An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R


This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.


  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.


The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Tue Jul 22 04:33:47 2014 +0000
Before change to ISR for accelerometer

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 0:5acbbe3f4cf4 1 #include "mbed.h"
mjr 0:5acbbe3f4cf4 2 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 3 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 4 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 5 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 6 #include "crc32.h"
mjr 2:c174f9ee414a 7
mjr 2:c174f9ee414a 8 // customization of the joystick class to expose connect/suspend status
mjr 2:c174f9ee414a 9 class MyUSBJoystick: public USBJoystick
mjr 2:c174f9ee414a 10 {
mjr 2:c174f9ee414a 11 public:
mjr 2:c174f9ee414a 12 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 2:c174f9ee414a 13 : USBJoystick(vendor_id, product_id, product_release)
mjr 2:c174f9ee414a 14 {
mjr 2:c174f9ee414a 15 connected_ = false;
mjr 2:c174f9ee414a 16 suspended_ = false;
mjr 2:c174f9ee414a 17 }
mjr 2:c174f9ee414a 18
mjr 2:c174f9ee414a 19 int isConnected() const { return connected_; }
mjr 2:c174f9ee414a 20 int isSuspended() const { return suspended_; }
mjr 2:c174f9ee414a 21
mjr 2:c174f9ee414a 22 protected:
mjr 2:c174f9ee414a 23 virtual void connectStateChanged(unsigned int connected)
mjr 2:c174f9ee414a 24 { connected_ = connected; }
mjr 2:c174f9ee414a 25 virtual void suspendStateChanged(unsigned int suspended)
mjr 2:c174f9ee414a 26 { suspended_ = suspended; }
mjr 2:c174f9ee414a 27
mjr 2:c174f9ee414a 28 int connected_;
mjr 2:c174f9ee414a 29 int suspended_;
mjr 2:c174f9ee414a 30 };
mjr 0:5acbbe3f4cf4 31
mjr 1:d913e0afb2ac 32 // on-board RGB LED elements - we use these for diagnostics
mjr 0:5acbbe3f4cf4 33 PwmOut led1(LED1), led2(LED2), led3(LED3);
mjr 0:5acbbe3f4cf4 34
mjr 1:d913e0afb2ac 35 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 36 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 37 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 38
mjr 0:5acbbe3f4cf4 39 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 40
mjr 0:5acbbe3f4cf4 41 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 42 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 43
mjr 0:5acbbe3f4cf4 44 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 45 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 46 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 47 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 48 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 49 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 50 };
mjr 0:5acbbe3f4cf4 51
mjr 1:d913e0afb2ac 52 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 53 {
mjr 1:d913e0afb2ac 54 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 55 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 56 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 57 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 58 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 59 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 60 return 0.0;
mjr 0:5acbbe3f4cf4 61 else
mjr 0:5acbbe3f4cf4 62 return 1.0;
mjr 0:5acbbe3f4cf4 63 }
mjr 0:5acbbe3f4cf4 64 else {
mjr 0:5acbbe3f4cf4 65 // off
mjr 0:5acbbe3f4cf4 66 return 1.0;
mjr 0:5acbbe3f4cf4 67 }
mjr 0:5acbbe3f4cf4 68 }
mjr 0:5acbbe3f4cf4 69
mjr 1:d913e0afb2ac 70 static void updateWizOuts()
mjr 1:d913e0afb2ac 71 {
mjr 1:d913e0afb2ac 72 led1 = wizState(0);
mjr 1:d913e0afb2ac 73 led2 = wizState(1);
mjr 1:d913e0afb2ac 74 led3 = wizState(2);
mjr 1:d913e0afb2ac 75 }
mjr 1:d913e0afb2ac 76
mjr 1:d913e0afb2ac 77 struct AccPrv
mjr 0:5acbbe3f4cf4 78 {
mjr 1:d913e0afb2ac 79 AccPrv() : x(0), y(0) { }
mjr 1:d913e0afb2ac 80 float x;
mjr 1:d913e0afb2ac 81 float y;
mjr 1:d913e0afb2ac 82
mjr 1:d913e0afb2ac 83 double dist(AccPrv &b)
mjr 1:d913e0afb2ac 84 {
mjr 1:d913e0afb2ac 85 float dx = x - b.x, dy = y - b.y;
mjr 1:d913e0afb2ac 86 return sqrt(dx*dx + dy*dy);
mjr 1:d913e0afb2ac 87 }
mjr 1:d913e0afb2ac 88 };
mjr 0:5acbbe3f4cf4 89
mjr 2:c174f9ee414a 90 // Non-volatile memory structure. We store persistent a small
mjr 2:c174f9ee414a 91 // amount of persistent data in flash memory to retain calibration
mjr 2:c174f9ee414a 92 // data between sessions.
