An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Tue Jan 05 05:23:07 2016 +0000
Revision:
38:091e511ce8a0
Parent:
35:e959ffba78fd
Child:
39:b3815a1c3802
USB improvements

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 35:e959ffba78fd 3 // New for 2016: dynamic configuration! To configure the controller, connect
mjr 35:e959ffba78fd 4 // the KL25Z to your PC, install the .bin file, and run the Windows config tool.
mjr 35:e959ffba78fd 5 // There's no need (as there was in the past) to edit this file or to compile a
mjr 35:e959ffba78fd 6 // custom version of the binary (.bin) to customize setup options.
mjr 35:e959ffba78fd 7 //
mjr 35:e959ffba78fd 8 // In earlier versions, configuration was largely handled with compile-time
mjr 35:e959ffba78fd 9 // constants. To customize the setup, you had to create a private forked copy
mjr 35:e959ffba78fd 10 // of the source code, edit the constants defined in config.h, and compile a
mjr 35:e959ffba78fd 11 // custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 12 //
mjr 35:e959ffba78fd 13 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 14 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 15 // version just to make a configurable change. Of course, you're still free
mjr 35:e959ffba78fd 16 // to create a custom version if you need to add or change features in ways
mjr 35:e959ffba78fd 17 // that weren't anticipated in the original design.
mjr 35:e959ffba78fd 18 //
mjr 35:e959ffba78fd 19
mjr 17:ab3cec0c8bf4 20
mjr 25:e22b88bd783a 21 #ifndef CONFIG_H
mjr 25:e22b88bd783a 22 #define CONFIG_H
mjr 17:ab3cec0c8bf4 23
mjr 33:d832bcab089e 24
mjr 35:e959ffba78fd 25 // Plunger type codes
mjr 35:e959ffba78fd 26 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 27 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 28 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 29 // versions.
mjr 35:e959ffba78fd 30 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 31 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 32 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 35:e959ffba78fd 33 const int PlungerType_TSL1412RS = 3; // TSL1412R linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 34 const int PlungerType_TSL1412RP = 4; // TSL1412R, parallel mode
mjr 35:e959ffba78fd 35 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 36 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 37 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 38
mjr 35:e959ffba78fd 39 // Accelerometer orientation codes
mjr 35:e959ffba78fd 40 // These values are part of the external USB interface
mjr 35:e959ffba78fd 41 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 42 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 43 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 44 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 45
mjr 35:e959ffba78fd 46 // input button types
mjr 35:e959ffba78fd 47 const int BtnTypeJoystick = 1; // joystick button
mjr 35:e959ffba78fd 48 const int BtnTypeKey = 2; // regular keyboard key
mjr 35:e959ffba78fd 49 const int BtnTypeModKey = 3; // keyboard modifier key (shift, ctrl, etc)
mjr 35:e959ffba78fd 50 const int BtnTypeMedia = 4; // media control key (volume up/down, etc)
mjr 38:091e511ce8a0 51 const int BtnTypeSpecial = 5; // special button (night mode switch, etc)
mjr 38:091e511ce8a0 52
mjr 38:091e511ce8a0 53 // input button flags
mjr 38:091e511ce8a0 54 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 55 // as a brief press of the logical button/keyboard key
mjr 33:d832bcab089e 56
mjr 35:e959ffba78fd 57 // maximum number of input button mappings
mjr 35:e959ffba78fd 58 const int MAX_BUTTONS = 32;
mjr 33:d832bcab089e 59
mjr 35:e959ffba78fd 60 // LedWiz output port type codes
mjr 35:e959ffba78fd 61 // These values are part of the external USB interface
mjr 35:e959ffba78fd 62 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 63 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 64 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 65 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 66 const int PortType74HC595 = 4; // 74HC595 port
mjr 35:e959ffba78fd 67 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected to a physical output
mjr 17:ab3cec0c8bf4 68
mjr 35:e959ffba78fd 69 // LedWiz output port flag bits
mjr 38:091e511ce8a0 70 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 71 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 35:e959ffba78fd 72
mjr 35:e959ffba78fd 73 // maximum number of output ports
mjr 35:e959ffba78fd 74 const int MAX_OUT_PORTS = 203;
mjr 33:d832bcab089e 75
mjr 38:091e511ce8a0 76 // port configuration data
mjr 38:091e511ce8a0 77 struct LedWizPortCfg
mjr 38:091e511ce8a0 78 {
mjr 38:091e511ce8a0 79 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 80 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 81 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 82 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 83 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 84 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 38:091e511ce8a0 85 } __attribute__((packed));
mjr 38:091e511ce8a0 86
mjr 38:091e511ce8a0 87
mjr 35:e959ffba78fd 88 struct Config
mjr 35:e959ffba78fd 89 {
mjr 35:e959ffba78fd 90 // set all values to factory defaults
mjr 35:e959ffba78fd 91 void setFactoryDefaults()
mjr 35:e959ffba78fd 92 {
mjr 35:e959ffba78fd 93 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 94 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 95 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 96 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 97 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 98 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 35:e959ffba78fd 99 // has a unit #8, so we'll use that as our default starting number. This can
mjr 35:e959ffba78fd 100 // be changed from the config tool, but for the sake of convenience we want the
mjr 35:e959ffba78fd 101 // default to be a value that most people won't have to change.
