An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Fri Apr 22 17:58:35 2016 +0000
Revision:
53:9b2611964afc
Parent:
52:8298b2a73eb2
Child:
55:4db125cd11a0
Save some debugging instrumentation to be removed for release

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 35:e959ffba78fd 3 // This file is purely for documentation, to describe our USB protocol.
mjr 35:e959ffba78fd 4 // We use the standard HID setup with one endpoint in each direction.
mjr 35:e959ffba78fd 5 // See USBJoystick.cpp/.h for our USB descriptor arrangement.
mjr 35:e959ffba78fd 6 //
mjr 35:e959ffba78fd 7
mjr 35:e959ffba78fd 8 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 9 //
mjr 47:df7a88cd249c 10 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 11 // unless otherwise specified.
mjr 47:df7a88cd249c 12 //
mjr 39:b3815a1c3802 13 // 1. Joystick reports
mjr 35:e959ffba78fd 14 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 15 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 16 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 17 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 18 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 19 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 20 //
mjr 39:b3815a1c3802 21 // ss status bits: 0x01 -> plunger enabled
mjr 40:cc0d9814522b 22 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 23 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 24 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 25 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 26 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 27 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 28 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 29 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 30 // xx high byte of X position
mjr 39:b3815a1c3802 31 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 32 // yy high byte of Y position
mjr 39:b3815a1c3802 33 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 34 // zz high byte of Z position
mjr 39:b3815a1c3802 35 //
mjr 39:b3815a1c3802 36 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 37 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 38 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 39 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 40 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 41 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 42 // is pushed forward of the park position.
mjr 39:b3815a1c3802 43 //
mjr 39:b3815a1c3802 44 // 2. Special reports
mjr 35:e959ffba78fd 45 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 46 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 47 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 48 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 49 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 50 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 51 //
mjr 39:b3815a1c3802 52 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 53 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 54 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 55 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 56 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 57 //
mjr 52:8298b2a73eb2 58 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 59 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 60 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 61 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 62 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 63 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 64 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 65 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 66 //
mjr 52:8298b2a73eb2 67 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 68 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 69 //
mjr 52:8298b2a73eb2 70 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 71 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 72 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 73 // more fields need to be added)
mjr 52:8298b2a73eb2 74 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 75 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 76 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 77 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 78 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 79 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 80 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 81 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 82 // be determined,
mjr 52:8298b2a73eb2 83 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 84 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 85 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 86 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 87 // are sent for this reading)
mjr 52:8298b2a73eb2 88 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 89 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 90 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 91 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 92 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 93 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 94 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 95 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 96 // sample.
mjr 52:8298b2a73eb2 97 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 98 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 99 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 100 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 101 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 102 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 103 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 104 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 105 // the ADC sample.
mjr 52:8298b2a73eb2 106 //
mjr 52:8298b2a73eb2 107 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 108 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 109 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 110 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 111 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 112 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 113 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 114 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 115 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 116 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 117 // pixel packet is:
mjr 35:e959ffba78fd 118 //
mjr 35:e959ffba78fd 119 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 120 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 121 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 122 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 123 // indicate pixel #0.
mjr 47:df7a88cd249c 124 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 125 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 126 // etc for the rest of the packet
mjr 35:e959ffba78fd 127 //
mjr 52:8298b2a73eb2 128 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 129 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 130 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 131 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 132 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 133 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 134 // format here accordingly.
mjr 51:57eb311faafa 135 //
mjr 51:57eb311faafa 136 //
mjr 53:9b2611964afc 137 // 2B. Configuration report.
mjr 39:b3815a1c3802 138 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 139 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 140 //
mjr 35:e959ffba78fd 141 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 142 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 143 // reports and from other special report types.
mjr 35:e959ffba78fd 144 // bytes 2:3 = total number of outputs, little endian
mjr 40:cc0d9814522b 145 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 146 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 147 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 148 // byte 11 = bit flags:
mjr 40:cc0d9814522b 149 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 150 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 151 // has been sent from the host
mjr 40:cc0d9814522b 152 // The remaining bytes are reserved for future use.