mjr 2:c174f9ee414a 93 struct NVM
mjr 2:c174f9ee414a 94 {
mjr 2:c174f9ee414a 95 // checksum - we use this to determine if the flash record
mjr 2:c174f9ee414a 96 // has been initialized
mjr 2:c174f9ee414a 97 uint32_t checksum;
mjr 2:c174f9ee414a 98
mjr 2:c174f9ee414a 99 // signature value
mjr 2:c174f9ee414a 100 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 2:c174f9ee414a 101 static const uint16_t VERSION = 0x0002;
mjr 2:c174f9ee414a 102
mjr 2:c174f9ee414a 103 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 104 struct
mjr 2:c174f9ee414a 105 {
mjr 2:c174f9ee414a 106 // signature and version - further verification that we have valid
mjr 2:c174f9ee414a 107 // initialized data
mjr 2:c174f9ee414a 108 uint32_t sig;
mjr 2:c174f9ee414a 109 uint16_t vsn;
mjr 2:c174f9ee414a 110
mjr 2:c174f9ee414a 111 // direction - 0 means unknown, 1 means bright end is pixel 0, 2 means reversed
mjr 2:c174f9ee414a 112 uint8_t dir;
mjr 2:c174f9ee414a 113
mjr 2:c174f9ee414a 114 // plunger calibration min and max
mjr 2:c174f9ee414a 115 int plungerMin;
mjr 2:c174f9ee414a 116 int plungerMax;
mjr 2:c174f9ee414a 117 } d;
mjr 2:c174f9ee414a 118 };
mjr 2:c174f9ee414a 119
mjr 0:5acbbe3f4cf4 120 int main(void)
mjr 0:5acbbe3f4cf4 121 {
mjr 1:d913e0afb2ac 122 // turn off our on-board indicator LED
mjr 0:5acbbe3f4cf4 123 led1 = 1;
mjr 0:5acbbe3f4cf4 124 led2 = 1;
mjr 0:5acbbe3f4cf4 125 led3 = 1;
mjr 1:d913e0afb2ac 126
mjr 2:c174f9ee414a 127 // set up a flash memory controller
mjr 2:c174f9ee414a 128 FreescaleIAP iap;
mjr 2:c174f9ee414a 129
mjr 2:c174f9ee414a 130 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 131 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 132 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 133 NVM cfg;
mjr 2:c174f9ee414a 134
mjr 2:c174f9ee414a 135 // check for valid flash
mjr 2:c174f9ee414a 136 bool flash_valid = (flash->d.sig == flash->SIGNATURE
mjr 2:c174f9ee414a 137 && flash->d.vsn == flash->VERSION
mjr 2:c174f9ee414a 138 && flash->checksum == CRC32(&flash->d, sizeof(flash->d)));
mjr 2:c174f9ee414a 139
mjr 2:c174f9ee414a 140 // Number of pixels we read from the sensor on each frame. This can be
mjr 2:c174f9ee414a 141 // less than the physical pixel count if desired; we'll read every nth
mjr 2:c174f9ee414a 142 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 2:c174f9ee414a 143 // we'll read every 4th pixel. VP doesn't seem to have very high
mjr 2:c174f9ee414a 144 // resolution internally for the plunger, so it's probably not necessary
mjr 2:c174f9ee414a 145 // to use the full resolution of the sensor - about 160 pixels seems
mjr 2:c174f9ee414a 146 // perfectly adequate. We can read the sensor faster (and thus provide
mjr 2:c174f9ee414a 147 // a higher refresh rate) if we read fewer pixels in each frame.