mjr 35:e959ffba78fd 102 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 38:091e511ce8a0 103 usbProductID = 0x00F0; // LedWiz product code for unit #1
mjr 35:e959ffba78fd 104 psUnitNo = 8;
mjr 35:e959ffba78fd 105
mjr 35:e959ffba78fd 106 // enable joystick reports
mjr 35:e959ffba78fd 107 joystickEnabled = true;
mjr 35:e959ffba78fd 108
mjr 35:e959ffba78fd 109 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 110 orientation = OrientationFront;
mjr 25:e22b88bd783a 111
mjr 35:e959ffba78fd 112 // assume no plunger is attached
mjr 35:e959ffba78fd 113 plunger.enabled = false;
mjr 35:e959ffba78fd 114 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 115
mjr 35:e959ffba78fd 116 // assume that there's no calibration button
mjr 35:e959ffba78fd 117 plunger.cal.btn = NC;
mjr 35:e959ffba78fd 118 plunger.cal.led = NC;
mjr 35:e959ffba78fd 119
mjr 35:e959ffba78fd 120 // clear the plunger calibration
mjr 35:e959ffba78fd 121 plunger.cal.reset(4096);
mjr 35:e959ffba78fd 122
mjr 35:e959ffba78fd 123 // disable the ZB Launch Ball by default
mjr 35:e959ffba78fd 124 plunger.zbLaunchBall.port = 0;
mjr 35:e959ffba78fd 125 plunger.zbLaunchBall.btn = 0;
mjr 35:e959ffba78fd 126
mjr 35:e959ffba78fd 127 // assume no TV ON switch
mjr 38:091e511ce8a0 128 #if 1
mjr 38:091e511ce8a0 129 TVON.statusPin = PTD2;
mjr 38:091e511ce8a0 130 TVON.latchPin = PTE0;
mjr 38:091e511ce8a0 131 TVON.relayPin = PTD3;
mjr 38:091e511ce8a0 132 TVON.delayTime = 7;
mjr 38:091e511ce8a0 133 #else
mjr 35:e959ffba78fd 134 TVON.statusPin = NC;
mjr 35:e959ffba78fd 135 TVON.latchPin = NC;
mjr 35:e959ffba78fd 136 TVON.relayPin = NC;
mjr 35:e959ffba78fd 137 TVON.delayTime = 0;
mjr 38:091e511ce8a0 138 #endif
mjr 35:e959ffba78fd 139
mjr 35:e959ffba78fd 140 // assume no TLC5940 chips
mjr 38:091e511ce8a0 141 #if 1 // $$$
mjr 38:091e511ce8a0 142 tlc5940.nchips = 2;
mjr 38:091e511ce8a0 143 #else
mjr 35:e959ffba78fd 144 tlc5940.nchips = 0;
mjr 38:091e511ce8a0 145 #endif
mjr 38:091e511ce8a0 146
mjr 38:091e511ce8a0 147 // default TLC5940 pin assignments
mjr 38:091e511ce8a0 148 tlc5940.sin = PTC6;
mjr 38:091e511ce8a0 149 tlc5940.sclk = PTC5;
mjr 38:091e511ce8a0 150 tlc5940.xlat = PTC10;
mjr 38:091e511ce8a0 151 tlc5940.blank = PTC7;
mjr 38:091e511ce8a0 152 tlc5940.gsclk = PTA1;
