Fork of mbed-src file paths change. LPC1114FN28 use only.

Fork of mbed-src by mbed official

Information

この情報は2013/10/28時点での解決方法です。
現在はmbed-src、標準ライブラリで問題なくコンパイルが可能です。

・使う物
LPC1114FN28
mbed SDK

LPC1114FN28でmbed-SDKのLibraryを使うとCompile出来ない。(2013/10/28) /media/uploads/minicube/mbed_lpc1114_sdk.png

パスが通ってないだけのようなのでファイルを以下に移動する。

mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\
mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\TARGET_LPC11XX\

にあるファイルをすべて

mbed-src\targets\cmsis\TARGET_NXP\

へ移動

mbed-src\targets\cmsis\TARGET_NXP\TARGET_LPC11XX_11CXX\にある

TOOLCHAIN_ARM_MICRO

をフォルダごと

mbed-src\targets\cmsis\TARGET_NXP\

へ移動

mbed-src\targets\hal\TARGET_NXP\TARGET_LPC11XX_11CXX\
mbed-src\targets\hal\TARGET_NXP\TARGET_LPC11XX_11CXX\TARGET_LPC11XX\

にあるファイルをすべて

mbed-src\targets\hal\TARGET_NXP\

へ移動

移動後は以下のような構成になると思います。
※不要なファイルは削除してあります。

/media/uploads/minicube/mbed_lpc1114_sdk_tree.png


ファイルの移動が面倒なので以下に本家からフォークしたライブラリを置いておきます。

Import librarymbed-src-LPC1114FN28

Fork of mbed-src file paths change. LPC1114FN28 use only.


エラーが出力される場合

"TOOLCHAIN_ARM_MICRO"が無いとエラーになる。

Error: Undefined symbol _initial_sp (referred from entry2.o).
Error: Undefined symbol _heap_base (referred from malloc.o).
Error: Undefined symbol _heap_limit (referred from malloc.o).

LPC1114FN28はMicrolibを使ってCompileされるため上記のエラーになるようです。

Committer:
bogdanm
Date:
Mon Aug 05 14:12:34 2013 +0300
Revision:
13:0645d8841f51
Parent:
vendor/NXP/LPC2368/hal/ethernet_api.c@10:3bc89ef62ce7
Child:
23:8d50de55f208
Update mbed sources to revision 64