mjr 2:c174f9ee414a 148 const int npix = 160;
mjr 2:c174f9ee414a 149
mjr 2:c174f9ee414a 150 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 151 if (flash_valid) {
mjr 2:c174f9ee414a 152 memcpy(&cfg, flash, sizeof(cfg));
mjr 2:c174f9ee414a 153 printf("Flash restored: plunger min=%d, max=%d\r\n",
mjr 2:c174f9ee414a 154 cfg.d.plungerMin, cfg.d.plungerMax);
mjr 2:c174f9ee414a 155 }
mjr 2:c174f9ee414a 156 else {
mjr 2:c174f9ee414a 157 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 158 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 159 cfg.d.vsn = cfg.VERSION;
mjr 2:c174f9ee414a 160 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 161 cfg.d.plungerMax = npix;
mjr 2:c174f9ee414a 162 }
mjr 1:d913e0afb2ac 163
mjr 1:d913e0afb2ac 164 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 165 Timer calBtnTimer;
mjr 1:d913e0afb2ac 166 calBtnTimer.start();
mjr 1:d913e0afb2ac 167 int calBtnDownTime = 0;
mjr 1:d913e0afb2ac 168 int calBtnLit = false;
mjr 1:d913e0afb2ac 169
mjr 1:d913e0afb2ac 170 // Calibration button state:
mjr 1:d913e0afb2ac 171 // 0 = not pushed
mjr 1:d913e0afb2ac 172 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 173 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 174 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 175 int calBtnState = 0;
mjr 1:d913e0afb2ac 176
mjr 1:d913e0afb2ac 177 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 178 Timer hbTimer;
mjr 1:d913e0afb2ac 179 hbTimer.start();
mjr 1:d913e0afb2ac 180 int t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 181 int hb = 0;
mjr 1:d913e0afb2ac 182
mjr 1:d913e0afb2ac 183 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 184 Timer acTimer;
mjr 1:d913e0afb2ac 185 acTimer.start();
mjr 1:d913e0afb2ac 186 int t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 187
mjr 1:d913e0afb2ac 188 // Create the joystick USB client. Light the on-board indicator LED
mjr 1:d913e0afb2ac 189 // red while connecting, and change to green after we connect.
mjr 2:c174f9ee414a 190 led1 = 0;
mjr 2:c174f9ee414a 191 MyUSBJoystick js(0xFAFA, 0x00F7, 0x0001);
mjr 0:5acbbe3f4cf4 192 led1 = 1;
mjr 2:c174f9ee414a 193 led2 = 0;
mjr 2:c174f9ee414a 194
mjr 0:5acbbe3f4cf4 195 // create the accelerometer object
mjr 0:5acbbe3f4cf4 196 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 0:5acbbe3f4cf4 197 MMA8451Q accel(PTE25, PTE24, MMA8451_I2C_ADDRESS);
mjr 0:5acbbe3f4cf4 198
mjr 0:5acbbe3f4cf4 199 // create the CCD array object
mjr 1:d913e0afb2ac 200 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 201
mjr 1:d913e0afb2ac 202 // recent accelerometer readings, for auto centering
mjr 1:d913e0afb2ac 203 int iAccPrv = 0, nAccPrv = 0;
mjr 1:d913e0afb2ac 204 const int maxAccPrv = 5;
mjr 1:d913e0afb2ac 205 AccPrv accPrv[maxAccPrv];
mjr 0:5acbbe3f4cf4 206
mjr 1:d913e0afb2ac 207 // last accelerometer report, in mouse coordinates
mjr 1:d913e0afb2ac 208 int x = 127, y = 127, z = 0;
mjr 2:c174f9ee414a 209
mjr 1:d913e0afb2ac 210 // raw accelerator centerpoint, on the unit interval (-1.0 .. +1.0)
mjr 1:d913e0afb2ac 211 float xCenter = 0.0, yCenter = 0.0;
mjr 2:c174f9ee414a 212
mjr 2:c174f9ee414a 213 // start the first CCD integration cycle
mjr 2:c174f9ee414a 214 ccd.clear();
mjr 1:d913e0afb2ac 215
mjr 1:d913e0afb2ac 216 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 217 // host requests
mjr 0:5acbbe3f4cf4 218 for (;;)
mjr 0:5acbbe3f4cf4 219 {
mjr 0:5acbbe3f4cf4 220 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 221 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 222 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 223 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 224 HID_REPORT report;
mjr 0:5acbbe3f4cf4 225 while (js.readNB(&report) && report.length == 8)
mjr 0:5acbbe3f4cf4 226 {
mjr 0:5acbbe3f4cf4 227 uint8_t *data =;
mjr 1:d913e0afb2ac 228 if (data[0] == 64)
mjr 1:d913e0afb2ac 229 {
mjr 0:5acbbe3f4cf4 230 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 0:5acbbe3f4cf4 231 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 0:5acbbe3f4cf4 232 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 0:5acbbe3f4cf4 233 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 234
mjr 0:5acbbe3f4cf4 235 // update all on/off states
mjr 0:5acbbe3f4cf4 236 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 0:5acbbe3f4cf4 237 {
mjr 0:5acbbe3f4cf4 238 if (bit == 0x100) {
mjr 0:5acbbe3f4cf4 239 bit = 1;
mjr 0:5acbbe3f4cf4 240 ++ri;
mjr 0:5acbbe3f4cf4 241 }
mjr 1:d913e0afb2ac 242 wizOn[i] = ((data[ri] & bit) != 0);
mjr 0:5acbbe3f4cf4 243 }
mjr 0:5acbbe3f4cf4 244
mjr 1:d913e0afb2ac 245 // update the physical outputs
mjr 1:d913e0afb2ac 246 updateWizOuts();
mjr 0:5acbbe3f4cf4 247
mjr 0:5acbbe3f4cf4 248 // reset the PBA counter
mjr 0:5acbbe3f4cf4 249 pbaIdx = 0;
mjr 0:5acbbe3f4cf4 250 }
mjr 1:d913e0afb2ac 251 else
mjr 1:d913e0afb2ac 252 {
mjr 0:5acbbe3f4cf4 253 // LWZ-PBA - full state dump; each byte is one output
mjr 0:5acbbe3f4cf4 254 // in the current bank. pbaIdx keeps track of the bank;
mjr 0:5acbbe3f4cf4 255 // this is incremented implicitly by each PBA message.
