mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

targets/TARGET_STM/TARGET_STM32L0/device/stm32l0xx_ll_tim.h

Committer:
AnnaBridge
Date:
2019-02-20
Revision:
189:f392fc9709a3
Parent:
186:707f6e361f3e

File content as of revision 189:f392fc9709a3:

/**
  ******************************************************************************
  * @file    stm32l0xx_ll_tim.h
  * @author  MCD Application Team
  * @brief   Header file of TIM LL module.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L0xx_LL_TIM_H
#define __STM32L0xx_LL_TIM_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx.h"

/** @addtogroup STM32L0xx_LL_Driver
  * @{
  */

#if defined (TIM2) || defined (TIM3) || defined (TIM21) || defined (TIM22) || defined (TIM6) || defined (TIM7)

/** @defgroup TIM_LL TIM
  * @{
  */

/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
  * @{
  */
static const uint8_t OFFSET_TAB_CCMRx[] =
{
  0x00U,   /* 0: TIMx_CH1  */
  0x00U,   /* 1: NA */
  0x00U,   /* 2: TIMx_CH2  */
  0x00U,   /* 3: NA */
  0x04U,   /* 4: TIMx_CH3  */
  0x00U,   /* 5: NA */
  0x04U    /* 6: TIMx_CH4  */
};

static const uint8_t SHIFT_TAB_OCxx[] =
{
  0U,            /* 0: OC1M, OC1FE, OC1PE */
  0U,            /* 1: - NA */
  8U,            /* 2: OC2M, OC2FE, OC2PE */
  0U,            /* 3: - NA */
  0U,            /* 4: OC3M, OC3FE, OC3PE */
  0U,            /* 5: - NA */
  8U             /* 6: OC4M, OC4FE, OC4PE */
};

static const uint8_t SHIFT_TAB_ICxx[] =
{
  0U,            /* 0: CC1S, IC1PSC, IC1F */
  0U,            /* 1: - NA */
  8U,            /* 2: CC2S, IC2PSC, IC2F */
  0U,            /* 3: - NA */
  0U,            /* 4: CC3S, IC3PSC, IC3F */
  0U,            /* 5: - NA */
  8U             /* 6: CC4S, IC4PSC, IC4F */
};

static const uint8_t SHIFT_TAB_CCxP[] =
{
  0U,            /* 0: CC1P */
  0U,            /* 1: NA */
  4U,            /* 2: CC2P */
  0U,            /* 3: NA */
  8U,            /* 4: CC3P */
  0U,            /* 5: NA */
  12U            /* 6: CC4P */
};

/**
  * @}
  */


/* Private constants ---------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
  * @{
  */


/* Remap mask definitions */
#define TIMx_OR_RMP_SHIFT  ((uint32_t)16U)
#define TIMx_OR_RMP_MASK   ((uint32_t)0x0000FFFFU)
#define TIM2_OR_RMP_MASK   ((uint32_t)((TIM2_OR_ETR_RMP | TIM2_OR_TI4_RMP ) << TIMx_OR_RMP_SHIFT))
#define TIM21_OR_RMP_MASK  ((uint32_t)((TIM21_OR_ETR_RMP | TIM21_OR_TI1_RMP | TIM21_OR_TI2_RMP) << TIMx_OR_RMP_SHIFT))
#define TIM22_OR_RMP_MASK  ((uint32_t)((TIM22_OR_ETR_RMP | TIM22_OR_TI1_RMP) << TIMx_OR_RMP_SHIFT))
#if defined(TIM3)
#define TIM3_OR_RMP_MASK   ((uint32_t)((TIM3_OR_ETR_RMP | TIM3_OR_TI1_RMP | TIM3_OR_TI2_RMP | TIM3_OR_TI4_RMP) << TIMx_OR_RMP_SHIFT))
#endif /* TIM3 */



/**
  * @}
  */


/* Private macros ------------------------------------------------------------*/
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
  * @{
  */
/** @brief  Convert channel id into channel index.
  * @param  __CHANNEL__ This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval none
  */
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
(((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U : 6U)

/**
  * @}
  */


/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
  * @{
  */

/**
  * @brief  TIM Time Base configuration structure definition.
  */
typedef struct
{
  uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
                                   This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.