mjr 35:e959ffba78fd 153 //
mjr 53:9b2611964afc 154 // 2C. Device ID report.
mjr 40:cc0d9814522b 155 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 156 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 157 //
mjr 52:8298b2a73eb2 158 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 159 // to distinguish this from other report types.
mjr 53:9b2611964afc 160 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 161 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 162 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 163 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 164 //
mjr 53:9b2611964afc 165 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 166 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 167 //
mjr 53:9b2611964afc 168 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 169 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 170 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 171 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 172 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 173 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 174 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 175 //
mjr 53:9b2611964afc 176 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 177 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 178 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 179 //
mjr 52:8298b2a73eb2 180 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 181 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 182 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 183 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 184 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 185 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 186 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 187 //
mjr 53:9b2611964afc 188 // 2E. Software build information report.
mjr 53:9b2611964afc 189 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 190 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 191 //
mjr 53:9b2611964afc 192 // bytes 0:1 = 0xA0. This has bit pattern 10100 in the high 5 bits
mjr 53:9b2611964afc 193 // to distinguish it from other report types.
mjr 53:9b2611964afc 194 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 195 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 196 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 197 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 198 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 199 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 200 // build time on a 24-hour clock.
mjr 53:9b2611964afc 201 //
mjr 52:8298b2a73eb2 202 //
mjr 35:e959ffba78fd 203 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 204 //
mjr 35:e959ffba78fd 205 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 206 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 207 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 208 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 209 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 210 //
mjr 35:e959ffba78fd 211 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 212 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 213 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 214 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 215 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 216 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 217 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 218 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 219 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 220 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 221 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 222 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 223 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 224 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 225 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 226 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 227 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 228 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 229 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 230 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 231 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 232 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 233 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 234 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 235
mjr 35:e959ffba78fd 236
mjr 35:e959ffba78fd 237
mjr 35:e959ffba78fd 238 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 239 //
mjr 35:e959ffba78fd 240 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 241 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 242 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 243 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 244 //
mjr 35:e959ffba78fd 245 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 246 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 247 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 248 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 249 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 250 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 251 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 252
mjr 35:e959ffba78fd 253 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 254 //
mjr 35:e959ffba78fd 255 // The real LedWiz protocol has two message types, identified by the first
mjr 35:e959ffba78fd 256 // byte of the 8-byte USB packet:
mjr 35:e959ffba78fd 257 //
mjr 35:e959ffba78fd 258 // 64 -> SBA (64 xx xx xx xx ss uu uu)
mjr 35:e959ffba78fd 259 // xx = on/off bit mask for 8 outputs
mjr 35:e959ffba78fd 260 // ss = global flash speed setting (1-7)
mjr 35:e959ffba78fd 261 // uu = unused
mjr 35:e959ffba78fd 262 //
mjr 35:e959ffba78fd 263 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 264 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 265 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 35:e959ffba78fd 266 // the sixth byte. (The flash speed sets the global cycle rate for flashing
mjr 35:e959ffba78fd 267 // outputs - outputs with their values set to the range 128-132 - to a
mjr 35:e959ffba78fd 268 // relative speed, scaled linearly in frequency. 1 is the slowest at about
mjr 35:e959ffba78fd 269 // 2 Hz, 7 is the fastest at about 14 Hz.)
mjr 35:e959ffba78fd 270 //
mjr 35:e959ffba78fd 271 // 0-49 or 128-132 -> PBA (bb bb bb bb bb bb bb bb)
mjr 35:e959ffba78fd 272 // bb = brightness level/flash pattern for one output
mjr 35:e959ffba78fd 273 //
mjr 35:e959ffba78fd 274 // If the first byte is any valid brightness setting, it's a PBA message.