mjr 0:5acbbe3f4cf4 256 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 0:5acbbe3f4cf4 257 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 0:5acbbe3f4cf4 258
mjr 0:5acbbe3f4cf4 259 // update all output profile settings
mjr 0:5acbbe3f4cf4 260 for (int i = 0 ; i < 8 ; ++i)
mjr 1:d913e0afb2ac 261 wizVal[pbaIdx + i] = data[i];
mjr 0:5acbbe3f4cf4 262
mjr 0:5acbbe3f4cf4 263 // update the physical LED state if this is the last bank
mjr 0:5acbbe3f4cf4 264 if (pbaIdx == 24)
mjr 1:d913e0afb2ac 265 updateWizOuts();
mjr 0:5acbbe3f4cf4 266
mjr 0:5acbbe3f4cf4 267 // advance to the next bank
mjr 0:5acbbe3f4cf4 268 pbaIdx = (pbaIdx + 8) & 31;
mjr 0:5acbbe3f4cf4 269 }
mjr 0:5acbbe3f4cf4 270 }
mjr 1:d913e0afb2ac 271
mjr 1:d913e0afb2ac 272 // check for plunger calibration
mjr 1:d913e0afb2ac 273 if (!calBtn)
mjr 0:5acbbe3f4cf4 274 {
mjr 1:d913e0afb2ac 275 // check the state
mjr 1:d913e0afb2ac 276 switch (calBtnState)
mjr 0:5acbbe3f4cf4 277 {
mjr 1:d913e0afb2ac 278 case 0:
mjr 1:d913e0afb2ac 279 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 280 calBtnTimer.reset();
mjr 1:d913e0afb2ac 281 calBtnDownTime = calBtnTimer.read_ms();
mjr 1:d913e0afb2ac 282 calBtnState = 1;
mjr 1:d913e0afb2ac 283 break;
mjr 1:d913e0afb2ac 284
mjr 1:d913e0afb2ac 285 case 1:
mjr 1:d913e0afb2ac 286 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 287 // passed, start the hold period
mjr 1:d913e0afb2ac 288 if (calBtnTimer.read_ms() - calBtnDownTime > 50)
mjr 1:d913e0afb2ac 289 calBtnState = 2;
mjr 1:d913e0afb2ac 290 break;
mjr 1:d913e0afb2ac 291
mjr 1:d913e0afb2ac 292 case 2:
mjr 1:d913e0afb2ac 293 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 294 // for the entire hold period, move to calibration mode
mjr 1:d913e0afb2ac 295 if (calBtnTimer.read_ms() - calBtnDownTime > 2050)
mjr 1:d913e0afb2ac 296 {
mjr 1:d913e0afb2ac 297 // enter calibration mode
mjr 1:d913e0afb2ac 298 calBtnState = 3;
mjr 1:d913e0afb2ac 299
mjr 1:d913e0afb2ac 300 // reset the calibration limits
mjr 2:c174f9ee414a 301 cfg.d.plungerMax = 0;
mjr 2:c174f9ee414a 302 cfg.d.plungerMin = npix;
mjr 1:d913e0afb2ac 303 }
mjr 1:d913e0afb2ac 304 break;
mjr 2:c174f9ee414a 305
mjr 2:c174f9ee414a 306 case 3:
mjr 2:c174f9ee414a 307 // Already in calibration mode - pushing the button in this
mjr 2:c174f9ee414a 308 // state doesn't change the current state, but we won't leave
mjr 2:c174f9ee414a 309 // this state as long as it's held down. We can simply do
mjr 2:c174f9ee414a 310 // nothing here.
