Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Max32630_One_Wire_Interface
Masters/DS2465/DS2465.cpp
- Committer:
- IanBenzMaxim
- Date:
- 2016-05-13
- Revision:
- 75:8b627804927c
- Parent:
- 74:23be10c32fa3
- Child:
- 76:84e6c4994e29
File content as of revision 75:8b627804927c:
/******************************************************************//**
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
**********************************************************************/
#include "DS2465.h"
#include "I2C.h"
#include "wait_api.h"
#define I2C_WRITE 0
#define I2C_READ 1
// DS2465 commands
#define CMD_1WMR 0xF0
#define CMD_WCFG 0xD2
#define CMD_CHSL 0xC3
#define CMD_SRP 0xE1
#define CMD_1WRS 0xB4
#define CMD_1WWB 0xA5
#define CMD_1WRB 0x96
#define CMD_1WSB 0x87
#define CMD_1WT 0x78
#define CMD_1WTB 0x69
#define CMD_1WRF 0xE1
#define CMD_CPS 0x5A
#define CMD_CSS 0x4B
#define CMD_CSAM 0x3C
#define CMD_CSWM 0x2D
#define CMD_CNMS 0x1E
#define CMD_SPR 0x0F
// DS2465 status bits
#define STATUS_1WB 0x01
#define STATUS_PPD 0x02
#define STATUS_SD 0x04
#define STATUS_LL 0x08
#define STATUS_RST 0x10
#define STATUS_SBR 0x20
#define STATUS_TSB 0x40
#define STATUS_DIR 0x80
using OneWire::Masters::OneWireMaster;
using OneWire::Masters::DS2465;
using OneWire::Authenticators::ISha256MacCoproc;
static const int I2C_WRITE_OK = 0;
uint8_t DS2465::Config::readByte() const
{
uint8_t config = 0;
if (get1WS())
{
config |= 0x08;
}
if (getSPU())
{
config |= 0x04;
}
if (getPDN())
{
config |= 0x02;
}
if (getAPU())
{
config |= 0x01;
}
return config;
}
uint8_t DS2465::Config::writeByte() const
{
uint8_t config = readByte();
return ((~config << 4) | config);
}
void DS2465::Config::reset()
{
set1WS(false);
setSPU(false);
setPDN(false);
setAPU(true);
}
DS2465::DS2465(mbed::I2C & I2C_interface, uint8_t I2C_address)
: m_I2C_interface(I2C_interface), m_I2C_address(I2C_address)
{
}
OneWireMaster::CmdResult DS2465::OWInitMaster()
{
OneWireMaster::CmdResult result;
// reset DS2465
result = reset();
if (result != OneWireMaster::Success)
{
return result;
}
// write the default configuration setup
Config defaultConfig;
result = writeConfig(defaultConfig, true);
return result;
}
OneWireMaster::CmdResult DS2465::computeNextMasterSecret(bool swap, unsigned int pageNum, PageRegion region)
{
uint8_t command[2] = { CMD_CNMS, (uint8_t)(swap ? (0xC8 | (pageNum << 4) | region) : 0xBF) };
return writeMemory(ADDR_CMD_REG, command, 2);
}
OneWireMaster::CmdResult DS2465::computeWriteMac(bool regwrite, bool swap, unsigned int pageNum, unsigned int segmentNum) const
{
uint8_t command[2] = { CMD_CSWM, (uint8_t)((regwrite << 7) | (swap << 6) | (pageNum << 4) | segmentNum) };
return cWriteMemory(ADDR_CMD_REG, command, 2);
}
OneWireMaster::CmdResult DS2465::computeAuthMac(bool swap, unsigned int pageNum, PageRegion region) const
{
uint8_t command[2] = { CMD_CSAM, (uint8_t)(swap ? (0xC8 | (pageNum << 4) | region) : 0xBF) };
return cWriteMemory(ADDR_CMD_REG, command, 2);
}
OneWireMaster::CmdResult DS2465::computeSlaveSecret(bool swap, unsigned int pageNum, PageRegion region)
{
