Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
PositionSensor.cpp
00001 00002 #include "mbed.h" 00003 #include "PositionSensor.h" 00004 #include "../math_ops.h" 00005 //#include "offset_lut.h" 00006 //#include <math.h> 00007 00008 PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){ 00009 //_CPR = CPR; 00010 _CPR = CPR; 00011 _ppairs = ppairs; 00012 ElecOffset = offset; 00013 rotations = 0; 00014 spi = new SPI(PC_12, PC_11, PC_10); 00015 spi->format(16, 1); // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words 00016 spi->frequency(25000000); 00017 00018 cs = new DigitalOut(PA_15); 00019 cs->write(1); 00020 readAngleCmd = 0xffff; 00021 MechOffset = offset; 00022 modPosition = 0; 00023 oldModPosition = 0; 00024 oldVel = 0; 00025 raw = 0; 00026 } 00027 00028 void PositionSensorAM5147::Sample(float dt){ 00029 GPIOA->ODR &= ~(1 << 15); 00030 //raw = spi->write(readAngleCmd); 00031 //raw &= 0x3FFF; 00032 raw = spi->write(0); 00033 //raw = raw>>2; //Extract last 14 bits 00034 raw &= 0x7FFF; 00035 raw = raw>>1; 00036 GPIOA->ODR |= (1 << 15); 00037 int off_1 = offset_lut[raw>>7]; 00038 int off_2 = offset_lut[((raw>>7)+1)%128]; 00039 int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7); // Interpolate between lookup table entries 00040 int angle = raw + off_interp; // Correct for nonlinearity with lookup table from calibration 00041 if(angle - old_counts > _CPR/2){ 00042 rotations -= 1; 00043 } 00044 else if (angle - old_counts < -_CPR/2){ 00045 rotations += 1; 00046 } 00047 00048 old_counts = angle; 00049 oldModPosition = modPosition; 00050 modPosition = ((2.0f*PI * ((float) angle))/ (float)_CPR); 00051 position = (2.0f*PI * ((float) angle+(_CPR*rotations)))/ (float)_CPR; 00052 MechPosition = position - MechOffset; 00053 float elec = ((2.0f*PI/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset; 00054 if(elec < 0) elec += 2.0f*PI; 00055 else if(elec > 2.0f*PI) elec -= 2.0f*PI ; 00056 ElecPosition = elec; 00057 00058 float vel; 00059 //if(modPosition<.1f && oldModPosition>6.1f){ 00060 00061 if((modPosition-oldModPosition) < -3.0f){ 00062 vel = (modPosition - oldModPosition + 2.0f*PI)/dt; 00063 } 00064 //else if(modPosition>6.1f && oldModPosition<0.1f){ 00065 else if((modPosition - oldModPosition) > 3.0f){ 00066 vel = (modPosition - oldModPosition - 2.0f*PI)/dt; 00067 } 00068 else{ 00069 vel = (modPosition-oldModPosition)/dt; 00070 } 00071 00072 int n = 40; 00073 float sum = vel; 00074 for (int i = 1; i < (n); i++){ 00075 velVec[n - i] = velVec[n-i-1]; 00076 sum += velVec[n-i]; 00077 } 00078 velVec[0] = vel; 00079 MechVelocity = sum/((float)n); 00080 ElecVelocity = MechVelocity*_ppairs; 00081 ElecVelocityFilt = 0.99f*ElecVelocityFilt + 0.01f*ElecVelocity; 00082 } 00083 00084 int PositionSensorAM5147::GetRawPosition(){ 00085 return raw; 00086 } 00087 00088 float PositionSensorAM5147::GetMechPositionFixed(){ 00089 return MechPosition+MechOffset; 00090 } 00091 00092 float PositionSensorAM5147::GetMechPosition(){ 00093 return MechPosition; 00094 } 00095 00096 float PositionSensorAM5147::GetElecPosition(){ 00097 return ElecPosition; 00098 } 00099 00100 float PositionSensorAM5147::GetElecVelocity(){ 00101 return ElecVelocity; 00102 } 00103 00104 float PositionSensorAM5147::GetMechVelocity(){ 00105 return MechVelocity; 00106 } 00107 00108 void PositionSensorAM5147::ZeroPosition(){ 00109 rotations = 0; 00110 MechOffset = 0; 00111 Sample(.00025f); 00112 MechOffset = GetMechPosition(); 00113 } 00114 00115 void PositionSensorAM5147::SetElecOffset(float offset){ 00116 ElecOffset = offset; 00117 } 00118 void PositionSensorAM5147::SetMechOffset(float offset){ 00119 MechOffset = offset; 00120 } 00121 00122 int PositionSensorAM5147::GetCPR(){ 00123 return _CPR; 00124 } 00125 00126 00127 void PositionSensorAM5147::WriteLUT(int new_lut[128]){ 00128 memcpy(offset_lut, new_lut, sizeof(offset_lut)); 00129 } 00130 00131 00132 00133 PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) { 00134 _ppairs = ppairs; 00135 _CPR = CPR; 00136 _offset = offset; 00137 MechPosition = 0; 00138 out_old = 0; 00139 oldVel = 0; 00140 raw = 0; 00141 00142 // Enable clock for GPIOA 00143 __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h 00144 00145 GPIOA->MODER |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ; //PA6 & PA7 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */ 00146 GPIOA->OTYPER |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ; //PA6 & PA7 as Inputs /*!< GPIO port output type register, Address offset: 0x04 */ 00147 GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ; //Low speed /*!