                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetPrescaler().*/

  uint32_t CounterMode;       /*!< Specifies the counter mode.
                                   This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.

                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetCounterMode().*/

  uint32_t Autoreload;       /*!< Specifies the auto reload value to be loaded into the active
                                   Auto-Reload Register at the next update event.
                                   This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
                                   Some timer instances may support 32 bits counters. In that case this parameter must be a number between 0x0000 and 0xFFFFFFFF.

                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetAutoReload().*/

  uint32_t ClockDivision;     /*!< Specifies the clock division.
                                   This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.

                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetClockDivision().*/
} LL_TIM_InitTypeDef;

/**
  * @brief  TIM Output Compare configuration structure definition.
  */
typedef struct
{
  uint32_t OCMode;        /*!< Specifies the output mode.
                               This parameter can be a value of @ref TIM_LL_EC_OCMODE.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetMode().*/

  uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.

                               This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/

  uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
                               This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.

                               This feature can be modified afterwards using unitary function LL_TIM_OC_SetCompareCHx (x=1..6).*/

  uint32_t OCPolarity;    /*!< Specifies the output polarity.
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/

} LL_TIM_OC_InitTypeDef;

/**
  * @brief  TIM Input Capture configuration structure definition.
  */

typedef struct
{

  uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
                               This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/

  uint32_t ICActiveInput; /*!< Specifies the input.
                               This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/

  uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
                               This parameter can be a value of @ref TIM_LL_EC_ICPSC.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/

  uint32_t ICFilter;      /*!< Specifies the input capture filter.
                               This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.

                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
} LL_TIM_IC_InitTypeDef;


/**
  * @brief  TIM Encoder interface configuration structure definition.
  */
typedef struct
{
  uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
                                 This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_SetEncoderMode().*/

  uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/

  uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/

  uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/

  uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/

  uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/

  uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/

  uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/

  uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.

                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/

} LL_TIM_ENCODER_InitTypeDef;


/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
  * @{
  */

/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
  * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
  * @{
  */
#define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
#define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
#define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
#define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
#define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
#define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
#define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
#define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
#define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
#define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_IT IT Defines
  * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
  * @{
  */
#define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
#define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
#define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
#define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
#define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
#define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
  * @{
  */
#define LL_TIM_UPDATESOURCE_REGULAR            ((uint32_t)0x00000000U) /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
#define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS            /*!< Only counter overflow/underflow generates an update request */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
  * @{
  */
#define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM            /*!< Counter is not stopped at update event */
#define LL_TIM_ONEPULSEMODE_REPETITIVE         ((uint32_t)0x00000000U) /*!< Counter stops counting at the next update event */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
  * @{
  */
#define LL_TIM_COUNTERMODE_UP                  ((uint32_t)0x00000000U) /*!<Counter used as upcounter */
#define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR             /*!< Counter used as downcounter */
#define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_0           /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
#define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_1           /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS             /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
  * @{
  */
#define LL_TIM_CLOCKDIVISION_DIV1              ((uint32_t)0x00000000U) /*!< tDTS=tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0           /*!< tDTS=2*tCK_INT */
#define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1           /*!< tDTS=4*tCK_INT */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
  * @{
  */
#define LL_TIM_COUNTERDIRECTION_UP             ((uint32_t)0x00000000U) /*!< Timer counter counts up */
#define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR             /*!< Timer counter counts down */
/**
  * @}
  */


/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
  * @{
  */
#define LL_TIM_CCDMAREQUEST_CC                 ((uint32_t)0x00000000U) /*!< CCx DMA request sent when CCx event occurs */
#define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS            /*!< CCx DMA requests sent when update event occurs */
/**
  * @}
  */