mjr 35:e959ffba78fd 153
mjr 35:e959ffba78fd 154 // assume no 74HC595 chips
mjr 35:e959ffba78fd 155 hc595.nchips = 0;
mjr 35:e959ffba78fd 156
mjr 38:091e511ce8a0 157 // default 74HC595 pin assignments
mjr 38:091e511ce8a0 158 hc595.sin = PTA5;
mjr 38:091e511ce8a0 159 hc595.sclk = PTA4;
mjr 38:091e511ce8a0 160 hc595.latch = PTA12;
mjr 38:091e511ce8a0 161 hc595.ena = PTD4;
mjr 38:091e511ce8a0 162
mjr 35:e959ffba78fd 163 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 164 outPort[0].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 165 for (int i = 0 ; i < sizeof(specialPort)/sizeof(specialPort[0]) ; ++i)
mjr 38:091e511ce8a0 166 specialPort[i].typ = PortTypeDisabled;
mjr 35:e959ffba78fd 167
mjr 35:e959ffba78fd 168 // initially configure with no input buttons
mjr 35:e959ffba78fd 169 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 35:e959ffba78fd 170 button[i].pin = 0; // 0 == index of NC in USB-to-PinName mapping
mjr 38:091e511ce8a0 171
mjr 38:091e511ce8a0 172 #if 1
mjr 38:091e511ce8a0 173 for (int i = 0 ; i < 24 ; ++i) {
mjr 38:091e511ce8a0 174 static int bp[] = {
mjr 38:091e511ce8a0 175 21, // 1 = PTC2
mjr 38:091e511ce8a0 176 12, // 2 = PTB3
mjr 38:091e511ce8a0 177 11, // 3 = PTB2
mjr 38:091e511ce8a0 178 10, // 4 = PTB1
mjr 38:091e511ce8a0 179 54, // 5 = PTE30
mjr 38:091e511ce8a0 180 30, // 6 = PTC11
mjr 38:091e511ce8a0 181 48, // 7 = PTE5
mjr 38:091e511ce8a0 182 47, // 8 = PTE4
mjr 38:091e511ce8a0 183 46, // 9 = PTE3
mjr 38:091e511ce8a0 184 45, // 10 = PTE2
mjr 38:091e511ce8a0 185 16, // 11 = PTB11
mjr 38:091e511ce8a0 186 15, // 12 = PTB10
mjr 38:091e511ce8a0 187 14, // 13 = PTB9
mjr 38:091e511ce8a0 188 13, // 14 = PTB8
mjr 38:091e511ce8a0 189 31, // 15 = PTC12
mjr 38:091e511ce8a0 190 32, // 16 = PTC13
mjr 38:091e511ce8a0 191 33, // 17 = PTC16
mjr 38:091e511ce8a0 192 34, // 18 = PTC17
mjr 38:091e511ce8a0 193 7, // 19 = PTA16
mjr 38:091e511ce8a0 194 8, // 20 = PTA17
mjr 38:091e511ce8a0 195 55, // 21 = PTE31
mjr 38:091e511ce8a0 196 41, // 22 = PTD6
mjr 38:091e511ce8a0 197 42, // 23 = PTD7
mjr 38:091e511ce8a0 198 44 // 24 = PTE1
mjr 38:091e511ce8a0 199 };
mjr 38:091e511ce8a0 200 button[i].pin = bp[i];
mjr 38:091e511ce8a0 201 button[i].typ = BtnTypeKey;
mjr 38:091e511ce8a0 202 button[i].val = i+4; // A, B, C...