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
emilmont 10:3bc89ef62ce7 16 #include <string.h>
emilmont 10:3bc89ef62ce7 17
emilmont 10:3bc89ef62ce7 18 #include "ethernet_api.h"
emilmont 10:3bc89ef62ce7 19 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 20 #include "mbed_interface.h"
emilmont 10:3bc89ef62ce7 21 #include "toolchain.h"
emilmont 10:3bc89ef62ce7 22 #include "error.h"
emilmont 10:3bc89ef62ce7 23
emilmont 10:3bc89ef62ce7 24 #define NEW_LOGIC 0
emilmont 10:3bc89ef62ce7 25 #define NEW_ETH_BUFFER 0
emilmont 10:3bc89ef62ce7 26
emilmont 10:3bc89ef62ce7 27 #if NEW_ETH_BUFFER
emilmont 10:3bc89ef62ce7 28
emilmont 10:3bc89ef62ce7 29 #define NUM_RX_FRAG 4 // Number of Rx Fragments (== packets)
emilmont 10:3bc89ef62ce7 30 #define NUM_TX_FRAG 3 // Number of Tx Fragments (== packets)
emilmont 10:3bc89ef62ce7 31
emilmont 10:3bc89ef62ce7 32 #define ETH_MAX_FLEN 1536 // Maximum Ethernet Frame Size
emilmont 10:3bc89ef62ce7 33 #define ETH_FRAG_SIZE ETH_MAX_FLEN // Packet Fragment size (same as packet length)
emilmont 10:3bc89ef62ce7 34
emilmont 10:3bc89ef62ce7 35 #else
emilmont 10:3bc89ef62ce7 36
emilmont 10:3bc89ef62ce7 37 // Memfree calculation:
emilmont 10:3bc89ef62ce7 38 // (16 * 1024) - ((2 * 4 * NUM_RX) + (2 * 4 * NUM_RX) + (0x300 * NUM_RX) +
emilmont 10:3bc89ef62ce7 39 // (2 * 4 * NUM_TX) + (1 * 4 * NUM_TX) + (0x300 * NUM_TX)) = 8556
emilmont 10:3bc89ef62ce7 40 /* EMAC Memory Buffer configuration for 16K Ethernet RAM. */
emilmont 10:3bc89ef62ce7 41 #define NUM_RX_FRAG 4 /* Num.of RX Fragments 4*1536= 6.0kB */
emilmont 10:3bc89ef62ce7 42 #define NUM_TX_FRAG 3 /* Num.of TX Fragments 3*1536= 4.6kB */
emilmont 10:3bc89ef62ce7 43 //#define ETH_FRAG_SIZE 1536 /* Packet Fragment size 1536 Bytes */
emilmont 10:3bc89ef62ce7 44
emilmont 10:3bc89ef62ce7 45 //#define ETH_MAX_FLEN 1536 /* Max. Ethernet Frame Size */
emilmont 10:3bc89ef62ce7 46 #define ETH_FRAG_SIZE 0x300 /* Packet Fragment size 1536/2 Bytes */
emilmont 10:3bc89ef62ce7 47 #define ETH_MAX_FLEN 0x300 /* Max. Ethernet Frame Size */
emilmont 10:3bc89ef62ce7 48
emilmont 10:3bc89ef62ce7 49 const int ethernet_MTU_SIZE = 0x300;
emilmont 10:3bc89ef62ce7 50
emilmont 10:3bc89ef62ce7 51 #endif
emilmont 10:3bc89ef62ce7 52
emilmont 10:3bc89ef62ce7 53 #define ETHERNET_ADDR_SIZE 6
emilmont 10:3bc89ef62ce7 54
emilmont 10:3bc89ef62ce7 55 PACKED struct RX_DESC_TypeDef { /* RX Descriptor struct */
emilmont 10:3bc89ef62ce7 56 unsigned int Packet;
emilmont 10:3bc89ef62ce7 57 unsigned int Ctrl;
emilmont 10:3bc89ef62ce7 58 };
emilmont 10:3bc89ef62ce7 59 typedef struct RX_DESC_TypeDef RX_DESC_TypeDef;
emilmont 10:3bc89ef62ce7 60
emilmont 10:3bc89ef62ce7 61 PACKED struct RX_STAT_TypeDef { /* RX Status struct */
emilmont 10:3bc89ef62ce7 62 unsigned int Info;
emilmont 10:3bc89ef62ce7 63 unsigned int HashCRC;
emilmont 10:3bc89ef62ce7 64 };
emilmont 10:3bc89ef62ce7 65 typedef struct RX_STAT_TypeDef RX_STAT_TypeDef;
emilmont 10:3bc89ef62ce7 66
emilmont 10:3bc89ef62ce7 67 PACKED struct TX_DESC_TypeDef { /* TX Descriptor struct */
emilmont 10:3bc89ef62ce7 68 unsigned int Packet;
emilmont 10:3bc89ef62ce7 69 unsigned int Ctrl;
emilmont 10:3bc89ef62ce7 70 };
emilmont 10:3bc89ef62ce7 71 typedef struct TX_DESC_TypeDef TX_DESC_TypeDef;
emilmont 10:3bc89ef62ce7 72
emilmont 10:3bc89ef62ce7 73 PACKED struct TX_STAT_TypeDef { /* TX Status struct */
emilmont 10:3bc89ef62ce7 74 unsigned int Info;
emilmont 10:3bc89ef62ce7 75 };
emilmont 10:3bc89ef62ce7 76 typedef struct TX_STAT_TypeDef TX_STAT_TypeDef;
emilmont 10:3bc89ef62ce7 77
emilmont 10:3bc89ef62ce7 78 /* MAC Configuration Register 1 */
emilmont 10:3bc89ef62ce7 79 #define MAC1_REC_EN 0x00000001 /* Receive Enable */
emilmont 10:3bc89ef62ce7 80 #define MAC1_PASS_ALL 0x00000002 /* Pass All Receive Frames */
emilmont 10:3bc89ef62ce7 81 #define MAC1_RX_FLOWC 0x00000004 /* RX Flow Control */
emilmont 10:3bc89ef62ce7 82 #define MAC1_TX_FLOWC 0x00000008 /* TX Flow Control */
emilmont 10:3bc89ef62ce7 83 #define MAC1_LOOPB 0x00000010 /* Loop Back Mode */
emilmont 10:3bc89ef62ce7 84 #define MAC1_RES_TX 0x00000100 /* Reset TX Logic */
emilmont 10:3bc89ef62ce7 85 #define MAC1_RES_MCS_TX 0x00000200 /* Reset MAC TX Control Sublayer */
emilmont 10:3bc89ef62ce7 86 #define MAC1_RES_RX 0x00000400 /* Reset RX Logic */
emilmont 10:3bc89ef62ce7 87 #define MAC1_RES_MCS_RX 0x00000800 /* Reset MAC RX Control Sublayer */
emilmont 10:3bc89ef62ce7 88 #define MAC1_SIM_RES 0x00004000 /* Simulation Reset */
emilmont 10:3bc89ef62ce7 89 #define MAC1_SOFT_RES 0x00008000 /* Soft Reset MAC */
emilmont 10:3bc89ef62ce7 90
emilmont 10:3bc89ef62ce7 91 /* MAC Configuration Register 2 */
emilmont 10:3bc89ef62ce7 92 #define MAC2_FULL_DUP 0x00000001 /* Full Duplex Mode */
emilmont 10:3bc89ef62ce7 93 #define MAC2_FRM_LEN_CHK 0x00000002 /* Frame Length Checking */
emilmont 10:3bc89ef62ce7 94 #define MAC2_HUGE_FRM_EN 0x00000004 /* Huge Frame Enable */
emilmont 10:3bc89ef62ce7 95 #define MAC2_DLY_CRC 0x00000008 /* Delayed CRC Mode */
emilmont 10:3bc89ef62ce7 96 #define MAC2_CRC_EN 0x00000010 /* Append CRC to every Frame */
emilmont 10:3bc89ef62ce7 97 #define MAC2_PAD_EN 0x00000020 /* Pad all Short Frames */
emilmont 10:3bc89ef62ce7 98 #define MAC2_VLAN_PAD_EN 0x00000040 /* VLAN Pad Enable */
emilmont 10:3bc89ef62ce7 99 #define MAC2_ADET_PAD_EN 0x00000080 /* Auto Detect Pad Enable */
emilmont 10:3bc89ef62ce7 100 #define MAC2_PPREAM_ENF 0x00000100 /* Pure Preamble Enforcement */
emilmont 10:3bc89ef62ce7 101 #define MAC2_LPREAM_ENF 0x00000200 /* Long Preamble Enforcement */
emilmont 10:3bc89ef62ce7 102 #define MAC2_NO_BACKOFF 0x00001000 /* No Backoff Algorithm */
emilmont 10:3bc89ef62ce7 103 #define MAC2_BACK_PRESSURE 0x00002000 /* Backoff Presurre / No Backoff */
emilmont 10:3bc89ef62ce7 104 #define MAC2_EXCESS_DEF 0x00004000 /* Excess Defer */
emilmont 10:3bc89ef62ce7 105
emilmont 10:3bc89ef62ce7 106 /* Back-to-Back Inter-Packet-Gap Register */
emilmont 10:3bc89ef62ce7 107 #define IPGT_FULL_DUP 0x00000015 /* Recommended value for Full Duplex */
emilmont 10:3bc89ef62ce7 108 #define IPGT_HALF_DUP 0x00000012 /* Recommended value for Half Duplex */
emilmont 10:3bc89ef62ce7 109
emilmont 10:3bc89ef62ce7 110 /* Non Back-to-Back Inter-Packet-Gap Register */
emilmont 10:3bc89ef62ce7 111 #define IPGR_DEF 0x00000012 /* Recommended value */
emilmont 10:3bc89ef62ce7 112
emilmont 10:3bc89ef62ce7 113 /* Collision Window/Retry Register */
emilmont 10:3bc89ef62ce7 114 #define CLRT_DEF 0x0000370F /* Default value */
emilmont 10:3bc89ef62ce7 115
emilmont 10:3bc89ef62ce7 116 /* PHY Support Register */
emilmont 10:3bc89ef62ce7 117 #define SUPP_SPEED 0x00000100 /* Reduced MII Logic Current Speed */
emilmont 10:3bc89ef62ce7 118 //#define SUPP_RES_RMII 0x00000800 /* Reset Reduced MII Logic */
emilmont 10:3bc89ef62ce7 119 #define SUPP_RES_RMII 0x00000000 /* Reset Reduced MII Logic */
emilmont 10:3bc89ef62ce7 120
emilmont 10:3bc89ef62ce7 121 /* Test Register */
emilmont 10:3bc89ef62ce7 122 #define TEST_SHCUT_PQUANTA 0x00000001 /* Shortcut Pause Quanta */
emilmont 10:3bc89ef62ce7 123 #define TEST_TST_PAUSE 0x00000002 /* Test Pause */
emilmont 10:3bc89ef62ce7 124 #define TEST_TST_BACKP 0x00000004 /* Test Back Pressure */
emilmont 10:3bc89ef62ce7 125
emilmont 10:3bc89ef62ce7 126 /* MII Management Configuration Register */
emilmont 10:3bc89ef62ce7 127 #define MCFG_SCAN_INC 0x00000001 /* Scan Increment PHY Address */
emilmont 10:3bc89ef62ce7 128 #define MCFG_SUPP_PREAM 0x00000002 /* Suppress Preamble */
emilmont 10:3bc89ef62ce7 129 #define MCFG_CLK_SEL 0x0000003C /* Clock Select Mask */
emilmont 10:3bc89ef62ce7 130 #define MCFG_RES_MII 0x00008000 /* Reset MII Management Hardware */
emilmont 10:3bc89ef62ce7 131
emilmont 10:3bc89ef62ce7 132 /* MII Management Command Register */
emilmont 10:3bc89ef62ce7 133 #define MCMD_READ 0x00000001 /* MII Read */
emilmont 10:3bc89ef62ce7 134 #define MCMD_SCAN 0x00000002 /* MII Scan continuously */
emilmont 10:3bc89ef62ce7 135
emilmont 10:3bc89ef62ce7 136 #define MII_WR_TOUT 0x00050000 /* MII Write timeout count */