mjr 35:e959ffba78fd 275 // Valid brightness settings are:
mjr 35:e959ffba78fd 276 //
mjr 35:e959ffba78fd 277 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 278 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 279 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 280 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 281 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 282 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 283 //
mjr 35:e959ffba78fd 284 // A PBA message sets 8 outputs out of 32. Which 8 are to be set is
mjr 35:e959ffba78fd 285 // implicit in the message sequence: the first PBA sets outputs 1-8, the
mjr 35:e959ffba78fd 286 // second sets 9-16, and so on, rolling around after each fourth PBA.
mjr 35:e959ffba78fd 287 // An SBA also resets the implicit "bank" for the next PBA to outputs 1-8.
mjr 35:e959ffba78fd 288 //
mjr 35:e959ffba78fd 289 // Note that there's no special first byte to indicate the PBA message
mjr 35:e959ffba78fd 290 // type, as there is in an SBA. The first byte of a PBA is simply the
mjr 53:9b2611964afc 291 // first output setting. The way the LedWiz creators conceived this, an
mjr 53:9b2611964afc 292 // SBA message is distinguishable from a PBA because there's no such thing
mjr 53:9b2611964afc 293 // as a brightness level 64, hence 64 is never valid as a byte in an PBA
mjr 53:9b2611964afc 294 // message, hence a message starting with 64 must be something other than
mjr 53:9b2611964afc 295 // an PBA message.
mjr 35:e959ffba78fd 296 //
mjr 35:e959ffba78fd 297 // Our extended protocol uses the same principle, taking advantage of the
mjr 53:9b2611964afc 298 // many other byte values that are also invalid in PBA messages. To be a
mjr 53:9b2611964afc 299 // valid PBA message, the first byte must be in the range 0-49 or 129-132.
mjr 53:9b2611964afc 300 // As already mentioned, byte value 64 indicates an SBA message, so we
mjr 53:9b2611964afc 301 // can't use that one for private extensions. This still leaves many
mjr 53:9b2611964afc 302 // other byte values for us, though, namely 50-63, 65-128, and 133-255.
mjr 35:e959ffba78fd 303
mjr 35:e959ffba78fd 304
mjr 35:e959ffba78fd 305 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 306 //
mjr 35:e959ffba78fd 307 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 308 //
mjr 35:e959ffba78fd 309 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 310 // operation:
mjr 35:e959ffba78fd 311 //
mjr 39:b3815a1c3802 312 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 313 // USB endpoint.)
mjr 39:b3815a1c3802 314 //
mjr 35:e959ffba78fd 315 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 316 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 317 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 318 //
mjr 35:e959ffba78fd 319 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 320 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 321 //
mjr 35:e959ffba78fd 322 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 323 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 324 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 325 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 326 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 327 //
mjr 51:57eb311faafa 328 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 329 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 330 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 331 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 332 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 333 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 334 // sent. Parameters:
mjr 48:058ace2aed1d 335 //
mjr 48:058ace2aed1d 336 // third byte = bit flags:
mjr 51:57eb311faafa 337 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 338 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 339 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 340 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 341 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 342 // viewing in the config tool.
mjr 35:e959ffba78fd 343 //
mjr 53:9b2611964afc 344 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 345 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 346 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 347 // level for calibration purposes.
mjr 53:9b2611964afc 348 //
mjr 35:e959ffba78fd 349 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 350 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 351 // joystick reports.
mjr 35:e959ffba78fd 352 //
mjr 35:e959ffba78fd 353 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets output ports
mjr 35:e959ffba78fd 354 // 1-32 to OFF and LedWiz brightness/mode setting 48, sets outputs 33 and
mjr 35:e959ffba78fd 355 // higher to brightness level 0, and sets the LedWiz global flash speed to 2.
mjr 35:e959ffba78fd 356 //
mjr 35:e959ffba78fd 357 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 358 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 359 // device to put the changes into effect.
mjr 35:e959ffba78fd 360 //
mjr 53:9b2611964afc 361 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 362 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 363 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 364 // driver settings)
mjr 53:9b2611964afc 365 //
mjr 40:cc0d9814522b 366 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 367 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 368 // joystick reports.