mjr 38:091e511ce8a0 203 }
mjr 38:091e511ce8a0 204 #endif
mjr 38:091e511ce8a0 205
mjr 38:091e511ce8a0 206 #if 0
mjr 38:091e511ce8a0 207 button[23].typ = BtnTypeJoystick;
mjr 38:091e511ce8a0 208 button[23].val = 5; // B
mjr 38:091e511ce8a0 209 button[23].flags = 0x01; // pulse button
mjr 38:091e511ce8a0 210
mjr 38:091e511ce8a0 211 button[22].typ = BtnTypeModKey;
mjr 38:091e511ce8a0 212 button[22].val = 0x02; // left shift
mjr 38:091e511ce8a0 213
mjr 38:091e511ce8a0 214 button[21].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 215 button[21].val = 0x02; // vol down
mjr 38:091e511ce8a0 216
mjr 38:091e511ce8a0 217 button[20].typ = BtnTypeMedia;
mjr 38:091e511ce8a0 218 button[20].val = 0x01; // vol up
mjr 38:091e511ce8a0 219 #endif
mjr 38:091e511ce8a0 220
mjr 38:091e511ce8a0 221 #if 1 // $$$
mjr 38:091e511ce8a0 222 {
mjr 38:091e511ce8a0 223 int n = 0;
mjr 38:091e511ce8a0 224 for (int i = 0 ; i < 32 ; ++i, ++n) {
mjr 38:091e511ce8a0 225 outPort[n].typ = PortTypeTLC5940;
mjr 38:091e511ce8a0 226 outPort[n].pin = i;
mjr 38:091e511ce8a0 227 outPort[n].flags = 0;
mjr 38:091e511ce8a0 228 }
mjr 38:091e511ce8a0 229 outPort[n].typ = PortTypeGPIODig;
mjr 38:091e511ce8a0 230 outPort[n].pin = 27; // PTC8
mjr 38:091e511ce8a0 231 outPort[n++].flags = 0;
mjr 35:e959ffba78fd 232
mjr 38:091e511ce8a0 233 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 234 }
mjr 38:091e511ce8a0 235 #endif
mjr 38:091e511ce8a0 236 #if 0
mjr 38:091e511ce8a0 237 outPort[0].typ = PortTypeGPIOPWM;
mjr 38:091e511ce8a0 238 outPort[0].pin = 17; // PTB18 = LED1 = Red LED
mjr 38:091e511ce8a0 239 outPort[0].flags = PortFlagActiveLow;
mjr 38:091e511ce8a0 240 outPort[1].typ = PortTypeGPIOPWM;
mjr 38:091e511ce8a0 241 outPort[1].pin = 18; // PTB19 = LED2 = Green LED
mjr 38:091e511ce8a0 242 outPort[1].flags = PortFlagActiveLow;
mjr 38:091e511ce8a0 243 outPort[2].typ = PortTypeGPIOPWM;
mjr 38:091e511ce8a0 244 outPort[2].pin = 36; // PTD1 = LED3 = Blue LED
mjr 38:091e511ce8a0 245 outPort[2].flags = PortFlagActiveLow;
mjr 38:091e511ce8a0 246
mjr 38:091e511ce8a0 247 outPort[3].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 248 #endif
mjr 35:e959ffba78fd 249 }
mjr 35:e959ffba78fd 250
mjr 35:e959ffba78fd 251 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 252
mjr 35:e959ffba78fd 253 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 254 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 255 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 256 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 257 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 258 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 259 // for open-source USB projects).
mjr 35:e959ffba78fd 260 uint16_t usbVendorID;
mjr 35:e959ffba78fd 261 uint16_t usbProductID;
mjr 35:e959ffba78fd 262
mjr 35:e959ffba78fd 263 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 264 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 35:e959ffba78fd 265 // distinguish multiple Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 266 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 267 uint8_t psUnitNo;
mjr 35:e959ffba78fd 268
mjr 35:e959ffba78fd 269 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 270 // use the device as purely an output controller.
mjr 35:e959ffba78fd 271 char joystickEnabled;
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 275
mjr 35:e959ffba78fd 276 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 277 char orientation;
mjr 35:e959ffba78fd 278
mjr 35:e959ffba78fd 279
mjr 35:e959ffba78fd 280 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 281 struct
mjr 35:e959ffba78fd 282 {
mjr 35:e959ffba78fd 283 // plunger enabled/disabled
mjr 35:e959ffba78fd 284 char enabled;
mjr 33:d832bcab089e 285
mjr 35:e959ffba78fd 286 // plunger sensor type
mjr 35:e959ffba78fd 287 char sensorType;
mjr 35:e959ffba78fd 288
mjr 35:e959ffba78fd 289 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 290 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 291 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 292 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 293 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 294 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 295 //
mjr 35:e959ffba78fd 296 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 297 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 298 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 299 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 300 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 301 PinName sensorPin[4];
mjr 35:e959ffba78fd 302
mjr 35:e959ffba78fd 303 // Pseudo LAUNCH BALL button.
