Fork of mbed-src file paths change. LPC1114FN28 use only.

Fork of mbed-src by mbed official

Information

この情報は2013/10/28時点での解決方法です。
現在はmbed-src、標準ライブラリで問題なくコンパイルが可能です。

・使う物
LPC1114FN28
mbed SDK

LPC1114FN28でmbed-SDKのLibraryを使うとCompile出来ない。(2013/10/28) /media/uploads/minicube/mbed_lpc1114_sdk.png

パスが通ってないだけのようなのでファイルを以下に移動する。

mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\
mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\TARGET_LPC11XX\

にあるファイルをすべて

mbed-src\targets\cmsis\TARGET_NXP\

へ移動

mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\にある

TOOLCHAIN_ARM_MICRO

をフォルダごと

mbed-src\targets\cmsis\TARGET_NXP\

へ移動

mbed-src\targets\hal\TARGET_NXP\TARGET_LPC11XX_11CXX\
mbed-src\targets\hal\TARGET_NXP\TARGET_LPC11XX_11CXX\TARGET_LPC11XX\

にあるファイルをすべて

mbed-src\targets\hal\TARGET_NXP\

へ移動

移動後は以下のような構成になると思います。
※不要なファイルは削除してあります。

/media/uploads/minicube/mbed_lpc1114_sdk_tree.png


ファイルの移動が面倒なので以下に本家からフォークしたライブラリを置いておきます。

Import librarymbed-src-LPC1114FN28

Fork of mbed-src file paths change. LPC1114FN28 use only.


エラーが出力される場合

"TOOLCHAIN_ARM_MICRO"が無いとエラーになる。

Error: Undefined symbol _initial_sp (referred from entry2.o).
Error: Undefined symbol _heap_base (referred from malloc.o).
Error: Undefined symbol _heap_limit (referred from malloc.o).

LPC1114FN28はMicrolibを使ってCompileされるため上記のエラーになるようです。

Committer:
bogdanm
Date:
Mon Aug 19 18:17:02 2013 +0300
Revision:
19:398f4c622e1b
Parent:
13:0645d8841f51
Sync with official mbed library release 66