mjr 40:cc0d9814522b 369 //
mjr 53:9b2611964afc 370 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 371 //
mjr 53:9b2611964afc 372 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 373 //
mjr 53:9b2611964afc 374 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 375 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 376 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 377 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 378 //
mjr 40:cc0d9814522b 379 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 40:cc0d9814522b 380 // engage night mode, 0 to disengage night mode. (This mode isn't stored
mjr 40:cc0d9814522b 381 // persistently; night mode is disengaged after a reset or power cycle.)
mjr 40:cc0d9814522b 382 //
mjr 52:8298b2a73eb2 383 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 384 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 385 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 386 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 387 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 388 //
mjr 53:9b2611964afc 389 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 390 // the software build information report (see above).
mjr 53:9b2611964afc 391 //
mjr 35:e959ffba78fd 392 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 393 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 394 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 395 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 396 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 397 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 398 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 399 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 400 //
mjr 35:e959ffba78fd 401 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 402 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 403 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 404 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 405 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 406 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 407 //
mjr 35:e959ffba78fd 408 // 200 = outputs 1-7
mjr 35:e959ffba78fd 409 // 201 = outputs 8-14
mjr 35:e959ffba78fd 410 // 202 = outputs 15-21
mjr 35:e959ffba78fd 411 // ...
mjr 35:e959ffba78fd 412 // 228 = outputs 197-203
mjr 35:e959ffba78fd 413 //
mjr 53:9b2611964afc 414 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 415 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 416 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 417 //
mjr 53:9b2611964afc 418 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 419 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 420 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 421 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 422 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 423 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 424 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 425 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 426 //
mjr 35:e959ffba78fd 427 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 428 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 429 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 430 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 431 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 432 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 433 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 434 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 435 //
mjr 53:9b2611964afc 436 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 437 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 438 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 439 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 440 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 441 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 442
mjr 35:e959ffba78fd 443
mjr 35:e959ffba78fd 444 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 445 //
mjr 35:e959ffba78fd 446 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 447 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 448 // value, in a variable-specific format. 16-bit values are little endian.
mjr 35:e959ffba78fd 449 //
mjr 53:9b2611964afc 450 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 451 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 454 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 455 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 456 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 457 //
mjr 53:9b2611964afc 458 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 459 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 460 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 461 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 462 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 463 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 464 // of the firmware and the host software.
mjr 53:9b2611964afc 465 //
mjr 53:9b2611964afc 466 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 467 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 468 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 469 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 470 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 471 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 472 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 473 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 474 //
mjr 53:9b2611964afc 475 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 476 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 477 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 478 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 479 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 480 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 481 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 482 //
mjr 53:9b2611964afc 483 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 484 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 485 //
mjr 53:9b2611964afc 486 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 487 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 488 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 489 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 490 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 491 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 492 // you have any real LedWiz units).
mjr 53:9b2611964afc 493 //
mjr 53:9b2611964afc 494 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 495 //
mjr 35:e959ffba78fd 496 // 3 -> Enable/disable joystick reports. Byte 2 is 1 to enable, 0 to
mjr 35:e959ffba78fd 497 // disable. When disabled, the device registers as a generic HID
mjr 35:e959ffba78fd 498 / device, and only sends the private report types used by the
mjr 35:e959ffba78fd 499 // Windows config tool.
mjr 35:e959ffba78fd 500 //
mjr 35:e959ffba78fd 501 // 4 -> Accelerometer orientation. Byte 3 is the new setting:
mjr 35:e959ffba78fd 502 //
mjr 35:e959ffba78fd 503 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 35:e959ffba78fd 504 // 1 = ports at left
mjr 35:e959ffba78fd 505 // 2 = ports at right
mjr 35:e959ffba78fd 506 // 3 = ports at rear
mjr 35:e959ffba78fd 507 //
mjr 35:e959ffba78fd 508 // 5 -> Plunger sensor type. Byte 3 is the type ID:
mjr 35:e959ffba78fd 509 //
mjr 35:e959ffba78fd 510 // 0 = none (disabled)
mjr 35:e959ffba78fd 511 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 47:df7a88cd249c 512 // *2 = TSL1410R, parallel mode
mjr 35:e959ffba78fd 513 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 47:df7a88cd249c 514 // *4 = TSL1412R, parallel mode
mjr 35:e959ffba78fd 515 // 5 = Potentiometer with linear taper, or any other device that
mjr 35:e959ffba78fd 516 // represents the position reading with a single analog voltage
mjr 47:df7a88cd249c 517 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 47:df7a88cd249c 518 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 47:df7a88cd249c 519 //
mjr 47:df7a88cd249c 520 // * The sensor types marked with asterisks (*) are planned but not
mjr 47:df7a88cd249c 521 // currently implemented. Selecting these types will effectively
mjr 47:df7a88cd249c 522 // disable the plunger.
