96a59cd 64 union {
nixnax 167:ff8a2d8beeb1 65 char start [0]; // a char * to avoid type conversions
nixnax 160:bd701ad564cb 66 unsigned int srcAdrR; // source IP address
nixnax 159:4d1bf96a59cd 67 };
nixnax 159:4d1bf96a59cd 68 unsigned int dstAdrR; // destination IP address
nixnax 159:4d1bf96a59cd 69 unsigned int zero : 8;
nixnax 159:4d1bf96a59cd 70 unsigned int protocol : 8;
nixnax 159:4d1bf96a59cd 71 unsigned int lengthR : 16; // byte reversed
nixnax 159:4d1bf96a59cd 72 } pseudoIpHeaderType;
nixnax 159:4d1bf96a59cd 73
nixnax 159:4d1bf96a59cd 74 /// TCP header
nixnax 159:4d1bf96a59cd 75 typedef struct {
nixnax 159:4d1bf96a59cd 76 unsigned int srcPortR : 16; // byte reversed
nixnax 159:4d1bf96a59cd 77 unsigned int dstPortR : 16; // byte reversed
nixnax 155:9c6a1d249e26 78 unsigned int seqTcpR; // byte reversed
nixnax 155:9c6a1d249e26 79 unsigned int ackTcpR; // byte reversed
nixnax 156:163c23249731 80 unsigned int resvd1 : 4; // reserved
nixnax 156:163c23249731 81 unsigned int offset : 4; // tcp header length [5..15]
nixnax 152:025c73b6c0a9 82 union {
nixnax 156:163c23249731 83 unsigned char All; // all 8 flag bits
nixnax 156:163c23249731 84 struct { // individual flag bits
nixnax 156:163c23249731 85 unsigned char fin: 1, // fin
nixnax 156:163c23249731 86 syn : 1, // syn
nixnax 156:163c23249731 87 rst : 1, // rst
nixnax 156:163c23249731 88 psh : 1, // psh
nixnax 156:163c23249731 89 ack : 1, // ack
nixnax 156:163c23249731 90 urg : 1, // urg
nixnax 156:163c23249731 91 ece : 1, // ece
nixnax 156:163c23249731 92 cwr : 1; // cwr
nixnax 152:025c73b6c0a9 93 };
nixnax 156:163c23249731 94 } flag;
nixnax 156:163c23249731 95 unsigned int windowR : 16; // byte reversed
nixnax 154:18b2bd92f557 96 unsigned int checksumR : 16; // byte reversed
nixnax 154:18b2bd92f557 97 unsigned int urgentPointerR : 16; // byte reversed;
nixnax 154:18b2bd92f557 98 unsigned int tcpOptions[10]; // up to 10 words of options possible
nixnax 154:18b2bd92f557 99 } tcpHeaderType;
nixnax 159:4d1bf96a59cd 100
nixnax 164:c3de3d212c4b 101 /// UDP header.
nixnax 163:d1b4328e9f08 102 typedef struct {
nixnax 164:c3de3d212c4b 103 unsigned int srcPortR : 16; // byte reversed
nixnax 164:c3de3d212c4b 104 unsigned int dstPortR : 16; // byte reversed
nixnax 164:c3de3d212c4b 105 unsigned int lengthR : 16; // byte reversed
nixnax 170:3d3b2126181c 106 unsigned int checksumR : 16; // byte reversed
nixnax 163:d1b4328e9f08 107 char data [0]; // data area
nixnax 163:d1b4328e9f08 108 } udpHeaderType;
nixnax 165:c47826d07e0d 109
nixnax 165:c47826d07e0d 110 /// ICMP header.