mjr 2:c174f9ee414a 311 break;
mjr 0:5acbbe3f4cf4 312 }
mjr 0:5acbbe3f4cf4 313 }
mjr 1:d913e0afb2ac 314 else
mjr 1:d913e0afb2ac 315 {
mjr 2:c174f9ee414a 316 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 317 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 318 // and save the results to flash.
mjr 2:c174f9ee414a 319 //
mjr 2:c174f9ee414a 320 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 321 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 322 // mode, it simply cancels the attempt.
mjr 2:c174f9ee414a 323 if (calBtnState == 3
mjr 2:c174f9ee414a 324 && calBtnTimer.read_ms() - calBtnDownTime > 17500)
mjr 2:c174f9ee414a 325 {
mjr 2:c174f9ee414a 326 // exit calibration mode
mjr 1:d913e0afb2ac 327 calBtnState = 0;
mjr 2:c174f9ee414a 328
mjr 2:c174f9ee414a 329 // Save the current configuration state to flash, so that it
mjr 2:c174f9ee414a 330 // will be preserved through power off. Update the checksum
mjr 2:c174f9ee414a 331 // first so that we recognize the flash record as valid.
mjr 2:c174f9ee414a 332 cfg.checksum = CRC32(&cfg.d, sizeof(cfg.d));
mjr 2:c174f9ee414a 333 iap.erase_sector(flash_addr);
mjr 2:c174f9ee414a 334 iap.program_flash(flash_addr, &cfg, sizeof(cfg));
mjr 2:c174f9ee414a 335
mjr 2:c174f9ee414a 336 // the flash state is now valid
mjr 2:c174f9ee414a 337 flash_valid = true;
mjr 2:c174f9ee414a 338 }
mjr 2:c174f9ee414a 339 else if (calBtnState != 3)
mjr 2:c174f9ee414a 340 {
mjr 2:c174f9ee414a 341 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 342 calBtnState = 0;
mjr 2:c174f9ee414a 343 }
mjr 1:d913e0afb2ac 344 }
mjr 1:d913e0afb2ac 345
mjr 1:d913e0afb2ac 346 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 347 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 348 switch (calBtnState)
mjr 0:5acbbe3f4cf4 349 {
mjr 1:d913e0afb2ac 350 case 2:
mjr 1:d913e0afb2ac 351 // in the hold period - flash the light
mjr 1:d913e0afb2ac 352 newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1);
mjr 1:d913e0afb2ac 353 break;
mjr 1:d913e0afb2ac 354
mjr 1:d913e0afb2ac 355 case 3:
mjr 1:d913e0afb2ac 356 // calibration mode - show steady on
mjr 1:d913e0afb2ac 357 newCalBtnLit = true;
mjr 1:d913e0afb2ac 358 break;
mjr 1:d913e0afb2ac 359
mjr 1:d913e0afb2ac 360 default:
mjr 1:d913e0afb2ac 361 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 362 newCalBtnLit = false;
mjr 1:d913e0afb2ac 363 break;
mjr 1:d913e0afb2ac 364 }
mjr 1:d913e0afb2ac 365 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 366 {
mjr 1:d913e0afb2ac 367 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 368 if (calBtnLit) {
mjr 2:c174f9ee414a 369 calBtnLed = 1;
mjr 2:c174f9ee414a 370 led1 = 0;
mjr 2:c174f9ee414a 371 led2 = 0;
mjr 2:c174f9ee414a 372 led3 = 1;
mjr 2:c174f9ee414a 373 }
mjr 2:c174f9ee414a 374 else {
mjr 2:c174f9ee414a 375 calBtnLed = 0;
mjr 2:c174f9ee414a 376 led1 = 1;
mjr 2:c174f9ee414a 377 led2 = 1;
mjr 2:c174f9ee414a 378 led3 = 0;
mjr 2:c174f9ee414a 379 }
mjr 1:d913e0afb2ac 380 }
mjr 1:d913e0afb2ac 381
mjr 1:d913e0afb2ac 382 // read the plunger sensor
mjr 1:d913e0afb2ac 383 int znew = z;
mjr 2:c174f9ee414a 384 uint16_t pix[npix];
mjr 2:c174f9ee414a 385, npix);
mjr 2:c174f9ee414a 386
mjr 2:c174f9ee414a 387 // get the average brightness at each end of the sensor
mjr 2:c174f9ee414a 388 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 2:c174f9ee414a 389 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 2:c174f9ee414a 390
mjr 2:c174f9ee414a 391 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 2:c174f9ee414a 392 // compare sums of three pixels at a time to smooth out noise
mjr 2:c174f9ee414a 393 long midpt = (avg1 + avg2)/2 * 3;
mjr 2:c174f9ee414a 394
mjr 2:c174f9ee414a 395 // Work from the bright end to the dark end. VP interprets the
mjr 2:c174f9ee414a 396 // Z axis value as the amount the plunger is pulled: the minimum
mjr 2:c174f9ee414a 397 // is the rest position, the maximum is fully pulled. So we
mjr 2:c174f9ee414a 398 // essentially want to report how much of the sensor is lit,
mjr 2:c174f9ee414a 399 // since this increases as the plunger is pulled back.