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
emilmont 10:3bc89ef62ce7 16 #include "pwmout_api.h"
emilmont 10:3bc89ef62ce7 17 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 18 #include "pinmap.h"
emilmont 10:3bc89ef62ce7 19 #include "error.h"
emilmont 10:3bc89ef62ce7 20
emilmont 10:3bc89ef62ce7 21 #define TCR_CNT_EN 0x00000001
emilmont 10:3bc89ef62ce7 22 #define TCR_RESET 0x00000002
emilmont 10:3bc89ef62ce7 23
emilmont 10:3bc89ef62ce7 24 /* To have a PWM where we can change both the period and the duty cycle,
emilmont 10:3bc89ef62ce7 25 * we need an entire timer. With the following conventions:
emilmont 10:3bc89ef62ce7 26 * * MR3 is used for the PWM period
emilmont 10:3bc89ef62ce7 27 * * MR0, MR1, MR2 are used for the duty cycle
emilmont 10:3bc89ef62ce7 28 */
emilmont 10:3bc89ef62ce7 29 static const PinMap PinMap_PWM[] = {
emilmont 10:3bc89ef62ce7 30 /* CT16B0 */
emilmont 10:3bc89ef62ce7 31 {P0_8 , PWM_1, 2}, {P1_13, PWM_1, 2}, /* MR0 */
emilmont 10:3bc89ef62ce7 32 {P0_9 , PWM_2, 2}, {P1_14, PWM_2, 2}, /* MR1 */
emilmont 10:3bc89ef62ce7 33 {P0_10, PWM_3, 3}, {P1_15, PWM_3, 2}, /* MR2 */
emilmont 10:3bc89ef62ce7 34
emilmont 10:3bc89ef62ce7 35 /* CT16B1 */
emilmont 10:3bc89ef62ce7 36 {P0_21, PWM_4, 1}, /* MR0 */
emilmont 10:3bc89ef62ce7 37 {P0_22, PWM_5, 2}, {P1_23, PWM_5, 1}, /* MR1 */
emilmont 10:3bc89ef62ce7 38
emilmont 10:3bc89ef62ce7 39 /* CT32B0 */
emilmont 10:3bc89ef62ce7 40 {P0_18, PWM_6, 2}, {P1_24, PWM_6, 1}, /* MR0 */
emilmont 10:3bc89ef62ce7 41 {P0_19, PWM_7, 2}, {P1_25, PWM_7, 1}, /* MR1 */
emilmont 10:3bc89ef62ce7 42 {P0_1 , PWM_8, 2}, {P1_26, PWM_8, 1}, /* MR2 */
emilmont 10:3bc89ef62ce7 43
emilmont 10:3bc89ef62ce7 44 /* CT32B1 */
emilmont 10:3bc89ef62ce7 45 {P0_13, PWM_9 , 3}, {P1_0, PWM_9 , 1}, /* MR0 */
emilmont 10:3bc89ef62ce7 46 {P0_14, PWM_10, 3}, {P1_1, PWM_10, 1}, /* MR1 */
emilmont 10:3bc89ef62ce7 47 {P0_15, PWM_11, 3}, {P1_2, PWM_11, 1}, /* MR2 */
emilmont 10:3bc89ef62ce7 48
emilmont 10:3bc89ef62ce7 49 {NC, NC, 0}
emilmont 10:3bc89ef62ce7 50 };
emilmont 10:3bc89ef62ce7 51
emilmont 10:3bc89ef62ce7 52 typedef struct {
emilmont 10:3bc89ef62ce7 53 uint8_t timer;
emilmont 10:3bc89ef62ce7 54 uint8_t mr;
emilmont 10:3bc89ef62ce7 55 } timer_mr;
emilmont 10:3bc89ef62ce7 56
emilmont 10:3bc89ef62ce7 57 static timer_mr pwm_timer_map[11] = {
emilmont 10:3bc89ef62ce7 58 {0, 0}, {0, 1}, {0, 2},
emilmont 10:3bc89ef62ce7 59 {1, 0}, {1, 1},
emilmont 10:3bc89ef62ce7 60 {2, 0}, {2, 1}, {2, 2},
emilmont 10:3bc89ef62ce7 61 {3, 0}, {3, 1}, {3, 2},
emilmont 10:3bc89ef62ce7 62 };
emilmont 10:3bc89ef62ce7 63
emilmont 10:3bc89ef62ce7 64 static LPC_CTxxBx_Type *Timers[4] = {
emilmont 10:3bc89ef62ce7 65 LPC_CT16B0, LPC_CT16B1,
emilmont 10:3bc89ef62ce7 66 LPC_CT32B0, LPC_CT32B1
emilmont 10:3bc89ef62ce7 67 };
emilmont 10:3bc89ef62ce7 68
emilmont 10:3bc89ef62ce7 69 static unsigned int pwm_clock_mhz;
emilmont 10:3bc89ef62ce7 70
emilmont 10:3bc89ef62ce7 71 void pwmout_init(pwmout_t* obj, PinName pin) {
emilmont 10:3bc89ef62ce7 72 // determine the channel
