An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Wed Jul 16 23:33:12 2014 +0000
Revision:
1:d913e0afb2ac
Parent:
0:5acbbe3f4cf4
Child:
2:c174f9ee414a
Before removing time/frequency limit on reading the plunger sensor

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 0:5acbbe3f4cf4 1 #include "mbed.h"
mjr 0:5acbbe3f4cf4 2 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 3 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 4 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 5 #include "FreescaleIAP.h"
mjr 0:5acbbe3f4cf4 6
mjr 1:d913e0afb2ac 7 // on-board RGB LED elements - we use these for diagnostics
mjr 0:5acbbe3f4cf4 8 PwmOut led1(LED1), led2(LED2), led3(LED3);
mjr 0:5acbbe3f4cf4 9
mjr 1:d913e0afb2ac 10 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 11 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 12 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 13
mjr 0:5acbbe3f4cf4 14 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 15
mjr 0:5acbbe3f4cf4 16 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 17 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 18
mjr 0:5acbbe3f4cf4 19 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 20 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 21 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 22 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 23 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 24 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 25 };
mjr 0:5acbbe3f4cf4 26
mjr 1:d913e0afb2ac 27 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 28 {
mjr 1:d913e0afb2ac 29 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 30 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 31 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 32 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 33 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 34 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 35 return 0.0;
mjr 0:5acbbe3f4cf4 36 else
mjr 0:5acbbe3f4cf4 37 return 1.0;
mjr 0:5acbbe3f4cf4 38 }
mjr 0:5acbbe3f4cf4 39 else {
mjr 0:5acbbe3f4cf4 40 // off
mjr 0:5acbbe3f4cf4 41 return 1.0;
mjr 0:5acbbe3f4cf4 42 }
mjr 0:5acbbe3f4cf4 43 }
mjr 0:5acbbe3f4cf4 44
mjr 1:d913e0afb2ac 45 static void updateWizOuts()
mjr 1:d913e0afb2ac 46 {
mjr 1:d913e0afb2ac 47 led1 = wizState(0);
mjr 1:d913e0afb2ac 48 led2 = wizState(1);
mjr 1:d913e0afb2ac 49 led3 = wizState(2);
mjr 1:d913e0afb2ac 50 }
mjr 1:d913e0afb2ac 51
mjr 1:d913e0afb2ac 52 struct AccPrv
mjr 0:5acbbe3f4cf4 53 {
mjr 1:d913e0afb2ac 54 AccPrv() : x(0), y(0) { }
mjr 1:d913e0afb2ac 55 float x;
mjr 1:d913e0afb2ac 56 float y;
mjr 1:d913e0afb2ac 57
mjr 1:d913e0afb2ac 58 double dist(AccPrv &b)
mjr 1:d913e0afb2ac 59 {
mjr 1:d913e0afb2ac 60 float dx = x - b.x, dy = y - b.y;
mjr 1:d913e0afb2ac 61 return sqrt(dx*dx + dy*dy);
mjr 1:d913e0afb2ac 62 }