emilmont 10:3bc89ef62ce7 137 #define MII_RD_TOUT 0x00050000 /* MII Read timeout count */
emilmont 10:3bc89ef62ce7 138
emilmont 10:3bc89ef62ce7 139 /* MII Management Address Register */
emilmont 10:3bc89ef62ce7 140 #define MADR_REG_ADR 0x0000001F /* MII Register Address Mask */
emilmont 10:3bc89ef62ce7 141 #define MADR_PHY_ADR 0x00001F00 /* PHY Address Mask */
emilmont 10:3bc89ef62ce7 142
emilmont 10:3bc89ef62ce7 143 /* MII Management Indicators Register */
emilmont 10:3bc89ef62ce7 144 #define MIND_BUSY 0x00000001 /* MII is Busy */
emilmont 10:3bc89ef62ce7 145 #define MIND_SCAN 0x00000002 /* MII Scanning in Progress */
emilmont 10:3bc89ef62ce7 146 #define MIND_NOT_VAL 0x00000004 /* MII Read Data not valid */
emilmont 10:3bc89ef62ce7 147 #define MIND_MII_LINK_FAIL 0x00000008 /* MII Link Failed */
emilmont 10:3bc89ef62ce7 148
emilmont 10:3bc89ef62ce7 149 /* Command Register */
emilmont 10:3bc89ef62ce7 150 #define CR_RX_EN 0x00000001 /* Enable Receive */
emilmont 10:3bc89ef62ce7 151 #define CR_TX_EN 0x00000002 /* Enable Transmit */
emilmont 10:3bc89ef62ce7 152 #define CR_REG_RES 0x00000008 /* Reset Host Registers */
emilmont 10:3bc89ef62ce7 153 #define CR_TX_RES 0x00000010 /* Reset Transmit Datapath */
emilmont 10:3bc89ef62ce7 154 #define CR_RX_RES 0x00000020 /* Reset Receive Datapath */
emilmont 10:3bc89ef62ce7 155 #define CR_PASS_RUNT_FRM 0x00000040 /* Pass Runt Frames */
emilmont 10:3bc89ef62ce7 156 #define CR_PASS_RX_FILT 0x00000080 /* Pass RX Filter */
emilmont 10:3bc89ef62ce7 157 #define CR_TX_FLOW_CTRL 0x00000100 /* TX Flow Control */
emilmont 10:3bc89ef62ce7 158 #define CR_RMII 0x00000200 /* Reduced MII Interface */
emilmont 10:3bc89ef62ce7 159 #define CR_FULL_DUP 0x00000400 /* Full Duplex */
emilmont 10:3bc89ef62ce7 160
emilmont 10:3bc89ef62ce7 161 /* Status Register */
emilmont 10:3bc89ef62ce7 162 #define SR_RX_EN 0x00000001 /* Enable Receive */
emilmont 10:3bc89ef62ce7 163 #define SR_TX_EN 0x00000002 /* Enable Transmit */
emilmont 10:3bc89ef62ce7 164
emilmont 10:3bc89ef62ce7 165 /* Transmit Status Vector 0 Register */
emilmont 10:3bc89ef62ce7 166 #define TSV0_CRC_ERR 0x00000001 /* CRC error */
emilmont 10:3bc89ef62ce7 167 #define TSV0_LEN_CHKERR 0x00000002 /* Length Check Error */
emilmont 10:3bc89ef62ce7 168 #define TSV0_LEN_OUTRNG 0x00000004 /* Length Out of Range */
emilmont 10:3bc89ef62ce7 169 #define TSV0_DONE 0x00000008 /* Tramsmission Completed */
emilmont 10:3bc89ef62ce7 170 #define TSV0_MCAST 0x00000010 /* Multicast Destination */
emilmont 10:3bc89ef62ce7 171 #define TSV0_BCAST 0x00000020 /* Broadcast Destination */
emilmont 10:3bc89ef62ce7 172 #define TSV0_PKT_DEFER 0x00000040 /* Packet Deferred */
emilmont 10:3bc89ef62ce7 173 #define TSV0_EXC_DEFER 0x00000080 /* Excessive Packet Deferral */
emilmont 10:3bc89ef62ce7 174 #define TSV0_EXC_COLL 0x00000100 /* Excessive Collision */
emilmont 10:3bc89ef62ce7 175 #define TSV0_LATE_COLL 0x00000200 /* Late Collision Occured */
emilmont 10:3bc89ef62ce7 176 #define TSV0_GIANT 0x00000400 /* Giant Frame */
emilmont 10:3bc89ef62ce7 177 #define TSV0_UNDERRUN 0x00000800 /* Buffer Underrun */
emilmont 10:3bc89ef62ce7 178 #define TSV0_BYTES 0x0FFFF000 /* Total Bytes Transferred */
emilmont 10:3bc89ef62ce7 179 #define TSV0_CTRL_FRAME 0x10000000 /* Control Frame */
emilmont 10:3bc89ef62ce7 180 #define TSV0_PAUSE 0x20000000 /* Pause Frame */
emilmont 10:3bc89ef62ce7 181 #define TSV0_BACK_PRESS 0x40000000 /* Backpressure Method Applied */
emilmont 10:3bc89ef62ce7 182 #define TSV0_VLAN 0x80000000 /* VLAN Frame */
emilmont 10:3bc89ef62ce7 183
emilmont 10:3bc89ef62ce7 184 /* Transmit Status Vector 1 Register */
emilmont 10:3bc89ef62ce7 185 #define TSV1_BYTE_CNT 0x0000FFFF /* Transmit Byte Count */
emilmont 10:3bc89ef62ce7 186 #define TSV1_COLL_CNT 0x000F0000 /* Transmit Collision Count */
emilmont 10:3bc89ef62ce7 187
emilmont 10:3bc89ef62ce7 188 /* Receive Status Vector Register */
emilmont 10:3bc89ef62ce7 189 #define RSV_BYTE_CNT 0x0000FFFF /* Receive Byte Count */
emilmont 10:3bc89ef62ce7 190 #define RSV_PKT_IGNORED 0x00010000 /* Packet Previously Ignored */
emilmont 10:3bc89ef62ce7 191 #define RSV_RXDV_SEEN 0x00020000 /* RXDV Event Previously Seen */
emilmont 10:3bc89ef62ce7 192 #define RSV_CARR_SEEN 0x00040000 /* Carrier Event Previously Seen */
emilmont 10:3bc89ef62ce7 193 #define RSV_REC_CODEV 0x00080000 /* Receive Code Violation */
emilmont 10:3bc89ef62ce7 194 #define RSV_CRC_ERR 0x00100000 /* CRC Error */
emilmont 10:3bc89ef62ce7 195 #define RSV_LEN_CHKERR 0x00200000 /* Length Check Error */
emilmont 10:3bc89ef62ce7 196 #define RSV_LEN_OUTRNG 0x00400000 /* Length Out of Range */
emilmont 10:3bc89ef62ce7 197 #define RSV_REC_OK 0x00800000 /* Frame Received OK */
emilmont 10:3bc89ef62ce7 198 #define RSV_MCAST 0x01000000 /* Multicast Frame */
emilmont 10:3bc89ef62ce7 199 #define RSV_BCAST 0x02000000 /* Broadcast Frame */
emilmont 10:3bc89ef62ce7 200 #define RSV_DRIB_NIBB 0x04000000 /* Dribble Nibble */
emilmont 10:3bc89ef62ce7 201 #define RSV_CTRL_FRAME 0x08000000 /* Control Frame */
emilmont 10:3bc89ef62ce7 202 #define RSV_PAUSE 0x10000000 /* Pause Frame */
emilmont 10:3bc89ef62ce7 203 #define RSV_UNSUPP_OPC 0x20000000 /* Unsupported Opcode */
emilmont 10:3bc89ef62ce7 204 #define RSV_VLAN 0x40000000 /* VLAN Frame */
emilmont 10:3bc89ef62ce7 205
emilmont 10:3bc89ef62ce7 206 /* Flow Control Counter Register */
emilmont 10:3bc89ef62ce7 207 #define FCC_MIRR_CNT 0x0000FFFF /* Mirror Counter */
emilmont 10:3bc89ef62ce7 208 #define FCC_PAUSE_TIM 0xFFFF0000 /* Pause Timer */
emilmont 10:3bc89ef62ce7 209
emilmont 10:3bc89ef62ce7 210 /* Flow Control Status Register */
emilmont 10:3bc89ef62ce7 211 #define FCS_MIRR_CNT 0x0000FFFF /* Mirror Counter Current */
emilmont 10:3bc89ef62ce7 212
emilmont 10:3bc89ef62ce7 213 /* Receive Filter Control Register */
emilmont 10:3bc89ef62ce7 214 #define RFC_UCAST_EN 0x00000001 /* Accept Unicast Frames Enable */
emilmont 10:3bc89ef62ce7 215 #define RFC_BCAST_EN 0x00000002 /* Accept Broadcast Frames Enable */
emilmont 10:3bc89ef62ce7 216 #define RFC_MCAST_EN 0x00000004 /* Accept Multicast Frames Enable */
emilmont 10:3bc89ef62ce7 217 #define RFC_UCAST_HASH_EN 0x00000008 /* Accept Unicast Hash Filter Frames */
emilmont 10:3bc89ef62ce7 218 #define RFC_MCAST_HASH_EN 0x00000010 /* Accept Multicast Hash Filter Fram.*/
emilmont 10:3bc89ef62ce7 219 #define RFC_PERFECT_EN 0x00000020 /* Accept Perfect Match Enable */
emilmont 10:3bc89ef62ce7 220 #define RFC_MAGP_WOL_EN 0x00001000 /* Magic Packet Filter WoL Enable */
emilmont 10:3bc89ef62ce7 221 #define RFC_PFILT_WOL_EN 0x00002000 /* Perfect Filter WoL Enable */
emilmont 10:3bc89ef62ce7 222
emilmont 10:3bc89ef62ce7 223 /* Receive Filter WoL Status/Clear Registers */
emilmont 10:3bc89ef62ce7 224 #define WOL_UCAST 0x00000001 /* Unicast Frame caused WoL */
emilmont 10:3bc89ef62ce7 225 #define WOL_BCAST 0x00000002 /* Broadcast Frame caused WoL */
emilmont 10:3bc89ef62ce7 226 #define WOL_MCAST 0x00000004 /* Multicast Frame caused WoL */
emilmont 10:3bc89ef62ce7 227 #define WOL_UCAST_HASH 0x00000008 /* Unicast Hash Filter Frame WoL */
emilmont 10:3bc89ef62ce7 228 #define WOL_MCAST_HASH 0x00000010 /* Multicast Hash Filter Frame WoL */
emilmont 10:3bc89ef62ce7 229 #define WOL_PERFECT 0x00000020 /* Perfect Filter WoL */
emilmont 10:3bc89ef62ce7 230 #define WOL_RX_FILTER 0x00000080 /* RX Filter caused WoL */
emilmont 10:3bc89ef62ce7 231 #define WOL_MAG_PACKET 0x00000100 /* Magic Packet Filter caused WoL */
emilmont 10:3bc89ef62ce7 232
emilmont 10:3bc89ef62ce7 233 /* Interrupt Status/Enable/Clear/Set Registers */
emilmont 10:3bc89ef62ce7 234 #define INT_RX_OVERRUN 0x00000001 /* Overrun Error in RX Queue */
emilmont 10:3bc89ef62ce7 235 #define INT_RX_ERR 0x00000002 /* Receive Error */
emilmont 10:3bc89ef62ce7 236 #define INT_RX_FIN 0x00000004 /* RX Finished Process Descriptors */
emilmont 10:3bc89ef62ce7 237 #define INT_RX_DONE 0x00000008 /* Receive Done */
emilmont 10:3bc89ef62ce7 238 #define INT_TX_UNDERRUN 0x00000010 /* Transmit Underrun */
emilmont 10:3bc89ef62ce7 239 #define INT_TX_ERR 0x00000020 /* Transmit Error */