nixnax 165:c47826d07e0d 111 typedef struct {
nixnax 165:c47826d07e0d 112 unsigned int type : 8;
nixnax 165:c47826d07e0d 113 unsigned int code : 8;
nixnax 165:c47826d07e0d 114 unsigned int checkSumR : 16; // byte reversed
nixnax 165:c47826d07e0d 115 unsigned int idR : 16; // byte reversed
nixnax 165:c47826d07e0d 116 unsigned int sequenceR : 16; // byte reversed
nixnax 165:c47826d07e0d 117 char data [0]; // data area
nixnax 165:c47826d07e0d 118 } icmpHeaderType;
nixnax 175:b4e6f8a6fe00 119
nixnax 175:b4e6f8a6fe00 120 /// Structure to manage all ppp variables.
nixnax 175:b4e6f8a6fe00 121 typedef struct pppType {
nixnax 175:b4e6f8a6fe00 122 union {
nixnax 175:b4e6f8a6fe00 123 pppHeaderType * ppp; // pointer to ppp structure
nixnax 175:b4e6f8a6fe00 124 ipcpHeaderType * ipcp; // pointer to ipcp structure
nixnax 175:b4e6f8a6fe00 125 ipcpHeaderType * lcp; // pointer to lcp structure (same as ipcp)
nixnax 175:b4e6f8a6fe00 126 };
nixnax 175:b4e6f8a6fe00 127 union {
nixnax 175:b4e6f8a6fe00 128 ipHeaderType * ip; // pointer to ip header struct
nixnax 175:b4e6f8a6fe00 129 char * ipStart; // char pointer to ip header struct (need a char pointer for byte offset calculations)
nixnax 175:b4e6f8a6fe00 130 };
nixnax 175:b4e6f8a6fe00 131 union { // a union for the packet type contained in the IP packet
nixnax 175:b4e6f8a6fe00 132 tcpHeaderType * tcp; // pointer to tcp header struct
nixnax 175:b4e6f8a6fe00 133 udpHeaderType * udp; // pointer to udp header struct
nixnax 175:b4e6f8a6fe00 134 icmpHeaderType * icmp; // pointer to udp header struct
nixnax 175:b4e6f8a6fe00 135 char * tcpStart; // char pointer to tcp header struct (need a char pointer for byte offset calculations)
nixnax 175:b4e6f8a6fe00 136 char * udpStart; // char pointer to udp header struct (need a char pointer for byte offset calculations)
nixnax 175:b4e6f8a6fe00 137 char * icmpStart; // char pointer to icmp header struct (need a char pointer for byte offset calculations)
nixnax 175:b4e6f8a6fe00 138 };
nixnax 175:b4e6f8a6fe00 139 char * tcpData; // char pointer to where tcp data starts
nixnax 212:a9646f0a8c46 140 volatile int online; // we hunt for a PPP connection if this is zero
nixnax 175:b4e6f8a6fe00 141 int hostIP; // ip address of host
nixnax 175:b4e6f8a6fe00 142 int fcs; // PPP "frame check sequence" - a 16-bit HDLC-like checksum used in all PPP frames
nixnax 175:b4e6f8a6fe00 143 int ledState; // state of LED1
nixnax 175:b4e6f8a6fe00 144 int responseCounter;
nixnax 262:c044fed611aa 145 unsigned int pppCount; // counts how many ppp packets we receive
nixnax 175:b4e6f8a6fe00 146 int firstFrame; // cleared after first frame
nixnax 175:b4e6f8a6fe00 147 unsigned int sum; // a checksum used in headers
nixnax 175:b4e6f8a6fe00 148 struct {
nixnax 244:f062ca9b6e06 149 #define RXBUFLEN 4000
nixnax 226:4898247048c7 150 // the serial port receive buffer and packet buffer, size is RXBUFLEN
nixnax 226:4898247048c7 151 // TODO - not sure why this buffer has to be this big
nixnax 223:917b554cb8a5 152 volatile char buf[RXBUFLEN+1];