/** @defgroup TIM_LL_EC_CHANNEL Channel
  * @{
  */
#define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
#define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
#define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
#define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
  * @{
  */
#define LL_TIM_OCSTATE_DISABLE                 ((uint32_t)0x00000000U) /*!< OCx is not active */
#define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
  * @{
  */
#define LL_TIM_OCMODE_FROZEN                   ((uint32_t)0x00000000U)                                  /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
#define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
#define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
#define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
#define LL_TIM_OCMODE_FORCED_INACTIVE          (TIM_CCMR1_OC1M_2)                                       /*!<OCyREF is forced low*/
#define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
#define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
#define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
/**
  * @}
  */

/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
  * @{
  */
#define LL_TIM_OCPOLARITY_HIGH                 ((uint32_t)0x00000000U)     /*!< OCxactive high*/
#define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
/**
  * @}
  */



/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
  * @{
  */
#define LL_TIM_ACTIVEINPUT_DIRECTTI            (uint32_t)(TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
#define LL_TIM_ACTIVEINPUT_INDIRECTTI          (uint32_t)(TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
#define LL_TIM_ACTIVEINPUT_TRC                 (uint32_t)(TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
  * @{
  */
#define LL_TIM_ICPSC_DIV1                      ((uint32_t)0x00000000U) /*!< No prescaler, capture is done each time an edge is detected on the capture input */
#define LL_TIM_ICPSC_DIV2                      (uint32_t)(TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
#define LL_TIM_ICPSC_DIV4                      (uint32_t)(TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
#define LL_TIM_ICPSC_DIV8                      (uint32_t)(TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
  * @{
  */
#define LL_TIM_IC_FILTER_FDIV1                 ((uint32_t)0x00000000U)                                         /*!< No filter, sampling is done at fDTS */
#define LL_TIM_IC_FILTER_FDIV1_N2              (uint32_t)(TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_IC_FILTER_FDIV1_N4              (uint32_t)(TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_IC_FILTER_FDIV1_N8              (uint32_t)((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_IC_FILTER_FDIV2_N6              (uint32_t)(TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_IC_FILTER_FDIV2_N8              (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_IC_FILTER_FDIV4_N6              (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_IC_FILTER_FDIV4_N8              (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_IC_FILTER_FDIV8_N6              (uint32_t)(TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_IC_FILTER_FDIV8_N8              (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_IC_FILTER_FDIV16_N5             (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_IC_FILTER_FDIV16_N6             (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_IC_FILTER_FDIV16_N8             (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_IC_FILTER_FDIV32_N5             (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_IC_FILTER_FDIV32_N6             (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_IC_FILTER_FDIV32_N8             (uint32_t)(TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
  * @{
  */
#define LL_TIM_IC_POLARITY_RISING              ((uint32_t)0x00000000U)          /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
#define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
#define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
  * @{
  */
#define LL_TIM_CLOCKSOURCE_INTERNAL            ((uint32_t)0x00000000U)                              /*!< The timer is clocked by the internal clock provided from the RCC */
#define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0 ) /*!< Counter counts at each rising or falling edge on a selected inpu t*/
#define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                        /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
  * @{
  */
#define LL_TIM_ENCODERMODE_X2_TI1              TIM_SMCR_SMS_0                    /*!< Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
#define LL_TIM_ENCODERMODE_X2_TI2              TIM_SMCR_SMS_1                    /*!< Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
#define LL_TIM_ENCODERMODE_X4_TI12             (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges                                                                                                                                                                   depending on the level of the other input l */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_TRGO Trigger Output
  * @{
  */
#define LL_TIM_TRGO_RESET                      ((uint32_t)0x00000000U)                         /*!< UG bit from the TIMx_EGR register is used as trigger output */
#define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
#define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
#define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
#define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
#define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
#define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
#define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
/**
  * @}
  */