mjr 2:c174f9ee414a 400 int si = 1, di = 1;
mjr 2:c174f9ee414a 401 if (avg1 < avg2)
mjr 2:c174f9ee414a 402 si = npix - 2, di = -1;
mjr 2:c174f9ee414a 403
mjr 2:c174f9ee414a 404 // scan for the midpoint
mjr 2:c174f9ee414a 405 uint16_t *pixp = pix + si;
mjr 2:c174f9ee414a 406 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 1:d913e0afb2ac 407 {
mjr 2:c174f9ee414a 408 // if we've crossed the midpoint, report this position
mjr 2:c174f9ee414a 409 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 1:d913e0afb2ac 410 {
mjr 2:c174f9ee414a 411 // note the new position
mjr 2:c174f9ee414a 412 int pos = n;
mjr 2:c174f9ee414a 413
mjr 2:c174f9ee414a 414 // if the bright end and dark end don't differ by enough, skip this
mjr 2:c174f9ee414a 415 // reading entirely - we must have an overexposed or underexposed frame
mjr 2:c174f9ee414a 416 if (labs(avg1 - avg2) < 0x3333)
mjr 2:c174f9ee414a 417 break;
mjr 2:c174f9ee414a 418
mjr 2:c174f9ee414a 419 // Calibrate, or apply calibration, depending on the mode.
mjr 2:c174f9ee414a 420 // In either case, normalize to a 0-127 range. VP appears to
mjr 2:c174f9ee414a 421 // ignore negative Z axis values.
mjr 2:c174f9ee414a 422 if (calBtnState == 3)
mjr 1:d913e0afb2ac 423 {
mjr 2:c174f9ee414a 424 // calibrating - note if we're expanding the calibration envelope
mjr 2:c174f9ee414a 425 if (pos < cfg.d.plungerMin)
mjr 2:c174f9ee414a 426 cfg.d.plungerMin = pos;
mjr 2:c174f9ee414a 427 if (pos > cfg.d.plungerMax)
mjr 2:c174f9ee414a 428 cfg.d.plungerMax = pos;
mjr 2:c174f9ee414a 429
mjr 2:c174f9ee414a 430 // normalize to the full physical range while calibrating
mjr 2:c174f9ee414a 431 znew = int(float(pos)/npix * 127);
mjr 1:d913e0afb2ac 432 }
mjr 2:c174f9ee414a 433 else
mjr 2:c174f9ee414a 434 {
mjr 2:c174f9ee414a 435 // running normally - normalize to the calibration range
mjr 2:c174f9ee414a 436 if (pos < cfg.d.plungerMin)
mjr 2:c174f9ee414a 437 pos = cfg.d.plungerMin;
mjr 2:c174f9ee414a 438 if (pos > cfg.d.plungerMax)
mjr 2:c174f9ee414a 439 pos = cfg.d.plungerMax;
mjr 2:c174f9ee414a 440 znew = int(float(pos - cfg.d.plungerMin)
mjr 2:c174f9ee414a 441 / (cfg.d.plungerMax - cfg.d.plungerMin + 1) * 127);
mjr 2:c174f9ee414a 442 }
mjr 2:c174f9ee414a 443
mjr 2:c174f9ee414a 444 // done
mjr 2:c174f9ee414a 445 break;
mjr 1:d913e0afb2ac 446 }
mjr 2:c174f9ee414a 447 }
mjr 1:d913e0afb2ac 448
mjr 1:d913e0afb2ac 449 // read the accelerometer
mjr 1:d913e0afb2ac 450 float xa, ya;
mjr 1:d913e0afb2ac 451 accel.getAccXY(xa, ya);
mjr 1:d913e0afb2ac 452
mjr 1:d913e0afb2ac 453 // check for auto-centering every so often
mjr 1:d913e0afb2ac 454 if (acTimer.read_ms() - t0ac > 1000)
mjr 1:d913e0afb2ac 455 {
mjr 1:d913e0afb2ac 456 // add the sample to the history list
mjr 1:d913e0afb2ac 457 accPrv[iAccPrv].x = xa;
mjr 1:d913e0afb2ac 458 accPrv[iAccPrv].y = ya;
mjr 1:d913e0afb2ac 459
mjr 1:d913e0afb2ac 460 // store the slot
mjr 1:d913e0afb2ac 461 iAccPrv += 1;
mjr 1:d913e0afb2ac 462 iAccPrv %= maxAccPrv;
mjr 1:d913e0afb2ac 463 nAccPrv += 1;
mjr 1:d913e0afb2ac 464
mjr 1:d913e0afb2ac 465 // If we have a full complement, check for stability. The
mjr 1:d913e0afb2ac 466 // raw accelerometer input is in the rnage -4096 to 4096, but
mjr 1:d913e0afb2ac 467 // the class cover normalizes to a unit interval (-1.0 .. +1.0).