emilmont 10:3bc89ef62ce7 240 #define INT_TX_FIN 0x00000040 /* TX Finished Process Descriptors */
emilmont 10:3bc89ef62ce7 241 #define INT_TX_DONE 0x00000080 /* Transmit Done */
emilmont 10:3bc89ef62ce7 242 #define INT_SOFT_INT 0x00001000 /* Software Triggered Interrupt */
emilmont 10:3bc89ef62ce7 243 #define INT_WAKEUP 0x00002000 /* Wakeup Event Interrupt */
emilmont 10:3bc89ef62ce7 244
emilmont 10:3bc89ef62ce7 245 /* Power Down Register */
emilmont 10:3bc89ef62ce7 246 #define PD_POWER_DOWN 0x80000000 /* Power Down MAC */
emilmont 10:3bc89ef62ce7 247
emilmont 10:3bc89ef62ce7 248 /* RX Descriptor Control Word */
emilmont 10:3bc89ef62ce7 249 #define RCTRL_SIZE 0x000007FF /* Buffer size mask */
emilmont 10:3bc89ef62ce7 250 #define RCTRL_INT 0x80000000 /* Generate RxDone Interrupt */
emilmont 10:3bc89ef62ce7 251
emilmont 10:3bc89ef62ce7 252 /* RX Status Hash CRC Word */
emilmont 10:3bc89ef62ce7 253 #define RHASH_SA 0x000001FF /* Hash CRC for Source Address */
emilmont 10:3bc89ef62ce7 254 #define RHASH_DA 0x001FF000 /* Hash CRC for Destination Address */
emilmont 10:3bc89ef62ce7 255
emilmont 10:3bc89ef62ce7 256 /* RX Status Information Word */
emilmont 10:3bc89ef62ce7 257 #define RINFO_SIZE 0x000007FF /* Data size in bytes */
emilmont 10:3bc89ef62ce7 258 #define RINFO_CTRL_FRAME 0x00040000 /* Control Frame */
emilmont 10:3bc89ef62ce7 259 #define RINFO_VLAN 0x00080000 /* VLAN Frame */
emilmont 10:3bc89ef62ce7 260 #define RINFO_FAIL_FILT 0x00100000 /* RX Filter Failed */
emilmont 10:3bc89ef62ce7 261 #define RINFO_MCAST 0x00200000 /* Multicast Frame */
emilmont 10:3bc89ef62ce7 262 #define RINFO_BCAST 0x00400000 /* Broadcast Frame */
emilmont 10:3bc89ef62ce7 263 #define RINFO_CRC_ERR 0x00800000 /* CRC Error in Frame */
emilmont 10:3bc89ef62ce7 264 #define RINFO_SYM_ERR 0x01000000 /* Symbol Error from PHY */
emilmont 10:3bc89ef62ce7 265 #define RINFO_LEN_ERR 0x02000000 /* Length Error */
emilmont 10:3bc89ef62ce7 266 #define RINFO_RANGE_ERR 0x04000000 /* Range Error (exceeded max. size) */
emilmont 10:3bc89ef62ce7 267 #define RINFO_ALIGN_ERR 0x08000000 /* Alignment Error */
emilmont 10:3bc89ef62ce7 268 #define RINFO_OVERRUN 0x10000000 /* Receive overrun */
emilmont 10:3bc89ef62ce7 269 #define RINFO_NO_DESCR 0x20000000 /* No new Descriptor available */
emilmont 10:3bc89ef62ce7 270 #define RINFO_LAST_FLAG 0x40000000 /* Last Fragment in Frame */
emilmont 10:3bc89ef62ce7 271 #define RINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
emilmont 10:3bc89ef62ce7 272
emilmont 10:3bc89ef62ce7 273 //#define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_CRC_ERR | RINFO_SYM_ERR | RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
emilmont 10:3bc89ef62ce7 274 #define RINFO_ERR_MASK (RINFO_FAIL_FILT | RINFO_SYM_ERR | \
emilmont 10:3bc89ef62ce7 275 RINFO_LEN_ERR | RINFO_ALIGN_ERR | RINFO_OVERRUN)
emilmont 10:3bc89ef62ce7 276
emilmont 10:3bc89ef62ce7 277
emilmont 10:3bc89ef62ce7 278 /* TX Descriptor Control Word */
emilmont 10:3bc89ef62ce7 279 #define TCTRL_SIZE 0x000007FF /* Size of data buffer in bytes */
emilmont 10:3bc89ef62ce7 280 #define TCTRL_OVERRIDE 0x04000000 /* Override Default MAC Registers */
emilmont 10:3bc89ef62ce7 281 #define TCTRL_HUGE 0x08000000 /* Enable Huge Frame */
emilmont 10:3bc89ef62ce7 282 #define TCTRL_PAD 0x10000000 /* Pad short Frames to 64 bytes */
emilmont 10:3bc89ef62ce7 283 #define TCTRL_CRC 0x20000000 /* Append a hardware CRC to Frame */
emilmont 10:3bc89ef62ce7 284 #define TCTRL_LAST 0x40000000 /* Last Descriptor for TX Frame */
emilmont 10:3bc89ef62ce7 285 #define TCTRL_INT 0x80000000 /* Generate TxDone Interrupt */
emilmont 10:3bc89ef62ce7 286
emilmont 10:3bc89ef62ce7 287 /* TX Status Information Word */
emilmont 10:3bc89ef62ce7 288 #define TINFO_COL_CNT 0x01E00000 /* Collision Count */
emilmont 10:3bc89ef62ce7 289 #define TINFO_DEFER 0x02000000 /* Packet Deferred (not an error) */
emilmont 10:3bc89ef62ce7 290 #define TINFO_EXCESS_DEF 0x04000000 /* Excessive Deferral */
emilmont 10:3bc89ef62ce7 291 #define TINFO_EXCESS_COL 0x08000000 /* Excessive Collision */
emilmont 10:3bc89ef62ce7 292 #define TINFO_LATE_COL 0x10000000 /* Late Collision Occured */
emilmont 10:3bc89ef62ce7 293 #define TINFO_UNDERRUN 0x20000000 /* Transmit Underrun */
emilmont 10:3bc89ef62ce7 294 #define TINFO_NO_DESCR 0x40000000 /* No new Descriptor available */
emilmont 10:3bc89ef62ce7 295 #define TINFO_ERR 0x80000000 /* Error Occured (OR of all errors) */
emilmont 10:3bc89ef62ce7 296
emilmont 10:3bc89ef62ce7 297 /* ENET Device Revision ID */
emilmont 10:3bc89ef62ce7 298 #define OLD_EMAC_MODULE_ID 0x39022000 /* Rev. ID for first rev '-' */
emilmont 10:3bc89ef62ce7 299
emilmont 10:3bc89ef62ce7 300 /* DP83848C PHY Registers */
emilmont 10:3bc89ef62ce7 301 #define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
emilmont 10:3bc89ef62ce7 302 #define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
emilmont 10:3bc89ef62ce7 303 #define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
emilmont 10:3bc89ef62ce7 304 #define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
emilmont 10:3bc89ef62ce7 305 #define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
emilmont 10:3bc89ef62ce7 306 #define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
emilmont 10:3bc89ef62ce7 307 #define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
emilmont 10:3bc89ef62ce7 308 #define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX */
emilmont 10:3bc89ef62ce7 309
emilmont 10:3bc89ef62ce7 310 /* PHY Extended Registers */
emilmont 10:3bc89ef62ce7 311 #define PHY_REG_STS 0x10 /* Status Register */
emilmont 10:3bc89ef62ce7 312 #define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
emilmont 10:3bc89ef62ce7 313 #define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
emilmont 10:3bc89ef62ce7 314 #define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
emilmont 10:3bc89ef62ce7 315 #define PHY_REG_RECR 0x15 /* Receive Error Counter */
emilmont 10:3bc89ef62ce7 316 #define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
emilmont 10:3bc89ef62ce7 317 #define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
emilmont 10:3bc89ef62ce7 318 #define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
emilmont 10:3bc89ef62ce7 319 #define PHY_REG_PHYCR 0x19 /* PHY Control Register */
emilmont 10:3bc89ef62ce7 320 #define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
emilmont 10:3bc89ef62ce7 321 #define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
emilmont 10:3bc89ef62ce7 322 #define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
emilmont 10:3bc89ef62ce7 323
emilmont 10:3bc89ef62ce7 324 #define PHY_REG_SCSR 0x1F /* PHY Special Control/Status Register */
emilmont 10:3bc89ef62ce7 325
emilmont 10:3bc89ef62ce7 326 #define PHY_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
emilmont 10:3bc89ef62ce7 327 #define PHY_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
emilmont 10:3bc89ef62ce7 328 #define PHY_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
emilmont 10:3bc89ef62ce7 329 #define PHY_HALFD_10M 0x0000 /* Half Duplex 10MBit */
emilmont 10:3bc89ef62ce7 330 #define PHY_AUTO_NEG 0x3000 /* Select Auto Negotiation */
emilmont 10:3bc89ef62ce7 331
emilmont 10:3bc89ef62ce7 332 #define DP83848C_DEF_ADR 0x0100 /* Default PHY device address */
emilmont 10:3bc89ef62ce7 333 #define DP83848C_ID 0x20005C90 /* PHY Identifier - DP83848C */
emilmont 10:3bc89ef62ce7 334
emilmont 10:3bc89ef62ce7 335 #define LAN8720_ID 0x0007C0F0 /* PHY Identifier - LAN8720 */
emilmont 10:3bc89ef62ce7 336
emilmont 10:3bc89ef62ce7 337 #define PHY_STS_LINK 0x0001 /* PHY Status Link Mask */
emilmont 10:3bc89ef62ce7 338 #define PHY_STS_SPEED 0x0002 /* PHY Status Speed Mask */
emilmont 10:3bc89ef62ce7 339 #define PHY_STS_DUPLEX 0x0004 /* PHY Status Duplex Mask */
emilmont 10:3bc89ef62ce7 340
emilmont 10:3bc89ef62ce7 341 #define PHY_BMCR_RESET 0x8000 /* PHY Reset */
emilmont 10:3bc89ef62ce7 342
emilmont 10:3bc89ef62ce7 343 #define PHY_BMSR_LINK 0x0004 /* PHY BMSR Link valid */
emilmont 10:3bc89ef62ce7 344