uint8_t command[2] = { CMD_CSS, (uint8_t)(swap ? (0xC8 | (pageNum << 4) | region) : 0xBF) };
return writeMemory(ADDR_CMD_REG, command, 2);
}
ISha256MacCoproc::CmdResult DS2465::setMasterSecret(const Secret & masterSecret)
{
OneWireMaster::CmdResult result;
result = writeMemory(ADDR_SPAD, masterSecret, masterSecret.length);
if (result == OneWireMaster::Success)
{
result = copyScratchpadToSecret();
}
if (result == OneWireMaster::Success)
{
wait_ms(eepromPageWriteDelayMs);
}
return (result == OneWireMaster::Success ? ISha256MacCoproc::Success : ISha256MacCoproc::OperationFailure);
}
ISha256MacCoproc::CmdResult DS2465::computeWriteMac(const WriteMacData & writeMacData, Mac & mac) const
{
OneWireMaster::CmdResult result;
// Write input data to scratchpad
result = writeScratchpad(writeMacData, writeMacData.length);
// Compute MAC
if (result == OneWireMaster::Success)
{
result = computeWriteMac(false);
}
if (result == OneWireMaster::Success)
{
wait_ms(shaComputationDelayMs);
// Read MAC from register
result = readMemory(ADDR_MAC_READ, mac, mac.length, true);
}
return (result == OneWireMaster::Success ? ISha256MacCoproc::Success : ISha256MacCoproc::OperationFailure);
}
ISha256MacCoproc::CmdResult DS2465::computeAuthMac(const DevicePage & devicePage, const DeviceScratchpad & challenge, const AuthMacData & authMacData, Mac & mac) const
{
OneWireMaster::CmdResult result;
int addr = ADDR_SPAD;
// Write input data to scratchpad
result = cWriteMemory(addr, devicePage, devicePage.length);
if (result == OneWireMaster::Success)
{
addr += devicePage.length;
result = cWriteMemory(addr, challenge, challenge.length);
}
if (result == OneWireMaster::Success)
{
addr += challenge.length;
result = cWriteMemory(addr, authMacData, authMacData.length);
}
// Compute MAC
if (result == OneWireMaster::Success)
{
result = computeAuthMac();
}
if (result == OneWireMaster::Success)
{
wait_ms(shaComputationDelayMs * 2);
// Read MAC from register
result = readMemory(ADDR_MAC_READ, mac, mac.length, true);
}
return (result == OneWireMaster::Success ? ISha256MacCoproc::Success : ISha256MacCoproc::OperationFailure);
}
ISha256MacCoproc::CmdResult DS2465::computeSlaveSecret(const DevicePage & devicePage, const DeviceScratchpad & deviceScratchpad, const SlaveSecretData & slaveSecretData)
{
OneWireMaster::CmdResult result;
int addr = ADDR_SPAD;
// Write input data to scratchpad
result = writeMemory(addr, devicePage, devicePage.length);
if (result == OneWireMaster::Success)
{
addr += devicePage.length;
result = writeMemory(addr, deviceScratchpad, deviceScratchpad.length);
}
if (result == OneWireMaster::Success)
{
addr += deviceScratchpad.length;
result = writeMemory(addr, slaveSecretData, slaveSecretData.length);
}
// Compute secret
if (result == OneWireMaster::Success)
{
result = computeSlaveSecret();
}
if (result == OneWireMaster::Success)
{
wait_ms(shaComputationDelayMs * 2);
}
return (result == OneWireMaster::Success ? ISha256MacCoproc::Success : ISha256MacCoproc::OperationFailure);
}
OneWireMaster::CmdResult DS2465::copyScratchpad(bool destSecret, unsigned int pageNum, bool notFull, unsigned int segmentNum)
{