nixnax 181:bcfe7fe2142d 153 volatile int head; // declared volatile so user code knows this variable changes in the interrupt handler
nixnax 212:a9646f0a8c46 154 volatile int tail;
nixnax 212:a9646f0a8c46 155 volatile int rtail;
nixnax 211:a40c58b34560 156 volatile int buflevel; // how full the buffer is
nixnax 212:a9646f0a8c46 157 volatile int maxbuflevel; // maximum value that buflevel ever got to
nixnax 221:1d7c32d8256b 158 volatile int bufferfull; // flag when buffer is full
nixnax 175:b4e6f8a6fe00 159 } rx; // serial port objects
nixnax 175:b4e6f8a6fe00 160 struct {
nixnax 175:b4e6f8a6fe00 161 int len; // number of bytes in buffer
nixnax 175:b4e6f8a6fe00 162 int crc; // PPP CRC (frame check)
nixnax 226:4898247048c7 163 #define PPP_max_size 1600
nixnax 226:4898247048c7 164 // we are assuming 100 bytes more than MTU size of 1500
nixnax 175:b4e6f8a6fe00 165 char buf[PPP_max_size]; // send and receive buffer large enough for largest IP packet
nixnax 175:b4e6f8a6fe00 166 } pkt; // ppp buffer objects
nixnax 175:b4e6f8a6fe00 167 struct {
nixnax 175:b4e6f8a6fe00 168 int frameStartIndex; // frame start marker
nixnax 175:b4e6f8a6fe00 169 int frameEndIndex; // frame end marker
nixnax 175:b4e6f8a6fe00 170 } hdlc; // hdlc frame objects
nixnax 175:b4e6f8a6fe00 171 struct {
nixnax 175:b4e6f8a6fe00 172 unsigned int ident; // our IP ident value (outgoing frame count)
nixnax 175:b4e6f8a6fe00 173 } ipData; // ip related object
nixnax 175:b4e6f8a6fe00 174 } pppVariables;
nixnax 175:b4e6f8a6fe00 175
nixnax 265:b05d78e226a9 176 /*
nixnax 265:b05d78e226a9 177 SHA-1 in C
nixnax 265:b05d78e226a9 178 By Steve Reid <steve@edmweb.com>
nixnax 265:b05d78e226a9 179 100% Public Domain
nixnax 265:b05d78e226a9 180 */
nixnax 265:b05d78e226a9 181
nixnax 275:bb2d582c20d6 182 typedef struct {
nixnax 265:b05d78e226a9 183 uint32_t state[5];
nixnax 265:b05d78e226a9 184 uint32_t count[2];
nixnax 265:b05d78e226a9 185 unsigned char buffer[64];
nixnax 265:b05d78e226a9 186 } SHA1_CTX;
nixnax 265:b05d78e226a9 187
nixnax 265:b05d78e226a9 188 void SHA1Transform(
nixnax 265:b05d78e226a9 189 uint32_t state[5],
nixnax 265:b05d78e226a9 190 const unsigned char buffer[64]
nixnax 275:bb2d582c20d6 191 );
nixnax 265:b05d78e226a9 192
nixnax 265:b05d78e226a9 193 void SHA1Init(
nixnax 265:b05d78e226a9 194 SHA1_CTX * context
nixnax 275:bb2d582c20d6 195 );
nixnax 265:b05d78e226a9 196
nixnax 265:b05d78e226a9 197 void SHA1Update(
nixnax 265:b05d78e226a9 198 SHA1_CTX * context,
nixnax 265:b05d78e226a9 199 const unsigned char *data,
nixnax 265:b05d78e226a9 200 uint32_t len
nixnax 275:bb2d582c20d6 201 );
nixnax 265:b05d78e226a9 202
nixnax 265:b05d78e226a9 203 void SHA1Final(
nixnax 265:b05d78e226a9 204 unsigned char digest[20],
nixnax 265:b05d78e226a9 205 SHA1_CTX * context
nixnax 275:bb2d582c20d6 206 );
nixnax 265:b05d78e226a9 207
nixnax 265:b05d78e226a9 208 void sha1(
nixnax 265:b05d78e226a9 209 char *hash_out,
nixnax 265:b05d78e226a9 210 const char *str,
nixnax 265:b05d78e226a9 211 int len);