emilmont 10:3bc89ef62ce7 345 #define PHY_SCSR_100MBIT 0x0008 /* Speed: 1=100 MBit, 0=10Mbit */
emilmont 10:3bc89ef62ce7 346 #define PHY_SCSR_DUPLEX 0x0010 /* PHY Duplex Mask */
emilmont 10:3bc89ef62ce7 347
emilmont 10:3bc89ef62ce7 348
emilmont 10:3bc89ef62ce7 349 static int phy_read(unsigned int PhyReg);
emilmont 10:3bc89ef62ce7 350 static int phy_write(unsigned int PhyReg, unsigned short Data);
emilmont 10:3bc89ef62ce7 351
emilmont 10:3bc89ef62ce7 352 static void txdscr_init(void);
emilmont 10:3bc89ef62ce7 353 static void rxdscr_init(void);
emilmont 10:3bc89ef62ce7 354
emilmont 10:3bc89ef62ce7 355 #if defined (__ICCARM__)
emilmont 10:3bc89ef62ce7 356 # define AHBSRAM1
emilmont 10:3bc89ef62ce7 357 #elif defined(TOOLCHAIN_GCC_CR)
emilmont 10:3bc89ef62ce7 358 # define AHBSRAM1 __attribute__((section(".data.$RamPeriph32")))
emilmont 10:3bc89ef62ce7 359 #else
emilmont 10:3bc89ef62ce7 360 # define AHBSRAM1 __attribute__((section("AHBSRAM1"),aligned))
emilmont 10:3bc89ef62ce7 361 #endif
emilmont 10:3bc89ef62ce7 362
emilmont 10:3bc89ef62ce7 363 AHBSRAM1 volatile uint8_t rxbuf[NUM_RX_FRAG][ETH_FRAG_SIZE];
emilmont 10:3bc89ef62ce7 364 AHBSRAM1 volatile uint8_t txbuf[NUM_TX_FRAG][ETH_FRAG_SIZE];
emilmont 10:3bc89ef62ce7 365 AHBSRAM1 volatile RX_DESC_TypeDef rxdesc[NUM_RX_FRAG];
emilmont 10:3bc89ef62ce7 366 AHBSRAM1 volatile RX_STAT_TypeDef rxstat[NUM_RX_FRAG];
emilmont 10:3bc89ef62ce7 367 AHBSRAM1 volatile TX_DESC_TypeDef txdesc[NUM_TX_FRAG];
emilmont 10:3bc89ef62ce7 368 AHBSRAM1 volatile TX_STAT_TypeDef txstat[NUM_TX_FRAG];
emilmont 10:3bc89ef62ce7 369
emilmont 10:3bc89ef62ce7 370
emilmont 10:3bc89ef62ce7 371 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 372 static int rx_consume_offset = -1;
emilmont 10:3bc89ef62ce7 373 static int tx_produce_offset = -1;
emilmont 10:3bc89ef62ce7 374 #else
emilmont 10:3bc89ef62ce7 375 static int send_doff = 0;
emilmont 10:3bc89ef62ce7 376 static int send_idx = -1;
emilmont 10:3bc89ef62ce7 377 static int send_size = 0;
emilmont 10:3bc89ef62ce7 378
emilmont 10:3bc89ef62ce7 379 static int receive_soff = 0;
emilmont 10:3bc89ef62ce7 380 static int receive_idx = -1;
emilmont 10:3bc89ef62ce7 381 #endif
emilmont 10:3bc89ef62ce7 382
emilmont 10:3bc89ef62ce7 383 static uint32_t phy_id = 0;
emilmont 10:3bc89ef62ce7 384
emilmont 10:3bc89ef62ce7 385 static inline int rinc(int idx, int mod) {
emilmont 10:3bc89ef62ce7 386 ++idx;
emilmont 10:3bc89ef62ce7 387 idx %= mod;
emilmont 10:3bc89ef62ce7 388 return idx;
emilmont 10:3bc89ef62ce7 389 }
emilmont 10:3bc89ef62ce7 390
emilmont 10:3bc89ef62ce7 391 //extern unsigned int SystemFrequency;
emilmont 10:3bc89ef62ce7 392 static inline unsigned int clockselect() {
emilmont 10:3bc89ef62ce7 393 if(SystemCoreClock < 10000000) {
emilmont 10:3bc89ef62ce7 394 return 1;
emilmont 10:3bc89ef62ce7 395 } else if(SystemCoreClock < 15000000) {
emilmont 10:3bc89ef62ce7 396 return 2;
emilmont 10:3bc89ef62ce7 397 } else if(SystemCoreClock < 20000000) {
emilmont 10:3bc89ef62ce7 398 return 3;
emilmont 10:3bc89ef62ce7 399 } else if(SystemCoreClock < 25000000) {
emilmont 10:3bc89ef62ce7 400 return 4;
emilmont 10:3bc89ef62ce7 401 } else if(SystemCoreClock < 35000000) {
emilmont 10:3bc89ef62ce7 402 return 5;
emilmont 10:3bc89ef62ce7 403 } else if(SystemCoreClock < 50000000) {
emilmont 10:3bc89ef62ce7 404 return 6;
emilmont 10:3bc89ef62ce7 405 } else if(SystemCoreClock < 70000000) {
emilmont 10:3bc89ef62ce7 406 return 7;
emilmont 10:3bc89ef62ce7 407 } else if(SystemCoreClock < 80000000) {
emilmont 10:3bc89ef62ce7 408 return 8;
emilmont 10:3bc89ef62ce7 409 } else if(SystemCoreClock < 90000000) {
emilmont 10:3bc89ef62ce7 410 return 9;
emilmont 10:3bc89ef62ce7 411 } else if(SystemCoreClock < 100000000) {
emilmont 10:3bc89ef62ce7 412 return 10;
emilmont 10:3bc89ef62ce7 413 } else if(SystemCoreClock < 120000000) {
emilmont 10:3bc89ef62ce7 414 return 11;
emilmont 10:3bc89ef62ce7 415 } else if(SystemCoreClock < 130000000) {
emilmont 10:3bc89ef62ce7 416 return 12;
emilmont 10:3bc89ef62ce7 417 } else if(SystemCoreClock < 140000000) {
emilmont 10:3bc89ef62ce7 418 return 13;
emilmont 10:3bc89ef62ce7 419 } else if(SystemCoreClock < 150000000) {
emilmont 10:3bc89ef62ce7 420 return 15;
emilmont 10:3bc89ef62ce7 421 } else if(SystemCoreClock < 160000000) {
emilmont 10:3bc89ef62ce7 422 return 16;
emilmont 10:3bc89ef62ce7 423 } else {
emilmont 10:3bc89ef62ce7 424 return 0;
emilmont 10:3bc89ef62ce7 425 }
emilmont 10:3bc89ef62ce7 426 }
emilmont 10:3bc89ef62ce7 427
emilmont 10:3bc89ef62ce7 428 #ifndef min
emilmont 10:3bc89ef62ce7 429 #define min(x, y) (((x)<(y))?(x):(y))
emilmont 10:3bc89ef62ce7 430 #endif
emilmont 10:3bc89ef62ce7 431
emilmont 10:3bc89ef62ce7 432 /*----------------------------------------------------------------------------
emilmont 10:3bc89ef62ce7 433 Ethernet Device initialize
emilmont 10:3bc89ef62ce7 434 *----------------------------------------------------------------------------*/
emilmont 10:3bc89ef62ce7 435 int ethernet_init() {
emilmont 10:3bc89ef62ce7 436 int regv, tout;
emilmont 10:3bc89ef62ce7 437 char mac[ETHERNET_ADDR_SIZE];
emilmont 10:3bc89ef62ce7 438 unsigned int clock = clockselect();
emilmont 10:3bc89ef62ce7 439
emilmont 10:3bc89ef62ce7 440 LPC_SC->PCONP |= 0x40000000; /* Power Up the EMAC controller. */
emilmont 10:3bc89ef62ce7 441
emilmont 10:3bc89ef62ce7 442 LPC_PINCON->PINSEL2 = 0x50150105; /* Enable P1 Ethernet Pins. */
emilmont 10:3bc89ef62ce7 443 LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000005;
emilmont 10:3bc89ef62ce7 444
emilmont 10:3bc89ef62ce7 445 /* Reset all EMAC internal modules. */
emilmont 10:3bc89ef62ce7 446 LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX |
emilmont 10:3bc89ef62ce7 447 MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES;
emilmont 10:3bc89ef62ce7 448 LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM;
emilmont 10:3bc89ef62ce7 449
emilmont 10:3bc89ef62ce7 450 for(tout = 100; tout; tout--) __NOP(); /* A short delay after reset. */
emilmont 10:3bc89ef62ce7 451
emilmont 10:3bc89ef62ce7 452 LPC_EMAC->MAC1 = MAC1_PASS_ALL; /* Initialize MAC control registers. */
emilmont 10:3bc89ef62ce7 453 LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
emilmont 10:3bc89ef62ce7 454 LPC_EMAC->MAXF = ETH_MAX_FLEN;
emilmont 10:3bc89ef62ce7 455 LPC_EMAC->CLRT = CLRT_DEF;
emilmont 10:3bc89ef62ce7 456 LPC_EMAC->IPGR = IPGR_DEF;
emilmont 10:3bc89ef62ce7 457
emilmont 10:3bc89ef62ce7 458 LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM; /* Enable Reduced MII interface. */
emilmont 10:3bc89ef62ce7 459
emilmont 10:3bc89ef62ce7 460 LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL; /* Set clock */
emilmont 10:3bc89ef62ce7 461 LPC_EMAC->MCFG |= MCFG_RES_MII; /* and reset */
emilmont 10:3bc89ef62ce7 462
emilmont 10:3bc89ef62ce7 463 for(tout = 100; tout; tout--) __NOP(); /* A short delay */
emilmont 10:3bc89ef62ce7 464
emilmont 10:3bc89ef62ce7 465 LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL;
emilmont 10:3bc89ef62ce7 466 LPC_EMAC->MCMD = 0;
emilmont 10:3bc89ef62ce7 467
emilmont 10:3bc89ef62ce7 468 LPC_EMAC->SUPP = SUPP_RES_RMII; /* Reset Reduced MII Logic. */
emilmont 10:3bc89ef62ce7 469
emilmont 10:3bc89ef62ce7 470 for (tout = 100; tout; tout--) __NOP(); /* A short delay */
emilmont 10:3bc89ef62ce7 471
emilmont 10:3bc89ef62ce7 472 LPC_EMAC->SUPP = 0;
emilmont 10:3bc89ef62ce7 473
emilmont 10:3bc89ef62ce7 474 phy_write(PHY_REG_BMCR, PHY_BMCR_RESET); /* perform PHY reset */
emilmont 10:3bc89ef62ce7 475 for(tout = 0x20000; ; tout--) { /* Wait for hardware reset to end. */
emilmont 10:3bc89ef62ce7 476 regv = phy_read(PHY_REG_BMCR);
emilmont 10:3bc89ef62ce7 477 if(regv < 0 || tout == 0) {
emilmont 10:3bc89ef62ce7 478 return -1; /* Error */
emilmont 10:3bc89ef62ce7 479 }
emilmont 10:3bc89ef62ce7 480 if(!(regv & PHY_BMCR_RESET)) {
emilmont 10:3bc89ef62ce7 481 break; /* Reset complete. */
emilmont 10:3bc89ef62ce7 482 }
emilmont 10:3bc89ef62ce7 483 }
emilmont 10:3bc89ef62ce7 484
emilmont 10:3bc89ef62ce7 485 phy_id = (phy_read(PHY_REG_IDR1) << 16);
emilmont 10:3bc89ef62ce7 486 phy_id |= (phy_read(PHY_REG_IDR2) & 0XFFF0);