uint8_t command[2] = { CMD_CPS, (uint8_t)(destSecret ? 0 : (0x80 | (pageNum << 4) | (notFull << 3) | segmentNum)) };
return writeMemory(ADDR_CMD_REG, command, 2);
}
OneWireMaster::CmdResult DS2465::configureLevel(OWLevel level)
{
OneWireMaster::CmdResult result;
if (m_curConfig.getSPU() != (level == StrongLevel))
{
Config newConfig = m_curConfig;
newConfig.setSPU(level == StrongLevel);
result = writeConfig(newConfig, true);
}
else
{
result = OneWireMaster::Success;
}
return result;
}
OneWireMaster::CmdResult DS2465::OWSetLevel(OWLevel newLevel)
{
if (newLevel == StrongLevel)
{
return OneWireMaster::OperationFailure;
}
return configureLevel(newLevel);
}
OneWireMaster::CmdResult DS2465::OWSetSpeed(OWSpeed newSpeed)
{
// Requested speed is already set
if (m_curConfig.get1WS() == (newSpeed == OverdriveSpeed))
{
return OneWireMaster::Success;
}
// set the speed
Config newConfig = m_curConfig;
newConfig.set1WS(newSpeed == OverdriveSpeed);
// write the new config
return writeConfig(newConfig, true);
}
OneWireMaster::CmdResult DS2465::OWTriplet(SearchDirection & searchDirection, uint8_t & sbr, uint8_t & tsb)
{
// 1-Wire Triplet (Case B)
// S AD,0 [A] 1WT [A] SS [A] Sr AD,1 [A] [Status] A [Status] A\ P
// \--------/
// Repeat until 1WB bit has changed to 0
// [] indicates from slave
// SS indicates byte containing search direction bit value in msbit
OneWireMaster::CmdResult result;
uint8_t command[2] = { CMD_1WT, (uint8_t)((searchDirection == WriteOne) ? 0x80 : 0x00) };
result = writeMemory(ADDR_CMD_REG, command, 2);
if (result == OneWireMaster::Success)
{
uint8_t status;
result = pollBusy(&status);
if (result == OneWireMaster::Success)
{
// check bit results in status byte
sbr = ((status & STATUS_SBR) == STATUS_SBR);
tsb = ((status & STATUS_TSB) == STATUS_TSB);
searchDirection = ((status & STATUS_DIR) == STATUS_DIR) ? WriteOne : WriteZero;
}
}
return result;
}
OneWireMaster::CmdResult DS2465::OWReadBlock(uint8_t *recvBuf, uint8_t recvLen)
{
// 1-Wire Receive Block (Case A)
// S AD,0 [A] ADDR_CMD_REG [A] 1WRF [A] PR [A] P
// [] indicates from slave
// PR indicates byte containing parameter
OneWireMaster::CmdResult result;
uint8_t command[2] = { CMD_1WRF, recvLen };
result = writeMemory(ADDR_CMD_REG, command, 2);
if (result == OneWireMaster::Success)
{
result = pollBusy();
}
if (result == OneWireMaster::Success)
{
result = readMemory(ADDR_SPAD, recvBuf, recvLen, false);
}
return result;
}
OneWireMaster::CmdResult DS2465::OWWriteBlock(const uint8_t *sendBuf, uint8_t sendLen)
{
return OWWriteBlock(false, sendBuf, sendLen);
}
OneWireMaster::CmdResult DS2465::OWWriteBlockMac()
{
return OWWriteBlock(true, NULL, 0);
}
OneWireMaster::CmdResult DS2465::OWWriteBlock(bool tx_mac, const uint8_t *tran_buf, uint8_t tran_len)
{
OneWireMaster::CmdResult result;
uint8_t command[2] = { CMD_1WTB, (uint8_t)(tx_mac ? 0xFF : tran_len) };
if (!tx_mac)
{
// prefill scratchpad with required data
result = writeMemory(ADDR_SPAD, tran_buf, tran_len);
if (result != OneWireMaster::Success)
{
return result;
}
}
// 1-Wire Transmit Block (Case A)
// S AD,0 [A] ADDR_CMD_REG [A] 1WTB [A] PR [A] P