mjr 1:d913e0afb2ac 63 };
mjr 0:5acbbe3f4cf4 64
mjr 0:5acbbe3f4cf4 65 int main(void)
mjr 0:5acbbe3f4cf4 66 {
mjr 1:d913e0afb2ac 67 // turn off our on-board indicator LED
mjr 0:5acbbe3f4cf4 68 led1 = 1;
mjr 0:5acbbe3f4cf4 69 led2 = 1;
mjr 0:5acbbe3f4cf4 70 led3 = 1;
mjr 1:d913e0afb2ac 71
mjr 1:d913e0afb2ac 72 // plunger calibration data
mjr 1:d913e0afb2ac 73 const int npix = 320;
mjr 1:d913e0afb2ac 74 int plungerMin = 0, plungerMax = npix;
mjr 1:d913e0afb2ac 75
mjr 1:d913e0afb2ac 76 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 77 Timer calBtnTimer;
mjr 1:d913e0afb2ac 78 calBtnTimer.start();
mjr 1:d913e0afb2ac 79 int calBtnDownTime = 0;
mjr 1:d913e0afb2ac 80 int calBtnLit = false;
mjr 1:d913e0afb2ac 81
mjr 1:d913e0afb2ac 82 // Calibration button state:
mjr 1:d913e0afb2ac 83 // 0 = not pushed
mjr 1:d913e0afb2ac 84 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 85 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 86 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 87 int calBtnState = 0;
mjr 1:d913e0afb2ac 88
mjr 1:d913e0afb2ac 89 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 90 Timer hbTimer;
mjr 1:d913e0afb2ac 91 hbTimer.start();
mjr 1:d913e0afb2ac 92 int t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 93 int hb = 0;
mjr 1:d913e0afb2ac 94
mjr 1:d913e0afb2ac 95 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 96 Timer acTimer;
mjr 1:d913e0afb2ac 97 acTimer.start();
mjr 1:d913e0afb2ac 98 int t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 99
mjr 1:d913e0afb2ac 100 // set up a timer for reading the plunger sensor
mjr 1:d913e0afb2ac 101 Timer ccdTimer;
mjr 1:d913e0afb2ac 102 ccdTimer.start();
mjr 1:d913e0afb2ac 103 int t0ccd = ccdTimer.read_ms();
mjr 1:d913e0afb2ac 104
mjr 1:d913e0afb2ac 105 #if 0
mjr 1:d913e0afb2ac 106 // DEBUG
mjr 1:d913e0afb2ac 107 Timer ccdDbgTimer;
mjr 1:d913e0afb2ac 108 ccdDbgTimer.start();
mjr 1:d913e0afb2ac 109 int t0ccdDbg = ccdDbgTimer.read_ms();
mjr 1:d913e0afb2ac 110 #endif
mjr 0:5acbbe3f4cf4 111
mjr 1:d913e0afb2ac 112 // Create the joystick USB client. Light the on-board indicator LED
mjr 1:d913e0afb2ac 113 // red while connecting, and change to green after we connect.
mjr 0:5acbbe3f4cf4 114 led1 = 0.75;
mjr 0:5acbbe3f4cf4 115 USBJoystick js(0xFAFA, 0x00F7, 0x0001);
mjr 0:5acbbe3f4cf4 116 led1 = 1;
mjr 0:5acbbe3f4cf4 117 led2 = 0.75;
mjr 0:5acbbe3f4cf4 118
mjr 0:5acbbe3f4cf4 119 // create the accelerometer object
mjr 0:5acbbe3f4cf4 120 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 0:5acbbe3f4cf4 121 MMA8451Q accel(PTE25, PTE24, MMA8451_I2C_ADDRESS);
mjr 0:5acbbe3f4cf4 122
mjr 0:5acbbe3f4cf4 123 // create the CCD array object
mjr 1:d913e0afb2ac 124 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 1:d913e0afb2ac 125
mjr 1:d913e0afb2ac 126 // recent accelerometer readings, for auto centering
mjr 1:d913e0afb2ac 127 int iAccPrv = 0, nAccPrv = 0;