mjr 35:e959ffba78fd 523 //
mjr 35:e959ffba78fd 524 // 6 -> Plunger pin assignments. Bytes 3-6 give the pin assignments for
mjr 35:e959ffba78fd 525 // pins 1, 2, 3, and 4. These use the Pin Number Mappings listed
mjr 35:e959ffba78fd 526 // below. The meaning of each pin depends on the plunger type:
mjr 35:e959ffba78fd 527 //
mjr 35:e959ffba78fd 528 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 529 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 530 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 531 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 532 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 533 //
mjr 35:e959ffba78fd 534 // 7 -> Plunger calibration button pin assignments. Byte 3 is the DigitalIn
mjr 35:e959ffba78fd 535 // pin for the button switch; byte 4 is the DigitalOut pin for the indicator
mjr 35:e959ffba78fd 536 // lamp. Either can be set to NC to disable the function. (Use the Pin
mjr 35:e959ffba78fd 537 // Number Mappins listed below for both bytes.)
mjr 35:e959ffba78fd 538 //
mjr 35:e959ffba78fd 539 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature. Byte
mjr 35:e959ffba78fd 540 // 3 is the LedWiz port number (1-255) mapped to the "ZB Launch Ball" output
mjr 53:9b2611964afc 541 // in DOF. Set the port to 0 to disable the feature. Byte 4 is the key type
mjr 53:9b2611964afc 542 // and byte 5 is the key code for the key to send to the PC when a launch is
mjr 53:9b2611964afc 543 // triggered. These have the same meanings as for a regular key mapping. For
mjr 53:9b2611964afc 544 // example, set type=2 and code=0x28 for the keyboard Enter key. Bytes 6-7
mjr 35:e959ffba78fd 545 // give the "push distance" for activating the button by pushing forward on
mjr 53:9b2611964afc 546 // the plunger knob, in 1/1000 inch increments (e.g., 63 represents 0.063",
mjr 53:9b2611964afc 547 // or about 1/16", which is the recommended setting).
mjr 35:e959ffba78fd 548 //
mjr 35:e959ffba78fd 549 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 550 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 35:e959ffba78fd 551 // Byte 3 is the GPIO DigitalIn pin for the "power status" input, using the
mjr 35:e959ffba78fd 552 // Pin Number Mappings below. Byte 4 is the DigitalOut pin for the "latch"
mjr 35:e959ffba78fd 553 // output. Byte 5 is the DigitalOut pin for the relay trigger. Bytes 6-7
mjr 35:e959ffba78fd 554 // give the delay time in 10ms increments as an unsigned 16-bit value (e.g.,
mjr 35:e959ffba78fd 555 // 550 represents 5.5 seconds).
mjr 35:e959ffba78fd 556 //
mjr 35:e959ffba78fd 557 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 558 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 559 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 35:e959ffba78fd 560 // ports for the LedWiz emulation. Set the number of chips to 0 to disable
mjr 35:e959ffba78fd 561 // the feature. The bytes of the message are:
mjr 35:e959ffba78fd 562 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 563 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 564 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 565 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 566 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 567 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 568 //
mjr 35:e959ffba78fd 569 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 570 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 571 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 572 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 35:e959ffba78fd 573 // protected outputs for coil devices (knockers, chimes, bells, etc). Set the
mjr 35:e959ffba78fd 574 // number of chips to 0 to disable the feature. The message bytes are:
mjr 35:e959ffba78fd 575 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 576 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 577 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 578 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 579 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 580 //
mjr 53:9b2611964afc 581 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 582 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 583 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 584 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 585 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 586 // the KL25Z automatically if a new connection isn't established within the
mjr 51:57eb311faafa 587 // timeout period. Bytes 3 give the new reboot timeout in seconds. Setting this
mjr 51:57eb311faafa 588 // to 0 disables the reboot timeout.