emilmont 10:3bc89ef62ce7 73 PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
bogdanm 19:398f4c622e1b 74 if (pwm == (PWMName)NC)
emilmont 10:3bc89ef62ce7 75 error("PwmOut pin mapping failed");
emilmont 10:3bc89ef62ce7 76
emilmont 10:3bc89ef62ce7 77 obj->pwm = pwm;
emilmont 10:3bc89ef62ce7 78
emilmont 10:3bc89ef62ce7 79 // Timer registers
emilmont 10:3bc89ef62ce7 80 timer_mr tid = pwm_timer_map[pwm];
emilmont 10:3bc89ef62ce7 81 LPC_CTxxBx_Type *timer = Timers[tid.timer];
emilmont 10:3bc89ef62ce7 82
emilmont 10:3bc89ef62ce7 83 // Disable timer
emilmont 10:3bc89ef62ce7 84 timer->TCR = 0;
emilmont 10:3bc89ef62ce7 85
emilmont 10:3bc89ef62ce7 86 // Power the correspondent timer
emilmont 10:3bc89ef62ce7 87 LPC_SYSCON->SYSAHBCLKCTRL |= 1 << (tid.timer + 7);
emilmont 10:3bc89ef62ce7 88
emilmont 10:3bc89ef62ce7 89 /* Enable PWM function */
emilmont 10:3bc89ef62ce7 90 timer->PWMC = (1 << 3)|(1 << 2)|(1 << 1)|(1 << 0);
emilmont 10:3bc89ef62ce7 91
emilmont 10:3bc89ef62ce7 92 /* Reset Functionality on MR3 controlling the PWM period */
emilmont 10:3bc89ef62ce7 93 timer->MCR = 1 << 10;
emilmont 10:3bc89ef62ce7 94
emilmont 10:3bc89ef62ce7 95 pwm_clock_mhz = SystemCoreClock / 1000000;
emilmont 10:3bc89ef62ce7 96
emilmont 10:3bc89ef62ce7 97 // default to 20ms: standard for servos, and fine for e.g. brightness control
emilmont 10:3bc89ef62ce7 98 pwmout_period_ms(obj, 20);
emilmont 10:3bc89ef62ce7 99 pwmout_write (obj, 0);
emilmont 10:3bc89ef62ce7 100
emilmont 10:3bc89ef62ce7 101 // Wire pinout
emilmont 10:3bc89ef62ce7 102 pinmap_pinout(pin, PinMap_PWM);
emilmont 10:3bc89ef62ce7 103 }
emilmont 10:3bc89ef62ce7 104
emilmont 10:3bc89ef62ce7 105 void pwmout_free(pwmout_t* obj) {
emilmont 10:3bc89ef62ce7 106 // [TODO]
emilmont 10:3bc89ef62ce7 107 }
emilmont 10:3bc89ef62ce7 108
emilmont 10:3bc89ef62ce7 109 void pwmout_write(pwmout_t* obj, float value) {
emilmont 10:3bc89ef62ce7 110 if (value < 0.0f) {
emilmont 10:3bc89ef62ce7 111 value = 0.0;
emilmont 10:3bc89ef62ce7 112 } else if (value > 1.0f) {
emilmont 10:3bc89ef62ce7 113 value = 1.0;
emilmont 10:3bc89ef62ce7 114 }
emilmont 10:3bc89ef62ce7 115
emilmont 10:3bc89ef62ce7 116 timer_mr tid = pwm_timer_map[obj->pwm];
emilmont 10:3bc89ef62ce7 117 LPC_CTxxBx_Type *timer = Timers[tid.timer];
emilmont 10:3bc89ef62ce7 118 uint32_t t_off = timer->MR3 - (uint32_t)((float)(timer->MR3) * value);
emilmont 10:3bc89ef62ce7 119
emilmont 10:3bc89ef62ce7 120 timer->TCR = TCR_RESET;
emilmont 10:3bc89ef62ce7 121 timer->MR[tid.mr] = t_off;
emilmont 10:3bc89ef62ce7 122 timer->TCR = TCR_CNT_EN;
emilmont 10:3bc89ef62ce7 123 }
emilmont 10:3bc89ef62ce7 124
emilmont 10:3bc89ef62ce7 125 float pwmout_read(pwmout_t* obj) {
emilmont 10:3bc89ef62ce7 126 timer_mr tid = pwm_timer_map[obj->pwm];
emilmont 10:3bc89ef62ce7 127 LPC_CTxxBx_Type *timer = Timers[tid.timer];
emilmont 10:3bc89ef62ce7 128
emilmont 10:3bc89ef62ce7 129 float v = (float)(timer->MR3 - timer->MR[tid.mr]) / (float)(timer->MR3);