mjr 1:d913e0afb2ac 468 const float accTol = .005;
mjr 1:d913e0afb2ac 469 if (nAccPrv >= maxAccPrv
mjr 1:d913e0afb2ac 470 && accPrv[0].dist(accPrv[1]) < accTol
mjr 1:d913e0afb2ac 471 && accPrv[0].dist(accPrv[2]) < accTol
mjr 1:d913e0afb2ac 472 && accPrv[0].dist(accPrv[3]) < accTol
mjr 1:d913e0afb2ac 473 && accPrv[0].dist(accPrv[4]) < accTol)
mjr 1:d913e0afb2ac 474 {
mjr 1:d913e0afb2ac 475 // figure the new center
mjr 1:d913e0afb2ac 476 xCenter = (accPrv[0].x + accPrv[1].x + accPrv[2].x + accPrv[3].x + accPrv[4].x)/5.0;
mjr 1:d913e0afb2ac 477 yCenter = (accPrv[0].y + accPrv[1].y + accPrv[2].y + accPrv[3].y + accPrv[4].y)/5.0;
mjr 1:d913e0afb2ac 478 }
mjr 1:d913e0afb2ac 479
mjr 1:d913e0afb2ac 480 // reset the auto-center timer
mjr 1:d913e0afb2ac 481 acTimer.reset();
mjr 1:d913e0afb2ac 482 t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 483 }
mjr 1:d913e0afb2ac 484
mjr 1:d913e0afb2ac 485 // adjust for our auto centering
mjr 1:d913e0afb2ac 486 xa -= xCenter;
mjr 1:d913e0afb2ac 487 ya -= yCenter;
mjr 1:d913e0afb2ac 488
mjr 1:d913e0afb2ac 489 // confine to the unit interval
mjr 1:d913e0afb2ac 490 if (xa < -1.0) xa = -1.0;
mjr 1:d913e0afb2ac 491 if (xa > 1.0) xa = 1.0;
mjr 1:d913e0afb2ac 492 if (ya < -1.0) ya = -1.0;
mjr 1:d913e0afb2ac 493 if (ya > 1.0) ya = 1.0;
mjr 0:5acbbe3f4cf4 494
mjr 1:d913e0afb2ac 495 // figure the new mouse report data
mjr 1:d913e0afb2ac 496 int xnew = (int)(127 * xa);
mjr 1:d913e0afb2ac 497 int ynew = (int)(127 * ya);
mjr 2:c174f9ee414a 498
mjr 2:c174f9ee414a 499 // store the updated joystick coordinates
mjr 2:c174f9ee414a 500 x = xnew;
mjr 2:c174f9ee414a 501 y = ynew;
mjr 2:c174f9ee414a 502 z = znew;
mjr 1:d913e0afb2ac 503
mjr 2:c174f9ee414a 504 // if we're in USB suspend or disconnect mode, spin
mjr 2:c174f9ee414a 505 if (js.isSuspended() || !js.isConnected())
mjr 0:5acbbe3f4cf4 506 {
mjr 2:c174f9ee414a 507 // go dark (turn off the indicator LEDs)
mjr 2:c174f9ee414a 508 led2 = 1;
mjr 2:c174f9ee414a 509 led3 = 1;
mjr 2:c174f9ee414a 510 led1 = 1;
mjr 2:c174f9ee414a 511
mjr 2:c174f9ee414a 512 // wait until we're connected and come out of suspend mode
mjr 2:c174f9ee414a 513 while (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 514 {
mjr 2:c174f9ee414a 515 // spin for a bit
mjr 2:c174f9ee414a 516 wait(1);
mjr 2:c174f9ee414a 517
mjr 2:c174f9ee414a 518 // if we're not suspended, flash red; otherwise stay dark
mjr 2:c174f9ee414a 519 if (!js.isSuspended())
mjr 2:c174f9ee414a 520 led1 = !led1;
mjr 2:c174f9ee414a 521 }
mjr 2:c174f9ee414a 522 }
mjr 1:d913e0afb2ac 523