mjr 35:e959ffba78fd 304 //
mjr 35:e959ffba78fd 305 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 306 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 307 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 308 //
mjr 35:e959ffba78fd 309 // The port number is an LedWiz port number that we monitor for activation.
mjr 35:e959ffba78fd 310 // This port isn't connected to a physical device; rather, the host turns it
mjr 35:e959ffba78fd 311 // on to indicate that the pseudo Launch button mode is in effect.
mjr 35:e959ffba78fd 312 //
mjr 35:e959ffba78fd 313 // The button number gives the button that we "press" when a launch occurs.
mjr 35:e959ffba78fd 314 // This can be connected to the physical Launch button, or can simply be
mjr 35:e959ffba78fd 315 // an otherwise unused button.
mjr 35:e959ffba78fd 316 //
mjr 35:e959ffba78fd 317 // The "push distance" is the distance, in inches, for registering a push
mjr 35:e959ffba78fd 318 // on the plunger as a button push. If the player pushes the plunger forward
mjr 35:e959ffba78fd 319 // of the rest position by this amount, we'll treat it as pushing the button,
mjr 35:e959ffba78fd 320 // even if the player didn't pull back the plunger first. This lets the
mjr 35:e959ffba78fd 321 // player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 322 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 323 // Pub").
mjr 35:e959ffba78fd 324 struct
mjr 35:e959ffba78fd 325 {
mjr 35:e959ffba78fd 326 int port;
mjr 35:e959ffba78fd 327 int btn;
mjr 35:e959ffba78fd 328 float pushDistance;
mjr 35:e959ffba78fd 329
mjr 35:e959ffba78fd 330 } zbLaunchBall;
mjr 35:e959ffba78fd 331
mjr 35:e959ffba78fd 332 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 333 struct
mjr 35:e959ffba78fd 334 {
mjr 35:e959ffba78fd 335 // has the plunger been calibrated?
mjr 35:e959ffba78fd 336 int calibrated;
mjr 35:e959ffba78fd 337
mjr 35:e959ffba78fd 338 // calibration button switch pin
mjr 35:e959ffba78fd 339 PinName btn;
mjr 35:e959ffba78fd 340
mjr 35:e959ffba78fd 341 // calibration button indicator light pin
mjr 35:e959ffba78fd 342 PinName led;
mjr 35:e959ffba78fd 343
mjr 35:e959ffba78fd 344 // Plunger calibration min, zero, and max. The zero point is the
mjr 35:e959ffba78fd 345 // rest position (aka park position), where it's in equilibrium between
mjr 35:e959ffba78fd 346 // the main spring and the barrel spring. It can travel a small distance
mjr 35:e959ffba78fd 347 // forward of the rest position, because the barrel spring can be
mjr 35:e959ffba78fd 348 // compressed by the user pushing on the plunger or by the momentum
mjr 35:e959ffba78fd 349 // of a release motion. The minimum is the maximum forward point where
mjr 35:e959ffba78fd 350 // the barrel spring can't be compressed any further.
mjr 35:e959ffba78fd 351 int min;
mjr 35:e959ffba78fd 352 int zero;
mjr 35:e959ffba78fd 353 int max;
mjr 35:e959ffba78fd 354
mjr 35:e959ffba78fd 355 // reset the plunger calibration
mjr 35:e959ffba78fd 356 void reset(int npix)
mjr 35:e959ffba78fd 357 {
mjr 35:e959ffba78fd 358 calibrated = 0; // not calibrated
mjr 35:e959ffba78fd 359 min = 0; // assume we can go all the way forward...