mjr 1:d913e0afb2ac 128 const int maxAccPrv = 5;
mjr 1:d913e0afb2ac 129 AccPrv accPrv[maxAccPrv];
mjr 0:5acbbe3f4cf4 130
mjr 1:d913e0afb2ac 131 // last accelerometer report, in mouse coordinates
mjr 1:d913e0afb2ac 132 int x = 127, y = 127, z = 0;
mjr 1:d913e0afb2ac 133
mjr 1:d913e0afb2ac 134 // raw accelerator centerpoint, on the unit interval (-1.0 .. +1.0)
mjr 1:d913e0afb2ac 135 float xCenter = 0.0, yCenter = 0.0;
mjr 1:d913e0afb2ac 136
mjr 1:d913e0afb2ac 137 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 138 // host requests
mjr 0:5acbbe3f4cf4 139 for (;;)
mjr 0:5acbbe3f4cf4 140 {
mjr 0:5acbbe3f4cf4 141 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 142 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 143 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 144 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 145 HID_REPORT report;
mjr 0:5acbbe3f4cf4 146 while (js.readNB(&report) && report.length == 8)
mjr 0:5acbbe3f4cf4 147 {
mjr 0:5acbbe3f4cf4 148 uint8_t *data = report.data;
mjr 1:d913e0afb2ac 149 if (data[0] == 64)
mjr 1:d913e0afb2ac 150 {
mjr 0:5acbbe3f4cf4 151 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 0:5acbbe3f4cf4 152 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 0:5acbbe3f4cf4 153 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 0:5acbbe3f4cf4 154 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 155
mjr 0:5acbbe3f4cf4 156 // update all on/off states
mjr 0:5acbbe3f4cf4 157 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 0:5acbbe3f4cf4 158 {
mjr 0:5acbbe3f4cf4 159 if (bit == 0x100) {
mjr 0:5acbbe3f4cf4 160 bit = 1;
mjr 0:5acbbe3f4cf4 161 ++ri;
mjr 0:5acbbe3f4cf4 162 }
mjr 1:d913e0afb2ac 163 wizOn[i] = ((data[ri] & bit) != 0);
mjr 0:5acbbe3f4cf4 164 }
mjr 0:5acbbe3f4cf4 165
mjr 1:d913e0afb2ac 166 // update the physical outputs
mjr 1:d913e0afb2ac 167 updateWizOuts();
mjr 0:5acbbe3f4cf4 168
mjr 0:5acbbe3f4cf4 169 // reset the PBA counter
mjr 0:5acbbe3f4cf4 170 pbaIdx = 0;
mjr 0:5acbbe3f4cf4 171 }
mjr 1:d913e0afb2ac 172 else
mjr 1:d913e0afb2ac 173 {
mjr 0:5acbbe3f4cf4 174 // LWZ-PBA - full state dump; each byte is one output
mjr 0:5acbbe3f4cf4 175 // in the current bank. pbaIdx keeps track of the bank;
mjr 0:5acbbe3f4cf4 176 // this is incremented implicitly by each PBA message.
mjr 0:5acbbe3f4cf4 177 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 0:5acbbe3f4cf4 178 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 0:5acbbe3f4cf4 179
mjr 0:5acbbe3f4cf4 180 // update all output profile settings
mjr 0:5acbbe3f4cf4 181 for (int i = 0 ; i < 8 ; ++i)
mjr 1:d913e0afb2ac 182 wizVal[pbaIdx + i] = data[i];
mjr 0:5acbbe3f4cf4 183
mjr 0:5acbbe3f4cf4 184 // update the physical LED state if this is the last bank
mjr 0:5acbbe3f4cf4 185 if (pbaIdx == 24)
mjr 1:d913e0afb2ac 186 updateWizOuts();
mjr 0:5acbbe3f4cf4 187
mjr 0:5acbbe3f4cf4 188 // advance to the next bank