emilmont 10:3bc89ef62ce7 487
emilmont 10:3bc89ef62ce7 488 if (phy_id != DP83848C_ID && phy_id != LAN8720_ID) {
emilmont 10:3bc89ef62ce7 489 error("Unknown Ethernet PHY (%x)", (unsigned int)phy_id);
emilmont 10:3bc89ef62ce7 490 }
emilmont 10:3bc89ef62ce7 491
emilmont 10:3bc89ef62ce7 492 ethernet_set_link(-1, 0);
emilmont 10:3bc89ef62ce7 493
emilmont 10:3bc89ef62ce7 494 /* Set the Ethernet MAC Address registers */
emilmont 10:3bc89ef62ce7 495 ethernet_address(mac);
emilmont 10:3bc89ef62ce7 496 LPC_EMAC->SA0 = ((uint32_t)mac[5] << 8) | (uint32_t)mac[4];
emilmont 10:3bc89ef62ce7 497 LPC_EMAC->SA1 = ((uint32_t)mac[3] << 8) | (uint32_t)mac[2];
emilmont 10:3bc89ef62ce7 498 LPC_EMAC->SA2 = ((uint32_t)mac[1] << 8) | (uint32_t)mac[0];
emilmont 10:3bc89ef62ce7 499
emilmont 10:3bc89ef62ce7 500 txdscr_init(); /* initialize DMA TX Descriptor */
emilmont 10:3bc89ef62ce7 501 rxdscr_init(); /* initialize DMA RX Descriptor */
emilmont 10:3bc89ef62ce7 502
emilmont 10:3bc89ef62ce7 503 LPC_EMAC->RxFilterCtrl = RFC_UCAST_EN | RFC_MCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN;
emilmont 10:3bc89ef62ce7 504 /* Receive Broadcast, Perfect Match Packets */
emilmont 10:3bc89ef62ce7 505
emilmont 10:3bc89ef62ce7 506 LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE; /* Enable EMAC interrupts. */
emilmont 10:3bc89ef62ce7 507 LPC_EMAC->IntClear = 0xFFFF; /* Reset all interrupts */
emilmont 10:3bc89ef62ce7 508
emilmont 10:3bc89ef62ce7 509
emilmont 10:3bc89ef62ce7 510 LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN); /* Enable receive and transmit mode of MAC Ethernet core */
emilmont 10:3bc89ef62ce7 511 LPC_EMAC->MAC1 |= MAC1_REC_EN;
emilmont 10:3bc89ef62ce7 512
emilmont 10:3bc89ef62ce7 513 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 514 rx_consume_offset = -1;
emilmont 10:3bc89ef62ce7 515 tx_produce_offset = -1;
emilmont 10:3bc89ef62ce7 516 #else
emilmont 10:3bc89ef62ce7 517 send_doff = 0;
emilmont 10:3bc89ef62ce7 518 send_idx = -1;
emilmont 10:3bc89ef62ce7 519 send_size = 0;
emilmont 10:3bc89ef62ce7 520
emilmont 10:3bc89ef62ce7 521 receive_soff = 0;
emilmont 10:3bc89ef62ce7 522 receive_idx = -1;
emilmont 10:3bc89ef62ce7 523 #endif
emilmont 10:3bc89ef62ce7 524
emilmont 10:3bc89ef62ce7 525 return 0;
emilmont 10:3bc89ef62ce7 526 }
emilmont 10:3bc89ef62ce7 527
emilmont 10:3bc89ef62ce7 528 /*----------------------------------------------------------------------------
emilmont 10:3bc89ef62ce7 529 Ethernet Device Uninitialize
emilmont 10:3bc89ef62ce7 530 *----------------------------------------------------------------------------*/
emilmont 10:3bc89ef62ce7 531 void ethernet_free() {
emilmont 10:3bc89ef62ce7 532 LPC_EMAC->IntEnable &= ~(INT_RX_DONE | INT_TX_DONE);
emilmont 10:3bc89ef62ce7 533 LPC_EMAC->IntClear = 0xFFFF;
emilmont 10:3bc89ef62ce7 534
emilmont 10:3bc89ef62ce7 535 LPC_SC->PCONP &= ~0x40000000; /* Power down the EMAC controller. */
emilmont 10:3bc89ef62ce7 536
emilmont 10:3bc89ef62ce7 537 LPC_PINCON->PINSEL2 &= ~0x50150105; /* Disable P1 ethernet pins. */
emilmont 10:3bc89ef62ce7 538 LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000000;
emilmont 10:3bc89ef62ce7 539 }
emilmont 10:3bc89ef62ce7 540
emilmont 10:3bc89ef62ce7 541 // if(TxProduceIndex == TxConsumeIndex) buffer array is empty
emilmont 10:3bc89ef62ce7 542 // if(TxProduceIndex == TxConsumeIndex - 1) buffer is full, should not fill
emilmont 10:3bc89ef62ce7 543 // TxProduceIndex - The buffer that will/is being fileld by driver, s/w increment
emilmont 10:3bc89ef62ce7 544 // TxConsumeIndex - The buffer that will/is beign sent by hardware
emilmont 10:3bc89ef62ce7 545
emilmont 10:3bc89ef62ce7 546 int ethernet_write(const char *data, int slen) {
emilmont 10:3bc89ef62ce7 547
emilmont 10:3bc89ef62ce7 548 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 549
emilmont 10:3bc89ef62ce7 550 if(tx_produce_offset < 0) { // mark as active if not already
emilmont 10:3bc89ef62ce7 551 tx_produce_offset = 0;
emilmont 10:3bc89ef62ce7 552 }
emilmont 10:3bc89ef62ce7 553
emilmont 10:3bc89ef62ce7 554 int index = LPC_EMAC->TxProduceIndex;
emilmont 10:3bc89ef62ce7 555
emilmont 10:3bc89ef62ce7 556 int remaining = ETH_MAX_FLEN - tx_produce_offset - 4; // bytes written plus checksum
emilmont 10:3bc89ef62ce7 557 int requested = slen;
emilmont 10:3bc89ef62ce7 558 int ncopy = min(remaining, requested);
emilmont 10:3bc89ef62ce7 559
emilmont 10:3bc89ef62ce7 560 void *pdst = (void *)(txdesc[index].Packet + tx_produce_offset);
emilmont 10:3bc89ef62ce7 561 void *psrc = (void *)(data);
emilmont 10:3bc89ef62ce7 562
emilmont 10:3bc89ef62ce7 563 if(ncopy > 0 ){
emilmont 10:3bc89ef62ce7 564 if(data != NULL) {
emilmont 10:3bc89ef62ce7 565 memcpy(pdst, psrc, ncopy);
emilmont 10:3bc89ef62ce7 566 } else {
emilmont 10:3bc89ef62ce7 567 memset(pdst, 0, ncopy);
emilmont 10:3bc89ef62ce7 568 }
emilmont 10:3bc89ef62ce7 569 }
emilmont 10:3bc89ef62ce7 570
emilmont 10:3bc89ef62ce7 571 tx_produce_offset += ncopy;
emilmont 10:3bc89ef62ce7 572
emilmont 10:3bc89ef62ce7 573 return ncopy;
emilmont 10:3bc89ef62ce7 574
emilmont 10:3bc89ef62ce7 575 #else
emilmont 10:3bc89ef62ce7 576 void *pdst, *psrc;
emilmont 10:3bc89ef62ce7 577 const int dlen = ETH_FRAG_SIZE;
emilmont 10:3bc89ef62ce7 578 int copy = 0;
emilmont 10:3bc89ef62ce7 579 int soff = 0;
emilmont 10:3bc89ef62ce7 580
emilmont 10:3bc89ef62ce7 581 if(send_idx == -1) {
emilmont 10:3bc89ef62ce7 582 send_idx = LPC_EMAC->TxProduceIndex;
emilmont 10:3bc89ef62ce7 583 }
emilmont 10:3bc89ef62ce7 584
emilmont 10:3bc89ef62ce7 585 if(slen + send_doff > ethernet_MTU_SIZE) {
emilmont 10:3bc89ef62ce7 586 return -1;
emilmont 10:3bc89ef62ce7 587 }
emilmont 10:3bc89ef62ce7 588
emilmont 10:3bc89ef62ce7 589 do {
emilmont 10:3bc89ef62ce7 590 copy = min(slen - soff, dlen - send_doff);
emilmont 10:3bc89ef62ce7 591 pdst = (void *)(txdesc[send_idx].Packet + send_doff);
emilmont 10:3bc89ef62ce7 592 psrc = (void *)(data + soff);
emilmont 10:3bc89ef62ce7 593 if(send_doff + copy > ETH_FRAG_SIZE) {
emilmont 10:3bc89ef62ce7 594 txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT);
emilmont 10:3bc89ef62ce7 595 send_idx = rinc(send_idx, NUM_TX_FRAG);
emilmont 10:3bc89ef62ce7 596 send_doff = 0;
emilmont 10:3bc89ef62ce7 597 }
emilmont 10:3bc89ef62ce7 598
emilmont 10:3bc89ef62ce7 599 if(data != NULL) {
emilmont 10:3bc89ef62ce7 600 memcpy(pdst, psrc, copy);
emilmont 10:3bc89ef62ce7 601 } else {
emilmont 10:3bc89ef62ce7 602 memset(pdst, 0, copy);
emilmont 10:3bc89ef62ce7 603 }
emilmont 10:3bc89ef62ce7 604
emilmont 10:3bc89ef62ce7 605 soff += copy;
emilmont 10:3bc89ef62ce7 606 send_doff += copy;
emilmont 10:3bc89ef62ce7 607 send_size += copy;
emilmont 10:3bc89ef62ce7 608 } while(soff != slen);
emilmont 10:3bc89ef62ce7 609
emilmont 10:3bc89ef62ce7 610 return soff;
emilmont 10:3bc89ef62ce7 611 #endif
emilmont 10:3bc89ef62ce7 612 }
emilmont 10:3bc89ef62ce7 613
emilmont 10:3bc89ef62ce7 614 int ethernet_send() {
emilmont 10:3bc89ef62ce7 615
emilmont 10:3bc89ef62ce7 616 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 617 if(tx_produce_offset < 0) { // no buffer active
emilmont 10:3bc89ef62ce7 618 return -1;
emilmont 10:3bc89ef62ce7 619 }
emilmont 10:3bc89ef62ce7 620
emilmont 10:3bc89ef62ce7 621 // ensure there is a link
emilmont 10:3bc89ef62ce7 622 if(!ethernet_link()) {
emilmont 10:3bc89ef62ce7 623 return -2;
emilmont 10:3bc89ef62ce7 624 }
emilmont 10:3bc89ef62ce7 625
emilmont 10:3bc89ef62ce7 626 // we have been writing in to a buffer, so finalise it
emilmont 10:3bc89ef62ce7 627 int size = tx_produce_offset;
emilmont 10:3bc89ef62ce7 628 int index = LPC_EMAC->TxProduceIndex;
emilmont 10:3bc89ef62ce7 629 txdesc[index].Ctrl = (tx_produce_offset-1) | (TCTRL_INT | TCTRL_LAST);
emilmont 10:3bc89ef62ce7 630
emilmont 10:3bc89ef62ce7 631 // Increment ProduceIndex to allow it to be sent
emilmont 10:3bc89ef62ce7 632 // We can only do this if the next slot is free
emilmont 10:3bc89ef62ce7 633 int next = rinc(index, NUM_TX_FRAG);
emilmont 10:3bc89ef62ce7 634 while(next == LPC_EMAC->TxConsumeIndex) {
emilmont 10:3bc89ef62ce7 635 for(int i=0; i<1000; i++) { __NOP(); }