< GPIO port output speed register, Address offset: 0x08 */ 00148 GPIOA->PUPDR |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ; //Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */ 00149 GPIOA->AFR[0] |= 0x22000000 ; //AF02 for PA6 & PA7 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ 00150 GPIOA->AFR[1] |= 0x00000000 ; //nibbles here refer to gpio8..15 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ 00151 00152 // configure TIM3 as Encoder input 00153 // Enable clock for TIM3 00154 __TIM3_CLK_ENABLE(); 00155 00156 TIM3->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1 00157 TIM3->SMCR = TIM_ENCODERMODE_TI12; // SMS='011' (Encoder mode 3) < TIM slave mode control register 00158 TIM3->CCMR1 = 0x1111; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1, maximum digital filtering 00159 TIM3->CCMR2 = 0x0000; // < TIM capture/compare mode register 2 00160 TIM3->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register 00161 TIM3->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler 00162 TIM3->ARR = CPR; // IM auto-reload register 00163 00164 TIM3->CNT = 0x000; //reset the counter before we use it 00165 00166 // Extra Timer for velocity measurement 00167 00168 __TIM2_CLK_ENABLE(); 00169 TIM3->CR2 = 0x030; //MMS = 101 00170 00171 TIM2->PSC = 0x03; 00172 //TIM2->CR2 |= TIM_CR2_TI1S; 00173 TIM2->SMCR = 0x24; //TS = 010 for ITR2, SMS = 100 (reset counter at edge) 00174 TIM2->CCMR1 = 0x3; // CC1S = 11, IC1 mapped on TRC 00175 00176 //TIM2->CR2 |= TIM_CR2_TI1S; 00177 TIM2->CCER |= TIM_CCER_CC1P; 00178 //TIM2->CCER |= TIM_CCER_CC1NP; 00179 TIM2->CCER |= TIM_CCER_CC1E; 00180 00181 00182 TIM2->CR1 = 0x01; //CEN, enable timer 00183 00184 TIM3->CR1 = 0x01; // CEN 00185 ZPulse = new InterruptIn(PC_4); 00186 ZSense = new DigitalIn(PC_4); 00187 //ZPulse = new InterruptIn(PB_0); 00188 //ZSense = new DigitalIn(PB_0); 00189 ZPulse->enable_irq(); 00190 ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount); 00191 //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown); 00192 ZPulse->mode(PullDown); 00193 flag = 0; 00194 00195 00196 //ZTest = new DigitalOut(PC_2); 00197 //ZTest->write(1); 00198 } 00199 00200 void PositionSensorEncoder::Sample(float dt){ 00201 00202 } 00203 00204 00205 float PositionSensorEncoder::GetMechPosition() { //returns rotor angle in radians. 00206 int raw = TIM3->CNT; 00207 float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR); 00208 return (float) unsigned_mech;// + 6.28318530718f* (float) rotations; 00209 } 00210 00211 float PositionSensorEncoder::GetElecPosition() { //returns rotor electrical angle in radians. 00212 int raw = TIM3->CNT; 00213 float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset; 00214 if(elec < 0) elec += 6.28318530718f; 00215 return elec; 00216 } 00217 00218 00219 00220 float PositionSensorEncoder::GetMechVelocity(){ 00221 00222 float out = 0; 00223 float rawPeriod = TIM2->CCR1; //Clock Ticks 00224 int currentTime = TIM2->CNT; 00225 if(currentTime > 2000000){rawPeriod = currentTime;} 00226 float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; // +/- 1 00227 float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; 00228 if(isinf(meas)){ meas = 1;} 00229 out = meas; 00230 //if(meas == oldVel){ 00231 // out = .9f*out_old; 00232 // } 00233 00234 00235 oldVel = meas; 00236 out_old = out; 00237 int n = 16; 00238 float sum = out; 00239 for (int i = 1; i < (n); i++){ 00240 velVec[n - i] = velVec[n-i-1]; 00241 sum += velVec[n-i]; 00242 } 00243 velVec[0] = out; 00244 return sum/(float)n; 00245 } 00246 00247 float PositionSensorEncoder::GetElecVelocity(){ 00248 return _ppairs*GetMechVelocity(); 00249 } 00250 00251 void PositionSensorEncoder::ZeroEncoderCount(void){ 00252 if (ZSense->read() == 1 & flag == 0){ 00253 if (ZSense->read() == 1){ 00254 GPIOC->ODR ^= (1 << 4); 00255 TIM3->CNT = 0x000; 00256 //state = !state; 00257 //ZTest->write(state); 00258 GPIOC->ODR ^= (1 << 4); 00259 //flag = 1; 00260 } 00261 } 00262 } 00263 00264 void PositionSensorEncoder::ZeroPosition(void){ 00265 00266 } 00267 00268 void PositionSensorEncoder::ZeroEncoderCountDown(void){ 00269 if (ZSense->read() == 0){ 00270 if (ZSense->read() == 0){ 00271 GPIOC->ODR ^= (1 << 4); 00272 flag = 0; 00273 float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; 00274 if(dir != dir){ 00275 dir = dir; 00276 rotations += dir; 00277 } 00278 00279 GPIOC->ODR ^= (1 << 4); 00280 00281 } 00282 } 00283 } 00284 void PositionSensorEncoder::SetElecOffset(float offset){ 00285 00286 } 00287 00288 int PositionSensorEncoder::GetRawPosition(void){ 00289 return 0; 00290 } 00291 00292 int PositionSensorEncoder::GetCPR(){ 00293 return _CPR; 00294 } 00295 00296 00297 void PositionSensorEncoder::WriteLUT(int new_lut[128]){ 00298 memcpy(offset_lut, new_lut, sizeof(offset_lut)); 00299 }
Generated on Thu Jul 14 2022 09:24:46 by
 1.7.2