mjr 0:5acbbe3f4cf4 189 pbaIdx = (pbaIdx + 8) & 31;
mjr 0:5acbbe3f4cf4 190 }
mjr 0:5acbbe3f4cf4 191 }
mjr 1:d913e0afb2ac 192
mjr 1:d913e0afb2ac 193 // check for plunger calibration
mjr 1:d913e0afb2ac 194 if (!calBtn)
mjr 0:5acbbe3f4cf4 195 {
mjr 1:d913e0afb2ac 196 // check the state
mjr 1:d913e0afb2ac 197 switch (calBtnState)
mjr 0:5acbbe3f4cf4 198 {
mjr 1:d913e0afb2ac 199 case 0:
mjr 1:d913e0afb2ac 200 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 201 calBtnTimer.reset();
mjr 1:d913e0afb2ac 202 calBtnDownTime = calBtnTimer.read_ms();
mjr 1:d913e0afb2ac 203 calBtnState = 1;
mjr 1:d913e0afb2ac 204 break;
mjr 1:d913e0afb2ac 205
mjr 1:d913e0afb2ac 206 case 1:
mjr 1:d913e0afb2ac 207 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 208 // passed, start the hold period
mjr 1:d913e0afb2ac 209 if (calBtnTimer.read_ms() - calBtnDownTime > 50)
mjr 1:d913e0afb2ac 210 calBtnState = 2;
mjr 1:d913e0afb2ac 211 break;
mjr 1:d913e0afb2ac 212
mjr 1:d913e0afb2ac 213 case 2:
mjr 1:d913e0afb2ac 214 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 215 // for the entire hold period, move to calibration mode
mjr 1:d913e0afb2ac 216 if (calBtnTimer.read_ms() - calBtnDownTime > 2050)
mjr 1:d913e0afb2ac 217 {
mjr 1:d913e0afb2ac 218 // enter calibration mode
mjr 1:d913e0afb2ac 219 calBtnState = 3;
mjr 1:d913e0afb2ac 220
mjr 1:d913e0afb2ac 221 // reset the calibration limits
mjr 1:d913e0afb2ac 222 plungerMax = 0;
mjr 1:d913e0afb2ac 223 plungerMin = npix;
mjr 1:d913e0afb2ac 224 }
mjr 1:d913e0afb2ac 225 break;
mjr 0:5acbbe3f4cf4 226 }
mjr 0:5acbbe3f4cf4 227 }
mjr 1:d913e0afb2ac 228 else
mjr 1:d913e0afb2ac 229 {
mjr 1:d913e0afb2ac 230 // Button released. If we're not already in calibration mode,
mjr 1:d913e0afb2ac 231 // reset the button state. Once calibration mode starts, it sticks
mjr 1:d913e0afb2ac 232 // until the calibration time elapses.
mjr 1:d913e0afb2ac 233 if (calBtnState != 3)
mjr 1:d913e0afb2ac 234 calBtnState = 0;
mjr 1:d913e0afb2ac 235 else if (calBtnTimer.read_ms() - calBtnDownTime > 32500)
mjr 1:d913e0afb2ac 236 calBtnState = 0;
mjr 1:d913e0afb2ac 237 }
mjr 1:d913e0afb2ac 238
mjr 1:d913e0afb2ac 239 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 240 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 241 switch (calBtnState)
mjr 0:5acbbe3f4cf4 242 {
mjr 1:d913e0afb2ac 243 case 2:
mjr 1:d913e0afb2ac 244 // in the hold period - flash the light
mjr 1:d913e0afb2ac 245 newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1);
mjr 1:d913e0afb2ac 246 break;
mjr 1:d913e0afb2ac 247
mjr 1:d913e0afb2ac 248 case 3:
mjr 1:d913e0afb2ac 249 // calibration mode - show steady on
mjr 1:d913e0afb2ac 250 newCalBtnLit = true;
mjr 1:d913e0afb2ac 251 break;
mjr 1:d913e0afb2ac 252
mjr 1:d913e0afb2ac 253 default:
mjr 1:d913e0afb2ac 254 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 255 newCalBtnLit = false;