// [] indicates from slave
// PR indicates byte containing parameter
result = writeMemory(ADDR_CMD_REG, command, 2);
if (result == OneWireMaster::Success)
{
result = pollBusy();
}
return result;
}
OneWireMaster::CmdResult DS2465::OWReadByteSetLevel(uint8_t & recvByte, OWLevel afterLevel)
{
// 1-Wire Read Bytes (Case C)
// S AD,0 [A] ADDR_CMD_REG [A] 1WRB [A] Sr AD,1 [A] [Status] A [Status] A
// \--------/
// Repeat until 1WB bit has changed to 0
// Sr AD,0 [A] SRP [A] E1 [A] Sr AD,1 [A] DD A\ P
//
// [] indicates from slave
// DD data read
OneWireMaster::CmdResult result;
uint8_t buf;
result = configureLevel(afterLevel);
if (result != OneWireMaster::Success)
{
return result;
}
buf = CMD_1WRB;
result = writeMemory(ADDR_CMD_REG, &buf, 1);
if (result == OneWireMaster::Success)
{
result = pollBusy();
}
if (result == OneWireMaster::Success)
{
result = readMemory(ADDR_DATA_REG, &buf, 1);
}
if (result == OneWireMaster::Success)
{
recvByte = buf;
}
return result;
}
OneWireMaster::CmdResult DS2465::OWWriteByteSetLevel(uint8_t sendByte, OWLevel afterLevel)
{
// 1-Wire Write Byte (Case B)
// S AD,0 [A] ADDR_CMD_REG [A] 1WWB [A] DD [A] Sr AD,1 [A] [Status] A [Status] A\ P
// \--------/
// Repeat until 1WB bit has changed to 0
// [] indicates from slave
// DD data to write
OneWireMaster::CmdResult result;
result = configureLevel(afterLevel);
if (result != OneWireMaster::Success)
{
return result;
}
uint8_t command[2] = { CMD_1WWB, sendByte };
result = writeMemory(ADDR_CMD_REG, command, 2);
if (result == OneWireMaster::Success)
{
result = pollBusy();
}
return result;
}
OneWireMaster::CmdResult DS2465::OWTouchBitSetLevel(uint8_t & sendRecvBit, OWLevel afterLevel)
{
// 1-Wire bit (Case B)
// S AD,0 [A] ADDR_CMD_REG [A] 1WSB [A] BB [A] Sr AD,1 [A] [Status] A [Status] A\ P
// \--------/
// Repeat until 1WB bit has changed to 0
// [] indicates from slave
// BB indicates byte containing bit value in msbit
OneWireMaster::CmdResult result;
result = configureLevel(afterLevel);
if (result != OneWireMaster::Success)
{
return result;
}
uint8_t command[2] = { CMD_1WSB, (uint8_t)(sendRecvBit ? 0x80 : 0x00) };
uint8_t status;
result = writeMemory(ADDR_CMD_REG, command, 2);
if (result == OneWireMaster::Success)
{
result = pollBusy(&status);
}
if (result == OneWireMaster::Success)
{
sendRecvBit = (status & STATUS_SBR);
}
return result;
}
OneWireMaster::CmdResult DS2465::cWriteMemory(uint8_t addr, const uint8_t * buf, size_t bufLen) const
{
int i;
// Write SRAM (Case A)
// S AD,0 [A] VSA [A] DD [A] P
// \-----/
// Repeat for each data byte
// [] indicates from slave
// VSA valid SRAM memory address
// DD memory data to write
m_I2C_interface.start();
if (m_I2C_interface.write((m_I2C_address | I2C_WRITE)) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
if (m_I2C_interface.write(addr) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
// loop to write each byte
for (i = 0; i < bufLen; i++)
{
if (m_I2C_interface.write(buf[i]) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
}
m_I2C_interface.stop();
return OneWireMaster::Success;
}
OneWireMaster::CmdResult DS2465::readMemory(uint8_t addr, uint8_t * buf, size_t bufLen, bool skipSetPointer) const