mjr 2:c174f9ee414a 524 // Send the status report. Note one of the axes needs to be
mjr 2:c174f9ee414a 525 // reversed, because the native accelerometer reports seem to
mjr 2:c174f9ee414a 526 // assume that the card is component side down; we have to
mjr 2:c174f9ee414a 527 // reverse one or the other axis to account for the reversed
mjr 2:c174f9ee414a 528 // coordinate system. It doesn't really matter which one,
mjr 2:c174f9ee414a 529 // but reversing Y seems to give intuitive results when viewed
mjr 2:c174f9ee414a 530 // in the Windows joystick control panel. Note that the
mjr 2:c174f9ee414a 531 // coordinate system we report is ultimately arbitrary, since
mjr 2:c174f9ee414a 532 // Visual Pinball has preference settings that let us set up
mjr 2:c174f9ee414a 533 // axis reversals and a global rotation for the joystick.
mjr 2:c174f9ee414a 534 js.update(x, -y, z, 0);
mjr 1:d913e0afb2ac 535
mjr 2:c174f9ee414a 536 // show a heartbeat flash in blue every so often if not in
mjr 2:c174f9ee414a 537 // calibration mode
mjr 2:c174f9ee414a 538 if (calBtnState < 2 && hbTimer.read_ms() - t0Hb > 1000)
mjr 1:d913e0afb2ac 539 {
mjr 2:c174f9ee414a 540 if (js.isSuspended())
mjr 2:c174f9ee414a 541 {
mjr 2:c174f9ee414a 542 // suspended - turn off the LEDs entirely
mjr 2:c174f9ee414a 543 led1 = 1;
mjr 2:c174f9ee414a 544 led2 = 1;
mjr 2:c174f9ee414a 545 led3 = 1;
mjr 2:c174f9ee414a 546 }
mjr 2:c174f9ee414a 547 else if (!js.isConnected())
mjr 2:c174f9ee414a 548 {
mjr 2:c174f9ee414a 549 // not connected - flash red
mjr 2:c174f9ee414a 550 hb = !hb;
mjr 2:c174f9ee414a 551 led1 = (hb ? 0 : 1);
mjr 2:c174f9ee414a 552 led2 = 1;
mjr 2:c174f9ee414a 553 led3 = 1;
mjr 2:c174f9ee414a 554 }
mjr 2:c174f9ee414a 555 else if (flash_valid)
mjr 2:c174f9ee414a 556 {
mjr 2:c174f9ee414a 557 // connected, NVM valid - flash blue/green
mjr 2:c174f9ee414a 558 hb = !hb;
mjr 2:c174f9ee414a 559 led1 = 1;
mjr 2:c174f9ee414a 560 led2 = (hb ? 0 : 1);
mjr 2:c174f9ee414a 561 led3 = (hb ? 1 : 0);
mjr 2:c174f9ee414a 562 }
mjr 2:c174f9ee414a 563 else
mjr 2:c174f9ee414a 564 {
mjr 2:c174f9ee414a 565 // connected, factory reset - flash yellow/green
mjr 2:c174f9ee414a 566 hb = !hb;
mjr 2:c174f9ee414a 567 led1 = (hb ? 0 : 1);
mjr 2:c174f9ee414a 568 led2 = 0;
mjr 2:c174f9ee414a 569 led3 = 0;
mjr 2:c174f9ee414a 570 }
mjr 1:d913e0afb2ac 571
mjr 1:d913e0afb2ac 572 // reset the heartbeat timer
mjr 1:d913e0afb2ac 573 hbTimer.reset();
mjr 1:d913e0afb2ac 574 t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 575 }
mjr 1:d913e0afb2ac 576 }
mjr 0:5acbbe3f4cf4 577 }