mjr 51:57eb311faafa 589 //
mjr 53:9b2611964afc 590 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 591 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 592 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 593 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 594 // when installing a software update.
mjr 52:8298b2a73eb2 595 //
mjr 52:8298b2a73eb2 596 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 597 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 598 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 599 //
mjr 53:9b2611964afc 600 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 601 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 602 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 603 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 604 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 605 // all of the fields to zero.
mjr 52:8298b2a73eb2 606 //
mjr 53:9b2611964afc 607 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 608 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 609 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 610 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 611 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 612 //
mjr 53:9b2611964afc 613 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 614 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 615 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 616 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 617 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 618 //
mjr 53:9b2611964afc 619 // The remaining bytes depend on the board set type. Currently, only
mjr 53:9b2611964afc 620 // the Pinscape expansion boards are supported; for those, the bytes are
mjr 53:9b2611964afc 621 // used to store these values:
mjr 53:9b2611964afc 622 //
mjr 53:9b2611964afc 623 // byte 5 = number of main interface boards
mjr 53:9b2611964afc 624 // byte 6 = number of MOSFET power boards
mjr 53:9b2611964afc 625 // byte 7 = number of chime boards
mjr 53:9b2611964afc 626 //
mjr 53:9b2611964afc 627 // 15 -> Night mode setup.
mjr 53:9b2611964afc 628 //
mjr 53:9b2611964afc 629 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 630 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 631 // The button can also be used as normal for PC input if desired.
mjr 53:9b2611964afc 632 // byte 4 = flags:
mjr 53:9b2611964afc 633 // 0x01 -> the wired input is an on/off switch; night mode will be
mjr 53:9b2611964afc 634 // active when the input is switched on. If this bit isn't
mjr 53:9b2611964afc 635 // set, the input is a momentary button; pushing the button
mjr 53:9b2611964afc 636 // toggles night mode.
mjr 53:9b2611964afc 637 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 638 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 639 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 640 // the host.
mjr 53:9b2611964afc 641 //
mjr 53:9b2611964afc 642 //
mjr 53:9b2611964afc 643 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 644 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 645 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 646 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 647 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 648 // the maximum array index.
mjr 53:9b2611964afc 649 //
mjr 53:9b2611964afc 650 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 53:9b2611964afc 651 // button to be configured. There are 32 button slots, numbered 1-32. Each
mjr 53:9b2611964afc 652 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 653 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 654 //
mjr 53:9b2611964afc 655 // The bytes of the message are:
mjr 53:9b2611964afc 656 // byte 3 = Button number (1-32)
mjr 53:9b2611964afc 657 // byte 4 = GPIO pin to read for button input
mjr 53:9b2611964afc 658 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 659 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 660 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 661 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 53:9b2611964afc 662 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 663 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 664 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 665 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 666 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 667 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 668 // door changes state.
mjr 53:9b2611964afc 669 //
mjr 53:9b2611964afc 670 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 671 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 672 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 673 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 674 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 675 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 676 //
mjr 53:9b2611964afc 677 // The bytes of the message are:
mjr 53:9b2611964afc 678 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 679 // byte 4 = physical output type:
mjr 53:9b2611964afc 680 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 681 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 682 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 683 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 684 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 685 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 686 // ports are PWM-capable.
mjr 53:9b2611964afc 687 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 688 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 689 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 690 // used in this mode.