mjr 35:e959ffba78fd 360 max = npix; // ...and all the way back
mjr 35:e959ffba78fd 361 zero = npix/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 35:e959ffba78fd 362 }
mjr 17:ab3cec0c8bf4 363
mjr 35:e959ffba78fd 364 } cal;
mjr 18:5e890ebd0023 365
mjr 35:e959ffba78fd 366 } plunger;
mjr 29:582472d0bc57 367
mjr 35:e959ffba78fd 368
mjr 35:e959ffba78fd 369 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 370 //
mjr 35:e959ffba78fd 371 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 372 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 373 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 374 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 375 struct
mjr 35:e959ffba78fd 376 {
mjr 35:e959ffba78fd 377 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 378 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 379 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 380 // it remains HIGH as long as the secondary PSU is on.
mjr 35:e959ffba78fd 381 PinName statusPin;
mjr 35:e959ffba78fd 382
mjr 35:e959ffba78fd 383 // PSU2 power status latch (DigitalOut pin)
mjr 35:e959ffba78fd 384 PinName latchPin;
mjr 35:e959ffba78fd 385
mjr 35:e959ffba78fd 386 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 387 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 35:e959ffba78fd 388 PinName relayPin;
mjr 35:e959ffba78fd 389
mjr 35:e959ffba78fd 390 // TV ON delay time, in seconds. This is the interval between sensing
mjr 35:e959ffba78fd 391 // that the secondary power supply has turned on and pulsing the TV ON
mjr 35:e959ffba78fd 392 // switch relay.
mjr 35:e959ffba78fd 393 float delayTime;
mjr 35:e959ffba78fd 394
mjr 35:e959ffba78fd 395 } TVON;
mjr 35:e959ffba78fd 396
mjr 29:582472d0bc57 397
mjr 35:e959ffba78fd 398 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 399 struct
mjr 35:e959ffba78fd 400 {
mjr 35:e959ffba78fd 401 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 402 int nchips;
mjr 35:e959ffba78fd 403
mjr 35:e959ffba78fd 404 // pin connections
mjr 35:e959ffba78fd 405 PinName sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 35:e959ffba78fd 406 PinName sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 407 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 35:e959ffba78fd 408 PinName xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 35:e959ffba78fd 409 PinName blank; // BLANK signal - connect to any GPIO pin
mjr 35:e959ffba78fd 410 PinName gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 411
mjr 35:e959ffba78fd 412 } tlc5940;
mjr 35:e959ffba78fd 413
mjr 35:e959ffba78fd 414
mjr 35:e959ffba78fd 415 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 416 struct
mjr 35:e959ffba78fd 417 {
mjr 35:e959ffba78fd 418 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 419 int nchips;
mjr 35:e959ffba78fd 420
mjr 35:e959ffba78fd 421 // pin connections
mjr 35:e959ffba78fd 422 PinName sin; // Serial data - use any GPIO pin
mjr 35:e959ffba78fd 423 PinName sclk; // Serial clock - use any GPIO pin
mjr 35:e959ffba78fd 424 PinName latch; // Latch - use any GPIO pin
mjr 35:e959ffba78fd 425 PinName ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 426
mjr 35:e959ffba78fd 427 } hc595;
mjr 34:6b981a2afab7 428
mjr 25:e22b88bd783a 429
mjr 35:e959ffba78fd 430 // --- Button Input Setup ---
mjr 35:e959ffba78fd 431 struct
mjr 35:e959ffba78fd 432 {
mjr 35:e959ffba78fd 433 uint8_t pin; // physical input GPIO pin - a USB-to-PinName mapping index
mjr 35:e959ffba78fd 434 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 35:e959ffba78fd 435 uint8_t val; // key value reported - meaning depends on 'typ' value
mjr 38:091e511ce8a0 436 uint8_t flags; // key flags - a bitwise combination of BtnFlagXxx values
mjr 35:e959ffba78fd 437
mjr 38:091e511ce8a0 438 } __attribute__((packed)) button[MAX_BUTTONS] __attribute((packed));
mjr 35:e959ffba78fd 439
mjr 17:ab3cec0c8bf4 440
mjr 35:e959ffba78fd 441 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 442 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 38:091e511ce8a0 443 LedWizPortCfg specialPort[1]; // special ports (Night Mode indicator, etc)
mjr 17:ab3cec0c8bf4 444 };
mjr 17:ab3cec0c8bf4 445
mjr 35:e959ffba78fd 446 #endif