/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
  * @{
  */
#define LL_TIM_SLAVEMODE_DISABLED              ((uint32_t)0x00000000U)             /*!< Slave mode disabled */
#define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
#define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
#define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_TS Trigger Selection
  * @{
  */
#define LL_TIM_TS_ITR0                         ((uint32_t)0x00000000U)                          /*!< Internal Trigger 0 (ITR0) is used as trigger input */
#define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                    /*!< Internal Trigger 1 (ITR1) is used as trigger input */
#define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                    /*!< Internal Trigger 2 (ITR2) is used as trigger input */
#define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                  /*!< Internal Trigger 3 (ITR3) is used as trigger input */
#define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                    /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
#define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                  /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
#define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                  /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
#define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0) /*!< Filtered external Trigger (ETRF) is used as trigger input */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
  * @{
  */
#define LL_TIM_ETR_POLARITY_NONINVERTED        ((uint32_t)0x00000000U) /*!< ETR is non-inverted, active at high level or rising edge */
#define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
  * @{
  */
#define LL_TIM_ETR_PRESCALER_DIV1              ((uint32_t)0x00000000U) /*!< ETR prescaler OFF */
#define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
#define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
#define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
  * @{
  */
#define LL_TIM_ETR_FILTER_FDIV1                ((uint32_t)0x00000000U)                              /*!< No filter, sampling is done at fDTS */
#define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
#define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
#define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
#define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
#define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 )                   /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 )                   /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 )                   /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2  | TIM_SMCR_ETF_0)  /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2  | TIM_SMCR_ETF_1)  /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
/**
  * @}
  */







/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
  * @{
  */
#define LL_TIM_DMABURST_BASEADDR_CR1           ((uint32_t)0x00000000U)                                          /*!< TIMx_CR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2)                                  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_OR1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_OR1 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_OR2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_OR2 register is the DMA base address for DMA burst */
#define LL_TIM_DMABURST_BASEADDR_OR3           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_OR3 register is the DMA base address for DMA burst */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
  * @{
  */
#define LL_TIM_DMABURST_LENGTH_1TRANSFER       ((uint32_t)0x00000000U)                                         /*!< Transfer is done to 1 register starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
/**
  * @}
  */


/** @defgroup TIM_LL_EC_TIM2_ETR_RMP  TIM2 External Trigger Remap
* @{
*/
#define LL_TIM_TIM2_ETR_RMP_GPIO     ((uint32_t)0x00000000U | TIM2_OR_RMP_MASK)                   /*!< TIM2_ETR is connected to Ored GPIO */
#if defined(TIM_TIM2_REMAP_HSI_SUPPORT)
#define LL_TIM_TIM2_ETR_RMP_HSI      (TIM2_OR_ETR_RMP_1 | TIM2_OR_ETR_RMP_0 | TIM2_OR_RMP_MASK)   /*!< TIM2_ETR is connected to HSI */
#endif /* defined(TIM_TIM2_REMAP_HSI_SUPPORT) */
#if defined(TIM_TIM2_REMAP_HSI48_SUPPORT)
#define LL_TIM_TIM2_ETR_RMP_HSI48    (TIM2_OR_ETR_RMP_2 | TIM2_OR_RMP_MASK)                       /*!< TIM2_ETR is connected to HSI48 */
#endif /* defined(TIM_TIM2_REMAP_HSI48_SUPPORT) */
#define LL_TIM_TIM2_ETR_RMP_LSE      (TIM2_OR_ETR_RMP_2 | TIM2_OR_ETR_RMP_0 | TIM2_OR_RMP_MASK)   /*!< TIM2_ETR is connected to LSE */
#define LL_TIM_TIM2_ETR_RMP_COMP2    (TIM2_OR_ETR_RMP_2 | TIM2_OR_ETR_RMP_1 | TIM2_OR_RMP_MASK)   /*!< TIM2_ETR is connected to COMP2_OUT */
#define LL_TIM_TIM2_ETR_RMP_COMP1    (TIM2_OR_ETR_RMP | TIM2_OR_RMP_MASK)                         /*!< TIM2_ETR is connected to COMP1_OUT */

/**
  * @}
  */

/** @defgroup TIM_LL_EC_TIM2_TI4_RMP  TIM2 Timer Input Ch4 Remap
* @{
*/
#define LL_TIM_TIM2_TI4_RMP_GPIO      ((uint32_t)0x00000000U | TIM2_OR_RMP_MASK) /*!< TIM2 input capture 4 is connected to GPIO */
#define LL_TIM_TIM2_TI4_RMP_COMP2     (TIM2_OR_TI4_RMP_0 | TIM2_OR_RMP_MASK)     /*!< TIM2 input capture 4 is connected to COMP2_OUT */
#define LL_TIM_TIM2_TI4_RMP_COMP1     (TIM2_OR_TI4_RMP_1 | TIM2_OR_RMP_MASK)     /*!< TIM2 input capture 4 is connected to COMP1_OUT */
/**
  * @}
  */