emilmont 10:3bc89ef62ce7 636 }
emilmont 10:3bc89ef62ce7 637
emilmont 10:3bc89ef62ce7 638 LPC_EMAC->TxProduceIndex = next;
emilmont 10:3bc89ef62ce7 639 tx_produce_offset = -1;
emilmont 10:3bc89ef62ce7 640 return size;
emilmont 10:3bc89ef62ce7 641
emilmont 10:3bc89ef62ce7 642 #else
emilmont 10:3bc89ef62ce7 643 int s = send_size;
emilmont 10:3bc89ef62ce7 644 txdesc[send_idx].Ctrl = (send_doff-1) | (TCTRL_INT | TCTRL_LAST);
emilmont 10:3bc89ef62ce7 645 send_idx = rinc(send_idx, NUM_TX_FRAG);
emilmont 10:3bc89ef62ce7 646 LPC_EMAC->TxProduceIndex = send_idx;
emilmont 10:3bc89ef62ce7 647 send_doff = 0;
emilmont 10:3bc89ef62ce7 648 send_idx = -1;
emilmont 10:3bc89ef62ce7 649 send_size = 0;
emilmont 10:3bc89ef62ce7 650 return s;
emilmont 10:3bc89ef62ce7 651 #endif
emilmont 10:3bc89ef62ce7 652 }
emilmont 10:3bc89ef62ce7 653
emilmont 10:3bc89ef62ce7 654 // RxConsmeIndex - The index of buffer the driver will/is reading from. Driver should inc once read
emilmont 10:3bc89ef62ce7 655 // RxProduceIndex - The index of buffer that will/is being filled by MAC. H/w will inc once rxd
emilmont 10:3bc89ef62ce7 656 //
emilmont 10:3bc89ef62ce7 657 // if(RxConsumeIndex == RxProduceIndex) buffer array is empty
emilmont 10:3bc89ef62ce7 658 // if(RxConsumeIndex == RxProduceIndex + 1) buffer array is full
emilmont 10:3bc89ef62ce7 659
emilmont 10:3bc89ef62ce7 660 // Recevies an arrived ethernet packet.
emilmont 10:3bc89ef62ce7 661 // Receiving an ethernet packet will drop the last received ethernet packet
emilmont 10:3bc89ef62ce7 662 // and make a new ethernet packet ready to read.
emilmont 10:3bc89ef62ce7 663 // Returns size of packet, else 0 if nothing to receive
emilmont 10:3bc89ef62ce7 664
emilmont 10:3bc89ef62ce7 665 // We read from RxConsumeIndex from position rx_consume_offset
emilmont 10:3bc89ef62ce7 666 // if rx_consume_offset < 0, then we have not recieved the RxConsumeIndex packet for reading
emilmont 10:3bc89ef62ce7 667 // rx_consume_offset = -1 // no frame
emilmont 10:3bc89ef62ce7 668 // rx_consume_offset = 0 // start of frame
emilmont 10:3bc89ef62ce7 669 // Assumption: A fragment should alway be a whole frame
emilmont 10:3bc89ef62ce7 670
emilmont 10:3bc89ef62ce7 671 int ethernet_receive() {
emilmont 10:3bc89ef62ce7 672 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 673
emilmont 10:3bc89ef62ce7 674 // if we are currently reading a valid RxConsume buffer, increment to the next one
emilmont 10:3bc89ef62ce7 675 if(rx_consume_offset >= 0) {
emilmont 10:3bc89ef62ce7 676 LPC_EMAC->RxConsumeIndex = rinc(LPC_EMAC->RxConsumeIndex, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 677 }
emilmont 10:3bc89ef62ce7 678
emilmont 10:3bc89ef62ce7 679 // if the buffer is empty, mark it as no valid buffer
emilmont 10:3bc89ef62ce7 680 if(LPC_EMAC->RxConsumeIndex == LPC_EMAC->RxProduceIndex) {
emilmont 10:3bc89ef62ce7 681 rx_consume_offset = -1;
emilmont 10:3bc89ef62ce7 682 return 0;
emilmont 10:3bc89ef62ce7 683 }
emilmont 10:3bc89ef62ce7 684
emilmont 10:3bc89ef62ce7 685 uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
emilmont 10:3bc89ef62ce7 686 rx_consume_offset = 0;
emilmont 10:3bc89ef62ce7 687
emilmont 10:3bc89ef62ce7 688 // check if it is not marked as last or for errors
emilmont 10:3bc89ef62ce7 689 if(!(info & RINFO_LAST_FLAG) || (info & RINFO_ERR_MASK)) {
emilmont 10:3bc89ef62ce7 690 return -1;
emilmont 10:3bc89ef62ce7 691 }
emilmont 10:3bc89ef62ce7 692
emilmont 10:3bc89ef62ce7 693 int size = (info & RINFO_SIZE) + 1;
emilmont 10:3bc89ef62ce7 694 return size - 4; // don't include checksum bytes
emilmont 10:3bc89ef62ce7 695
emilmont 10:3bc89ef62ce7 696 #else
emilmont 10:3bc89ef62ce7 697 if(receive_idx == -1) {
emilmont 10:3bc89ef62ce7 698 receive_idx = LPC_EMAC->RxConsumeIndex;
emilmont 10:3bc89ef62ce7 699 } else {
emilmont 10:3bc89ef62ce7 700 while(!(rxstat[receive_idx].Info & RINFO_LAST_FLAG) && (receive_idx != LPC_EMAC->RxProduceIndex)) {
emilmont 10:3bc89ef62ce7 701 receive_idx = rinc(receive_idx, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 702 }
emilmont 10:3bc89ef62ce7 703 unsigned int info = rxstat[receive_idx].Info;
emilmont 10:3bc89ef62ce7 704 int slen = (info & RINFO_SIZE) + 1;
emilmont 10:3bc89ef62ce7 705
emilmont 10:3bc89ef62ce7 706 if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
emilmont 10:3bc89ef62ce7 707 /* Invalid frame, ignore it and free buffer. */
emilmont 10:3bc89ef62ce7 708 receive_idx = rinc(receive_idx, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 709 }
emilmont 10:3bc89ef62ce7 710 receive_idx = rinc(receive_idx, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 711 receive_soff = 0;
emilmont 10:3bc89ef62ce7 712
emilmont 10:3bc89ef62ce7 713 LPC_EMAC->RxConsumeIndex = receive_idx;
emilmont 10:3bc89ef62ce7 714 }
emilmont 10:3bc89ef62ce7 715
emilmont 10:3bc89ef62ce7 716 if(receive_idx == LPC_EMAC->RxProduceIndex) {
emilmont 10:3bc89ef62ce7 717 receive_idx = -1;
emilmont 10:3bc89ef62ce7 718 return 0;
emilmont 10:3bc89ef62ce7 719 }
emilmont 10:3bc89ef62ce7 720
emilmont 10:3bc89ef62ce7 721 return (rxstat[receive_idx].Info & RINFO_SIZE) - 3;
emilmont 10:3bc89ef62ce7 722 #endif
emilmont 10:3bc89ef62ce7 723 }
emilmont 10:3bc89ef62ce7 724
emilmont 10:3bc89ef62ce7 725 // Read from an recevied ethernet packet.
emilmont 10:3bc89ef62ce7 726 // After receive returnd a number bigger than 0 it is
emilmont 10:3bc89ef62ce7 727 // possible to read bytes from this packet.
emilmont 10:3bc89ef62ce7 728 // Read will write up to size bytes into data.
emilmont 10:3bc89ef62ce7 729 // It is possible to use read multible times.
emilmont 10:3bc89ef62ce7 730 // Each time read will start reading after the last read byte before.
emilmont 10:3bc89ef62ce7 731
emilmont 10:3bc89ef62ce7 732 int ethernet_read(char *data, int dlen) {
emilmont 10:3bc89ef62ce7 733 #if NEW_LOGIC
emilmont 10:3bc89ef62ce7 734 // Check we have a valid buffer to read
emilmont 10:3bc89ef62ce7 735 if(rx_consume_offset < 0) {
emilmont 10:3bc89ef62ce7 736 return 0;
emilmont 10:3bc89ef62ce7 737 }
emilmont 10:3bc89ef62ce7 738
emilmont 10:3bc89ef62ce7 739 // Assume 1 fragment block
emilmont 10:3bc89ef62ce7 740 uint32_t info = rxstat[LPC_EMAC->RxConsumeIndex].Info;
emilmont 10:3bc89ef62ce7 741 int size = (info & RINFO_SIZE) + 1 - 4; // exclude checksum
emilmont 10:3bc89ef62ce7 742
emilmont 10:3bc89ef62ce7 743 int remaining = size - rx_consume_offset;
emilmont 10:3bc89ef62ce7 744 int requested = dlen;
emilmont 10:3bc89ef62ce7 745 int ncopy = min(remaining, requested);
emilmont 10:3bc89ef62ce7 746
emilmont 10:3bc89ef62ce7 747 void *psrc = (void *)(rxdesc[LPC_EMAC->RxConsumeIndex].Packet + rx_consume_offset);
emilmont 10:3bc89ef62ce7 748 void *pdst = (void *)(data);
emilmont 10:3bc89ef62ce7 749
emilmont 10:3bc89ef62ce7 750 if(data != NULL && ncopy > 0) {
emilmont 10:3bc89ef62ce7 751 memcpy(pdst, psrc, ncopy);
emilmont 10:3bc89ef62ce7 752 }
emilmont 10:3bc89ef62ce7 753
emilmont 10:3bc89ef62ce7 754 rx_consume_offset += ncopy;
emilmont 10:3bc89ef62ce7 755
emilmont 10:3bc89ef62ce7 756 return ncopy;
emilmont 10:3bc89ef62ce7 757 #else
emilmont 10:3bc89ef62ce7 758 int slen;
emilmont 10:3bc89ef62ce7 759 int copy = 0;
emilmont 10:3bc89ef62ce7 760 unsigned int more;
emilmont 10:3bc89ef62ce7 761 unsigned int info;
emilmont 10:3bc89ef62ce7 762 void *pdst, *psrc;
emilmont 10:3bc89ef62ce7 763 int doff = 0;
emilmont 10:3bc89ef62ce7 764
emilmont 10:3bc89ef62ce7 765 if(receive_idx == LPC_EMAC->RxProduceIndex || receive_idx == -1) {
emilmont 10:3bc89ef62ce7 766 return 0;
emilmont 10:3bc89ef62ce7 767 }
emilmont 10:3bc89ef62ce7 768
emilmont 10:3bc89ef62ce7 769 do {
emilmont 10:3bc89ef62ce7 770 info = rxstat[receive_idx].Info;
emilmont 10:3bc89ef62ce7 771 more = !(info & RINFO_LAST_FLAG);
emilmont 10:3bc89ef62ce7 772 slen = (info & RINFO_SIZE) + 1;
emilmont 10:3bc89ef62ce7 773
emilmont 10:3bc89ef62ce7 774 if(slen > ethernet_MTU_SIZE || (info & RINFO_ERR_MASK)) {
emilmont 10:3bc89ef62ce7 775 /* Invalid frame, ignore it and free buffer. */
emilmont 10:3bc89ef62ce7 776 receive_idx = rinc(receive_idx, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 777 } else {