mjr 1:d913e0afb2ac 256 break;
mjr 1:d913e0afb2ac 257 }
mjr 1:d913e0afb2ac 258 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 259 {
mjr 1:d913e0afb2ac 260 calBtnLit = newCalBtnLit;
mjr 1:d913e0afb2ac 261 calBtnLed = (calBtnLit ? 1 : 0);
mjr 1:d913e0afb2ac 262 }
mjr 1:d913e0afb2ac 263
mjr 1:d913e0afb2ac 264 // read the plunger sensor
mjr 1:d913e0afb2ac 265 int znew = z;
mjr 1:d913e0afb2ac 266 /* if (ccdTimer.read_ms() - t0ccd > 33) */
mjr 1:d913e0afb2ac 267 {
mjr 1:d913e0afb2ac 268 // read the sensor at reduced resolution
mjr 1:d913e0afb2ac 269 uint16_t pix[npix];
mjr 1:d913e0afb2ac 270 ccd.read(pix, npix, 0);
mjr 1:d913e0afb2ac 271
mjr 1:d913e0afb2ac 272 #if 0
mjr 1:d913e0afb2ac 273 // debug - send samples every 5 seconds
mjr 1:d913e0afb2ac 274 if (ccdDbgTimer.read_ms() - t0ccdDbg > 5000)
mjr 1:d913e0afb2ac 275 {
mjr 1:d913e0afb2ac 276 for (int i = 0 ; i < npix ; ++i)
mjr 1:d913e0afb2ac 277 printf("%x ", pix[i]);
mjr 1:d913e0afb2ac 278 printf("\r\n\r\n");
mjr 1:d913e0afb2ac 279
mjr 1:d913e0afb2ac 280 ccdDbgTimer.reset();
mjr 1:d913e0afb2ac 281 t0ccdDbg = ccdDbgTimer.read_ms();
mjr 0:5acbbe3f4cf4 282 }
mjr 1:d913e0afb2ac 283 #endif
mjr 1:d913e0afb2ac 284
mjr 1:d913e0afb2ac 285 // check which end is the brighter - this is the "tip" end
mjr 1:d913e0afb2ac 286 // of the plunger
mjr 1:d913e0afb2ac 287 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 1:d913e0afb2ac 288 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 1:d913e0afb2ac 289
mjr 1:d913e0afb2ac 290 // figure the midpoint in the brightness
mjr 1:d913e0afb2ac 291 long midpt = (avg1 + avg2)/2 * 3;
mjr 1:d913e0afb2ac 292
mjr 1:d913e0afb2ac 293 // Work from the bright end to the dark end. VP interprets the
mjr 1:d913e0afb2ac 294 // Z axis value as the amount the plunger is pulled: the minimum
mjr 1:d913e0afb2ac 295 // is the rest position, the maximum is fully pulled. So we
mjr 1:d913e0afb2ac 296 // essentially want to report how much of the sensor is lit,
mjr 1:d913e0afb2ac 297 // since this increases as the plunger is pulled back.
mjr 1:d913e0afb2ac 298 int si = 1, di = 1;
mjr 1:d913e0afb2ac 299 if (avg1 < avg2)
mjr 1:d913e0afb2ac 300 si = npix - 1, di = -1;
mjr 0:5acbbe3f4cf4 301
mjr 1:d913e0afb2ac 302 // scan for the midpoint
mjr 1:d913e0afb2ac 303 for (int n = 1, i = si ; n < npix - 1 ; ++n, i += di)
mjr 1:d913e0afb2ac 304 {
mjr 1:d913e0afb2ac 305 // if we've crossed the midpoint, report this position
mjr 1:d913e0afb2ac 306 if (long(pix[i-1]) + long(pix[i]) + long(pix[i+1]) < midpt)
mjr 1:d913e0afb2ac 307 {
mjr 1:d913e0afb2ac 308 // note the new position
mjr 1:d913e0afb2ac 309 int pos = abs(i - si);
mjr 1:d913e0afb2ac 310
mjr 1:d913e0afb2ac 311 // Calibrate, or apply calibration, depending on the mode.
mjr 1:d913e0afb2ac 312 // In either case, normalize to a 0-127 range. VP appears to
mjr 1:d913e0afb2ac 313 // ignore negative Z axis values.