emilmont 10:3bc89ef62ce7 130 return (v > 1.0f) ? (1.0f) : (v);
emilmont 10:3bc89ef62ce7 131 }
emilmont 10:3bc89ef62ce7 132
emilmont 10:3bc89ef62ce7 133 void pwmout_period(pwmout_t* obj, float seconds) {
emilmont 10:3bc89ef62ce7 134 pwmout_period_us(obj, seconds * 1000000.0f);
emilmont 10:3bc89ef62ce7 135 }
emilmont 10:3bc89ef62ce7 136
emilmont 10:3bc89ef62ce7 137 void pwmout_period_ms(pwmout_t* obj, int ms) {
emilmont 10:3bc89ef62ce7 138 pwmout_period_us(obj, ms * 1000);
emilmont 10:3bc89ef62ce7 139 }
emilmont 10:3bc89ef62ce7 140
emilmont 10:3bc89ef62ce7 141 // Set the PWM period, keeping the duty cycle the same.
emilmont 10:3bc89ef62ce7 142 void pwmout_period_us(pwmout_t* obj, int us) {
emilmont 10:3bc89ef62ce7 143 int i = 0;
emilmont 10:3bc89ef62ce7 144 uint32_t period_ticks = pwm_clock_mhz * us;
emilmont 10:3bc89ef62ce7 145
emilmont 10:3bc89ef62ce7 146 timer_mr tid = pwm_timer_map[obj->pwm];
emilmont 10:3bc89ef62ce7 147 LPC_CTxxBx_Type *timer = Timers[tid.timer];
emilmont 10:3bc89ef62ce7 148 uint32_t old_period_ticks = timer->MR3;
emilmont 10:3bc89ef62ce7 149
emilmont 10:3bc89ef62ce7 150 timer->TCR = TCR_RESET;
emilmont 10:3bc89ef62ce7 151 timer->MR3 = period_ticks;
emilmont 10:3bc89ef62ce7 152
emilmont 10:3bc89ef62ce7 153 // Scale the pulse width to preserve the duty ratio
emilmont 10:3bc89ef62ce7 154 if (old_period_ticks > 0) {
emilmont 10:3bc89ef62ce7 155 for (i=0; i<3; i++) {
emilmont 10:3bc89ef62ce7 156 uint32_t t_off = period_ticks - (uint32_t)(((uint64_t)timer->MR[i] * (uint64_t)period_ticks) / (uint64_t)old_period_ticks);
emilmont 10:3bc89ef62ce7 157 timer->MR[i] = t_off;
emilmont 10:3bc89ef62ce7 158 }
emilmont 10:3bc89ef62ce7 159 }
emilmont 10:3bc89ef62ce7 160 timer->TCR = TCR_CNT_EN;
emilmont 10:3bc89ef62ce7 161 }
emilmont 10:3bc89ef62ce7 162
emilmont 10:3bc89ef62ce7 163 void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
emilmont 10:3bc89ef62ce7 164 pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
emilmont 10:3bc89ef62ce7 165 }
emilmont 10:3bc89ef62ce7 166
emilmont 10:3bc89ef62ce7 167 void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
emilmont 10:3bc89ef62ce7 168 pwmout_pulsewidth_us(obj, ms * 1000);
emilmont 10:3bc89ef62ce7 169 }
emilmont 10:3bc89ef62ce7 170
emilmont 10:3bc89ef62ce7 171 void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
emilmont 10:3bc89ef62ce7 172 uint32_t t_on = (uint32_t)(((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000);
emilmont 10:3bc89ef62ce7 173 timer_mr tid = pwm_timer_map[obj->pwm];
emilmont 10:3bc89ef62ce7 174 LPC_CTxxBx_Type *timer = Timers[tid.timer];
emilmont 10:3bc89ef62ce7 175
emilmont 10:3bc89ef62ce7 176 timer->TCR = TCR_RESET;
emilmont 10:3bc89ef62ce7 177 if (t_on > timer->MR3) {
emilmont 10:3bc89ef62ce7 178 pwmout_period_us(obj, us);
emilmont 10:3bc89ef62ce7 179 }
emilmont 10:3bc89ef62ce7 180 uint32_t t_off = timer->MR3 - t_on;
emilmont 10:3bc89ef62ce7 181 timer->MR[tid.mr] = t_off;
emilmont 10:3bc89ef62ce7 182 timer->TCR = TCR_CNT_EN;
emilmont 10:3bc89ef62ce7 183 }