{
int i;
// Read (Case A)
// S AD,0 [A] MA [A] Sr AD,1 [A] [DD] A [DD] A\ P
// \-----/
// Repeat for each data byte, NAK last byte
// [] indicates from slave
// MA memory address
// DD memory data read
m_I2C_interface.start();
if (!skipSetPointer)
{
if (m_I2C_interface.write((m_I2C_address | I2C_WRITE)) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
if (m_I2C_interface.write(addr) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
m_I2C_interface.start();
}
if (m_I2C_interface.write((m_I2C_address | I2C_READ)) != I2C_WRITE_OK)
{
m_I2C_interface.stop();
return OneWireMaster::CommunicationWriteError;
}
// loop to read each byte, NAK last byte
for (i = 0; i < bufLen; i++)
{
buf[i] = m_I2C_interface.read((i == (bufLen - 1)) ? mbed::I2C::NoACK : mbed::I2C::ACK);
}
m_I2C_interface.stop();
return OneWireMaster::Success;
}
OneWireMaster::CmdResult DS2465::writeConfig(const Config & config, bool verify)
{
uint8_t configBuf;
OneWireMaster::CmdResult result;
configBuf = config.writeByte();
result = writeMemory(ADDR_WCFG_REG, &configBuf, 1);
if (verify)
{
if (result == OneWireMaster::Success)
{
result = readMemory(ADDR_WCFG_REG, &configBuf, 1);
}
if (result == OneWireMaster::Success)
{
if (configBuf != config.readByte())
result = OneWireMaster::OperationFailure;
}
}
if (result == OneWireMaster::Success)
{
m_curConfig = config;
}
return result;
}
OneWireMaster::CmdResult DS2465::pollBusy(uint8_t * pStatus)
{
const unsigned int pollLimit = 200;
OneWireMaster::CmdResult result;
uint8_t status;
unsigned int pollCount = 0;
do
{
result = readMemory(ADDR_STATUS_REG, &status, 1, true);
if (result != OneWireMaster::Success)
{
return result;
}
if (pStatus != NULL)
{
*pStatus = status;
}
if (pollCount++ >= pollLimit)
{
return OneWireMaster::TimeoutError;
}
} while (status & STATUS_1WB);
return OneWireMaster::Success;
}
OneWireMaster::CmdResult DS2465::OWReset()
{
// 1-Wire reset (Case B)
// S AD,0 [A] ADDR_CMD_REG [A] 1WRS [A] Sr AD,1 [A] [Status] A [Status] A\ P
// \--------/
// Repeat until 1WB bit has changed to 0
// [] indicates from slave
OneWireMaster::CmdResult result;
uint8_t buf;
buf = CMD_1WRS;
result = writeMemory(ADDR_CMD_REG, &buf, 1);
if (result == OneWireMaster::Success)
{
result = pollBusy(&buf);
}
if (result == OneWireMaster::Success)
{
// check for presence detect
if ((buf & STATUS_PPD) != STATUS_PPD)
{
result = OneWireMaster::OperationFailure;
}
}
return result;
}
OneWireMaster::CmdResult DS2465::reset()
{
// Device Reset
// S AD,0 [A] ADDR_CMD_REG [A] 1WMR [A] Sr AD,1 [A] [SS] A\ P
// [] indicates from slave
// SS status byte to read to verify state
OneWireMaster::CmdResult result;
uint8_t buf;
buf = CMD_1WMR;
result = writeMemory(ADDR_CMD_REG, &buf, 1);
if (result == OneWireMaster::Success)
{
result = readMemory(ADDR_STATUS_REG, &buf, 1, true);
}
if (result == OneWireMaster::Success)
{
if ((buf & 0xF7) != 0x10)
{
result = OneWireMaster::OperationFailure;
}
}
if (result == OneWireMaster::Success)
{
OWReset(); // do a command to get 1-Wire master reset out of holding state
}
return result;
}