mjr 1:d913e0afb2ac 314 if (calBtnState == 3)
mjr 1:d913e0afb2ac 315 {
mjr 1:d913e0afb2ac 316 // calibrating - note if we're expanding the calibration envelope
mjr 1:d913e0afb2ac 317 if (pos < plungerMin)
mjr 1:d913e0afb2ac 318 plungerMin = pos;
mjr 1:d913e0afb2ac 319 if (pos > plungerMax)
mjr 1:d913e0afb2ac 320 plungerMax = pos;
mjr 1:d913e0afb2ac 321
mjr 1:d913e0afb2ac 322 // normalize to the full physical range while calibrating
mjr 1:d913e0afb2ac 323 znew = int(float(pos)/npix * 127);
mjr 1:d913e0afb2ac 324 }
mjr 1:d913e0afb2ac 325 else
mjr 1:d913e0afb2ac 326 {
mjr 1:d913e0afb2ac 327 // running normally - normalize to the calibration range
mjr 1:d913e0afb2ac 328 if (pos < plungerMin)
mjr 1:d913e0afb2ac 329 pos = plungerMin;
mjr 1:d913e0afb2ac 330 if (pos > plungerMax)
mjr 1:d913e0afb2ac 331 pos = plungerMax;
mjr 1:d913e0afb2ac 332 znew = int(float(pos - plungerMin)/(plungerMax - plungerMin + 1) * 127);
mjr 1:d913e0afb2ac 333 }
mjr 1:d913e0afb2ac 334
mjr 1:d913e0afb2ac 335 // done
mjr 1:d913e0afb2ac 336 break;
mjr 1:d913e0afb2ac 337 }
mjr 1:d913e0afb2ac 338 }
mjr 1:d913e0afb2ac 339
mjr 1:d913e0afb2ac 340 // reset the timer
mjr 1:d913e0afb2ac 341 ccdTimer.reset();
mjr 1:d913e0afb2ac 342 t0ccd = ccdTimer.read_ms();
mjr 1:d913e0afb2ac 343 }
mjr 1:d913e0afb2ac 344
mjr 1:d913e0afb2ac 345 // read the accelerometer
mjr 1:d913e0afb2ac 346 float xa, ya;
mjr 1:d913e0afb2ac 347 accel.getAccXY(xa, ya);
mjr 1:d913e0afb2ac 348
mjr 1:d913e0afb2ac 349 // check for auto-centering every so often
mjr 1:d913e0afb2ac 350 if (acTimer.read_ms() - t0ac > 1000)
mjr 1:d913e0afb2ac 351 {
mjr 1:d913e0afb2ac 352 // add the sample to the history list
mjr 1:d913e0afb2ac 353 accPrv[iAccPrv].x = xa;
mjr 1:d913e0afb2ac 354 accPrv[iAccPrv].y = ya;
mjr 1:d913e0afb2ac 355
mjr 1:d913e0afb2ac 356 // store the slot
mjr 1:d913e0afb2ac 357 iAccPrv += 1;
mjr 1:d913e0afb2ac 358 iAccPrv %= maxAccPrv;
mjr 1:d913e0afb2ac 359 nAccPrv += 1;
mjr 1:d913e0afb2ac 360
mjr 1:d913e0afb2ac 361 // If we have a full complement, check for stability. The
mjr 1:d913e0afb2ac 362 // raw accelerometer input is in the rnage -4096 to 4096, but
mjr 1:d913e0afb2ac 363 // the class cover normalizes to a unit interval (-1.0 .. +1.0).