mjr 53:9b2611964afc 691 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 692 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 693 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 694 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 695 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 696 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 697 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 698 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 699 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 700 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 701 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 702 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 703 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 704 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 705 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 706 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 707 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 708 //
mjr 53:9b2611964afc 709 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 710 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 711 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 712 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 713 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 714 //
mjr 35:e959ffba78fd 715
mjr 35:e959ffba78fd 716
mjr 35:e959ffba78fd 717 // --- PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 718 //
mjr 53:9b2611964afc 719 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 720 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 721 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 722 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 723 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 724
mjr 35:e959ffba78fd 725
mjr 35:e959ffba78fd 726 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 727 //
mjr 53:9b2611964afc 728 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 729 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 730 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 731 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 732 //
mjr 53:9b2611964afc 733 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 734 // A-Z -> 04-1D
mjr 53:9b2611964afc 735 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 736 // Return -> 28
mjr 53:9b2611964afc 737 // Escape -> 29
mjr 53:9b2611964afc 738 // Backspace -> 2A
mjr 53:9b2611964afc 739 // Tab -> 2B
mjr 53:9b2611964afc 740 // Spacebar -> 2C
mjr 53:9b2611964afc 741 // -_ -> 2D
mjr 53:9b2611964afc 742 // =+ -> 2E
mjr 53:9b2611964afc 743 // [{ -> 2F
mjr 53:9b2611964afc 744 // ]} -> 30
mjr 53:9b2611964afc 745 // \| -> 31
mjr 53:9b2611964afc 746 // ;: -> 33
mjr 53:9b2611964afc 747 // '" -> 34
mjr 53:9b2611964afc 748 // `~ -> 35
mjr 53:9b2611964afc 749 // ,< -> 36
mjr 53:9b2611964afc 750 // .> -> 37
mjr 53:9b2611964afc 751 // /? -> 38
mjr 53:9b2611964afc 752 // Caps Lock -> 39
mjr 53:9b2611964afc 753 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 754 // F13-F24 -> 68-73
mjr 53:9b2611964afc 755 // Print Screen -> 46
mjr 53:9b2611964afc 756 // Scroll Lock -> 47
mjr 53:9b2611964afc 757 // Pause -> 48
mjr 53:9b2611964afc 758 // Insert -> 49
mjr 53:9b2611964afc 759 // Home -> 4A
mjr 53:9b2611964afc 760 // Page Up -> 4B
mjr 53:9b2611964afc 761 // Del -> 4C
mjr 53:9b2611964afc 762 // End -> 4D
mjr 53:9b2611964afc 763 // Page Down -> 4E
mjr 53:9b2611964afc 764 // Right Arrow -> 4F
mjr 53:9b2611964afc 765 // Left Arrow -> 50
mjr 53:9b2611964afc 766 // Down Arrow -> 51
mjr 53:9b2611964afc 767 // Up Arrow -> 52
mjr 53:9b2611964afc 768 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 769 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 770 // Keypad Enter -> 58
mjr 53:9b2611964afc 771 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 772 // Keypad 0 -> 62
mjr 53:9b2611964afc 773 // Keypad . -> 63
mjr 53:9b2611964afc 774 // Mute -> 7F
mjr 53:9b2611964afc 775 // Volume Up -> 80
mjr 53:9b2611964afc 776 // Volume Down -> 81
mjr 53:9b2611964afc 777 // Left Control -> E0
mjr 53:9b2611964afc 778 // Left Shift -> E1
mjr 53:9b2611964afc 779 // Left Alt -> E2
mjr 53:9b2611964afc 780 // Left GUI -> E3
mjr 53:9b2611964afc 781 // Right Control -> E4
mjr 53:9b2611964afc 782 // Right Shift -> E5
mjr 53:9b2611964afc 783 // Right Alt -> E6
mjr 53:9b2611964afc 784 // Right GUI -> E7
mjr 53:9b2611964afc 785 //
mjr 53:9b2611964afc 786 // Note that the Mute and Volume Up & Down keys are sent to the host as
mjr 53:9b2611964afc 787 // media control keys rather than regular keyboard keys.
mjr 35:e959ffba78fd 788