emilmont 10:3bc89ef62ce7 778
emilmont 10:3bc89ef62ce7 779 copy = min(slen - receive_soff, dlen - doff);
emilmont 10:3bc89ef62ce7 780 psrc = (void *)(rxdesc[receive_idx].Packet + receive_soff);
emilmont 10:3bc89ef62ce7 781 pdst = (void *)(data + doff);
emilmont 10:3bc89ef62ce7 782
emilmont 10:3bc89ef62ce7 783 if(data != NULL) {
emilmont 10:3bc89ef62ce7 784 /* check if Buffer available */
emilmont 10:3bc89ef62ce7 785 memcpy(pdst, psrc, copy);
emilmont 10:3bc89ef62ce7 786 }
emilmont 10:3bc89ef62ce7 787
emilmont 10:3bc89ef62ce7 788 receive_soff += copy;
emilmont 10:3bc89ef62ce7 789 doff += copy;
emilmont 10:3bc89ef62ce7 790
emilmont 10:3bc89ef62ce7 791 if((more && (receive_soff == slen))) {
emilmont 10:3bc89ef62ce7 792 receive_idx = rinc(receive_idx, NUM_RX_FRAG);
emilmont 10:3bc89ef62ce7 793 receive_soff = 0;
emilmont 10:3bc89ef62ce7 794 }
emilmont 10:3bc89ef62ce7 795 }
emilmont 10:3bc89ef62ce7 796 } while(more && !(doff == dlen) && !receive_soff);
emilmont 10:3bc89ef62ce7 797
emilmont 10:3bc89ef62ce7 798 return doff;
emilmont 10:3bc89ef62ce7 799 #endif
emilmont 10:3bc89ef62ce7 800 }
emilmont 10:3bc89ef62ce7 801
emilmont 10:3bc89ef62ce7 802 int ethernet_link(void) {
emilmont 10:3bc89ef62ce7 803 if (phy_id == DP83848C_ID) {
emilmont 10:3bc89ef62ce7 804 return (phy_read(PHY_REG_STS) & PHY_STS_LINK);
emilmont 10:3bc89ef62ce7 805 }
emilmont 10:3bc89ef62ce7 806 else { // LAN8720_ID
emilmont 10:3bc89ef62ce7 807 return (phy_read(PHY_REG_BMSR) & PHY_BMSR_LINK);
emilmont 10:3bc89ef62ce7 808 }
emilmont 10:3bc89ef62ce7 809 }
emilmont 10:3bc89ef62ce7 810
emilmont 10:3bc89ef62ce7 811 static int phy_write(unsigned int PhyReg, unsigned short Data) {
emilmont 10:3bc89ef62ce7 812 unsigned int timeOut;
emilmont 10:3bc89ef62ce7 813
emilmont 10:3bc89ef62ce7 814 LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
emilmont 10:3bc89ef62ce7 815 LPC_EMAC->MWTD = Data;
emilmont 10:3bc89ef62ce7 816
emilmont 10:3bc89ef62ce7 817 for(timeOut = 0; timeOut < MII_WR_TOUT; timeOut++) { /* Wait until operation completed */
emilmont 10:3bc89ef62ce7 818 if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
emilmont 10:3bc89ef62ce7 819 return 0;
emilmont 10:3bc89ef62ce7 820 }
emilmont 10:3bc89ef62ce7 821 }
emilmont 10:3bc89ef62ce7 822
emilmont 10:3bc89ef62ce7 823 return -1;
emilmont 10:3bc89ef62ce7 824 }
emilmont 10:3bc89ef62ce7 825
emilmont 10:3bc89ef62ce7 826 static int phy_read(unsigned int PhyReg) {
emilmont 10:3bc89ef62ce7 827 unsigned int timeOut;
emilmont 10:3bc89ef62ce7 828
emilmont 10:3bc89ef62ce7 829 LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
emilmont 10:3bc89ef62ce7 830 LPC_EMAC->MCMD = MCMD_READ;
emilmont 10:3bc89ef62ce7 831
emilmont 10:3bc89ef62ce7 832 for(timeOut = 0; timeOut < MII_RD_TOUT; timeOut++) { /* Wait until operation completed */
emilmont 10:3bc89ef62ce7 833 if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
emilmont 10:3bc89ef62ce7 834 LPC_EMAC->MCMD = 0;
emilmont 10:3bc89ef62ce7 835 return LPC_EMAC->MRDD; /* Return a 16-bit value. */
emilmont 10:3bc89ef62ce7 836 }
emilmont 10:3bc89ef62ce7 837 }
emilmont 10:3bc89ef62ce7 838
emilmont 10:3bc89ef62ce7 839 return -1;
emilmont 10:3bc89ef62ce7 840 }
emilmont 10:3bc89ef62ce7 841
emilmont 10:3bc89ef62ce7 842
emilmont 10:3bc89ef62ce7 843 static void txdscr_init() {
emilmont 10:3bc89ef62ce7 844 int i;
emilmont 10:3bc89ef62ce7 845
emilmont 10:3bc89ef62ce7 846 for(i = 0; i < NUM_TX_FRAG; i++) {
emilmont 10:3bc89ef62ce7 847 txdesc[i].Packet = (uint32_t)&txbuf[i];
emilmont 10:3bc89ef62ce7 848 txdesc[i].Ctrl = 0;
emilmont 10:3bc89ef62ce7 849 txstat[i].Info = 0;
emilmont 10:3bc89ef62ce7 850 }
emilmont 10:3bc89ef62ce7 851
emilmont 10:3bc89ef62ce7 852 LPC_EMAC->TxDescriptor = (uint32_t)txdesc; /* Set EMAC Transmit Descriptor Registers. */
emilmont 10:3bc89ef62ce7 853 LPC_EMAC->TxStatus = (uint32_t)txstat;
emilmont 10:3bc89ef62ce7 854 LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG-1;
emilmont 10:3bc89ef62ce7 855
emilmont 10:3bc89ef62ce7 856 LPC_EMAC->TxProduceIndex = 0; /* Tx Descriptors Point to 0 */
emilmont 10:3bc89ef62ce7 857 }
emilmont 10:3bc89ef62ce7 858
emilmont 10:3bc89ef62ce7 859 static void rxdscr_init() {
emilmont 10:3bc89ef62ce7 860 int i;
emilmont 10:3bc89ef62ce7 861
emilmont 10:3bc89ef62ce7 862 for(i = 0; i < NUM_RX_FRAG; i++) {
emilmont 10:3bc89ef62ce7 863 rxdesc[i].Packet = (uint32_t)&rxbuf[i];
emilmont 10:3bc89ef62ce7 864 rxdesc[i].Ctrl = RCTRL_INT | (ETH_FRAG_SIZE-1);
emilmont 10:3bc89ef62ce7 865 rxstat[i].Info = 0;
emilmont 10:3bc89ef62ce7 866 rxstat[i].HashCRC = 0;
emilmont 10:3bc89ef62ce7 867 }
emilmont 10:3bc89ef62ce7 868
emilmont 10:3bc89ef62ce7 869 LPC_EMAC->RxDescriptor = (uint32_t)rxdesc; /* Set EMAC Receive Descriptor Registers. */
emilmont 10:3bc89ef62ce7 870 LPC_EMAC->RxStatus = (uint32_t)rxstat;
emilmont 10:3bc89ef62ce7 871 LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG-1;
emilmont 10:3bc89ef62ce7 872
emilmont 10:3bc89ef62ce7 873 LPC_EMAC->RxConsumeIndex = 0; /* Rx Descriptors Point to 0 */
emilmont 10:3bc89ef62ce7 874 }
emilmont 10:3bc89ef62ce7 875
emilmont 10:3bc89ef62ce7 876 void ethernet_address(char *mac) {
emilmont 10:3bc89ef62ce7 877 mbed_mac_address(mac);
emilmont 10:3bc89ef62ce7 878 }
emilmont 10:3bc89ef62ce7 879
emilmont 10:3bc89ef62ce7 880 void ethernet_set_link(int speed, int duplex) {
emilmont 10:3bc89ef62ce7 881 unsigned short phy_data;
emilmont 10:3bc89ef62ce7 882 int tout;
emilmont 10:3bc89ef62ce7 883
emilmont 10:3bc89ef62ce7 884 if((speed < 0) || (speed > 1)) {
emilmont 10:3bc89ef62ce7 885 phy_data = PHY_AUTO_NEG;
emilmont 10:3bc89ef62ce7 886 } else {
emilmont 10:3bc89ef62ce7 887 phy_data = (((unsigned short) speed << 13) |
emilmont 10:3bc89ef62ce7 888 ((unsigned short) duplex << 8));
emilmont 10:3bc89ef62ce7 889 }
emilmont 10:3bc89ef62ce7 890
emilmont 10:3bc89ef62ce7 891 phy_write(PHY_REG_BMCR, phy_data);
emilmont 10:3bc89ef62ce7 892
emilmont 10:3bc89ef62ce7 893 for(tout = 100; tout; tout--) { __NOP(); } /* A short delay */
emilmont 10:3bc89ef62ce7 894
emilmont 10:3bc89ef62ce7 895 switch(phy_id) {
emilmont 10:3bc89ef62ce7 896 case DP83848C_ID:
emilmont 10:3bc89ef62ce7 897 phy_data = phy_read(PHY_REG_STS);
emilmont 10:3bc89ef62ce7 898
emilmont 10:3bc89ef62ce7 899 if(phy_data & PHY_STS_DUPLEX) {
emilmont 10:3bc89ef62ce7 900 LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
emilmont 10:3bc89ef62ce7 901 LPC_EMAC->Command |= CR_FULL_DUP;
emilmont 10:3bc89ef62ce7 902 LPC_EMAC->IPGT = IPGT_FULL_DUP;
emilmont 10:3bc89ef62ce7 903 } else {
emilmont 10:3bc89ef62ce7 904 LPC_EMAC->MAC2 &= ~MAC2_FULL_DUP;
emilmont 10:3bc89ef62ce7 905 LPC_EMAC->Command &= ~CR_FULL_DUP;
emilmont 10:3bc89ef62ce7 906 LPC_EMAC->IPGT = IPGT_HALF_DUP;
emilmont 10:3bc89ef62ce7 907 }
emilmont 10:3bc89ef62ce7 908
emilmont 10:3bc89ef62ce7 909 if(phy_data & PHY_STS_SPEED) {
emilmont 10:3bc89ef62ce7 910 LPC_EMAC->SUPP &= ~SUPP_SPEED;
emilmont 10:3bc89ef62ce7 911 } else {
emilmont 10:3bc89ef62ce7 912 LPC_EMAC->SUPP |= SUPP_SPEED;
emilmont 10:3bc89ef62ce7 913 }
emilmont 10:3bc89ef62ce7 914 break;
emilmont 10:3bc89ef62ce7 915
emilmont 10:3bc89ef62ce7 916 case LAN8720_ID:
emilmont 10:3bc89ef62ce7 917 phy_data = phy_read(PHY_REG_SCSR);
emilmont 10:3bc89ef62ce7 918
emilmont 10:3bc89ef62ce7 919 if (phy_data & PHY_SCSR_DUPLEX) {
emilmont 10:3bc89ef62ce7 920 LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
emilmont 10:3bc89ef62ce7 921 LPC_EMAC->Command |= CR_FULL_DUP;
emilmont 10:3bc89ef62ce7 922 LPC_EMAC->IPGT = IPGT_FULL_DUP;
emilmont 10:3bc89ef62ce7 923 } else {
emilmont 10:3bc89ef62ce7 924 LPC_EMAC->Command &= ~CR_FULL_DUP;
emilmont 10:3bc89ef62ce7 925 LPC_EMAC->IPGT = IPGT_HALF_DUP;
emilmont 10:3bc89ef62ce7 926 }
emilmont 10:3bc89ef62ce7 927
emilmont 10:3bc89ef62ce7 928 if(phy_data & PHY_SCSR_100MBIT) {
emilmont 10:3bc89ef62ce7 929 LPC_EMAC->SUPP |= SUPP_SPEED;
emilmont 10:3bc89ef62ce7 930 } else {
emilmont 10:3bc89ef62ce7 931 LPC_EMAC->SUPP &= ~SUPP_SPEED;
emilmont 10:3bc89ef62ce7 932 }
emilmont 10:3bc89ef62ce7 933 break;
emilmont 10:3bc89ef62ce7 934 }
emilmont 10:3bc89ef62ce7 935 }