mjr 1:d913e0afb2ac 364 const float accTol = .005;
mjr 1:d913e0afb2ac 365 if (nAccPrv >= maxAccPrv
mjr 1:d913e0afb2ac 366 && accPrv[0].dist(accPrv[1]) < accTol
mjr 1:d913e0afb2ac 367 && accPrv[0].dist(accPrv[2]) < accTol
mjr 1:d913e0afb2ac 368 && accPrv[0].dist(accPrv[3]) < accTol
mjr 1:d913e0afb2ac 369 && accPrv[0].dist(accPrv[4]) < accTol)
mjr 1:d913e0afb2ac 370 {
mjr 1:d913e0afb2ac 371 // figure the new center
mjr 1:d913e0afb2ac 372 xCenter = (accPrv[0].x + accPrv[1].x + accPrv[2].x + accPrv[3].x + accPrv[4].x)/5.0;
mjr 1:d913e0afb2ac 373 yCenter = (accPrv[0].y + accPrv[1].y + accPrv[2].y + accPrv[3].y + accPrv[4].y)/5.0;
mjr 1:d913e0afb2ac 374 }
mjr 1:d913e0afb2ac 375
mjr 1:d913e0afb2ac 376 // reset the auto-center timer
mjr 1:d913e0afb2ac 377 acTimer.reset();
mjr 1:d913e0afb2ac 378 t0ac = acTimer.read_ms();
mjr 1:d913e0afb2ac 379 }
mjr 1:d913e0afb2ac 380
mjr 1:d913e0afb2ac 381 // adjust for our auto centering
mjr 1:d913e0afb2ac 382 xa -= xCenter;
mjr 1:d913e0afb2ac 383 ya -= yCenter;
mjr 1:d913e0afb2ac 384
mjr 1:d913e0afb2ac 385 // confine to the unit interval
mjr 1:d913e0afb2ac 386 if (xa < -1.0) xa = -1.0;
mjr 1:d913e0afb2ac 387 if (xa > 1.0) xa = 1.0;
mjr 1:d913e0afb2ac 388 if (ya < -1.0) ya = -1.0;
mjr 1:d913e0afb2ac 389 if (ya > 1.0) ya = 1.0;
mjr 0:5acbbe3f4cf4 390
mjr 1:d913e0afb2ac 391 // figure the new mouse report data
mjr 1:d913e0afb2ac 392 int xnew = (int)(127 * xa);
mjr 1:d913e0afb2ac 393 int ynew = (int)(127 * ya);
mjr 1:d913e0afb2ac 394
mjr 1:d913e0afb2ac 395 // send an update if the position has changed
mjr 1:d913e0afb2ac 396 // if (xnew != x || ynew != y || znew != z)
mjr 0:5acbbe3f4cf4 397 {
mjr 1:d913e0afb2ac 398 x = xnew;
mjr 1:d913e0afb2ac 399 y = ynew;
mjr 1:d913e0afb2ac 400 z = znew;
mjr 1:d913e0afb2ac 401
mjr 1:d913e0afb2ac 402 // Send the status report. Note that the X axis needs to be
mjr 1:d913e0afb2ac 403 // reversed, becasue the native accelerometer reports seem to
mjr 1:d913e0afb2ac 404 // assume that the card is component side down.
mjr 1:d913e0afb2ac 405 js.update(x, -y, z, 0);
mjr 0:5acbbe3f4cf4 406 }
mjr 1:d913e0afb2ac 407
mjr 1:d913e0afb2ac 408 // show a heartbeat flash in blue every so often
mjr 1:d913e0afb2ac 409 if (hbTimer.read_ms() - t0Hb > 1000)
mjr 1:d913e0afb2ac 410 {
mjr 1:d913e0afb2ac 411 // invert the blue LED state
mjr 1:d913e0afb2ac 412 hb = !hb;
mjr 1:d913e0afb2ac 413 led3 = (hb ? .5 : 1);
mjr 1:d913e0afb2ac 414
mjr 1:d913e0afb2ac 415 // reset the heartbeat timer
mjr 1:d913e0afb2ac 416 hbTimer.reset();
mjr 1:d913e0afb2ac 417 t0Hb = hbTimer.read_ms();
mjr 1:d913e0afb2ac 418 }
mjr 1:d913e0afb2ac 419 }
mjr 0:5acbbe3f4cf4 420 }