#if defined(TIM3_OR_ETR_RMP)
/** @defgroup TIM_LL_EC_TIM3_ETR_RMP  TIM3 External Trigger Remap
* @{
*/
#define LL_TIM_TIM3_ETR_RMP_GPIO         ((uint32_t)0x00000000U | TIM3_OR_RMP_MASK)     /*!< TIM3_ETR is connected to GPIO */
#define LL_TIM_TIM3_ETR_RMP_HSI48DIV6    (TIM3_OR_ETR_RMP_1 | TIM3_OR_RMP_MASK)         /*!< TIM3_ETR is connected to HSI48 divided by 6 */
/**
  * @}
  */
#endif /* defined(TIM3_OR_ETR_RMP) */

#if defined(TIM3_OR_TI1_RMP) || defined(TIM3_OR_TI2_RMP) || defined(TIM3_OR_TI4_RMP)
/** @defgroup TIM_LL_EC_TIM3_TI_RMP  TIM3 External Inputs Remap
* @{
*/
#define LL_TIM_TIM3_TI_RMP_TI1_USB_SOF      ((uint32_t)0x00000000U | TIM3_OR_RMP_MASK) /*!< TIM3_TI1 input is connected to USB_SOF */
#define LL_TIM_TIM3_TI_RMP_TI1_GPIO         (TIM3_OR_TI1_RMP | TIM3_OR_RMP_MASK)       /*!< TIM3_TI1 input is connected to PE3, PA6, PC6 or PB4 */

#define LL_TIM_TIM3_TI_RMP_TI2_GPIO_DEF     ((uint32_t)0x00000000U | TIM3_OR_RMP_MASK) /*!< Mapping PB5 to TIM22_CH2 */
#define LL_TIM_TIM3_TI_RMP_TI2_GPIOB5_AF4   (TIM3_OR_TI2_RMP | TIM3_OR_RMP_MASK)       /*!< Mapping PB5 to TIM3_CH2 */

#define LL_TIM_TIM3_TI_RMP_TI4_GPIO_DEF     ((uint32_t)0x00000000U | TIM3_OR_RMP_MASK) /*!< Mapping PC9 to USB_OE */
#define LL_TIM_TIM3_TI_RMP_TI4_GPIOC9_AF2   (TIM3_OR_TI4_RMP | TIM3_OR_RMP_MASK)       /*!< Mapping PC9 to TIM3_CH4 */
/**
  * @}
  */
#endif /*defined(TIM3_OR_TI1_RMP) or defined(TIM3_OR_TI2_RMP) or defined(TIM3_OR_TI4_RMP)*/

/** @defgroup TIM_LL_EC_TIM21_ETR_RMP  TIM21 External Trigger Remap
* @{
*/
#define LL_TIM_TIM21_ETR_RMP_GPIO  ((uint32_t)0x00000000U | TIM21_OR_RMP_MASK) /*!< TIM21_ETR is connected to Ored GPIO1 */
#define LL_TIM_TIM21_ETR_RMP_COMP2 (TIM21_OR_ETR_RMP_0 | TIM21_OR_RMP_MASK)    /*!< TIM21_ETR is connected to COMP2_OUT */
#define LL_TIM_TIM21_ETR_RMP_COMP1 (TIM21_OR_ETR_RMP_1 | TIM21_OR_RMP_MASK)    /*!< TIM21_ETR is connected to COMP1_OUT */
#define LL_TIM_TIM21_ETR_RMP_LSE   (TIM21_OR_ETR_RMP | TIM21_OR_RMP_MASK)      /*!< TIM21_ETR is connected to LSE */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_TIM21_TI1_RMP  TIM21 External Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM21_TI1_RMP_GPIO    ((uint32_t)0x00000000U | TIM21_OR_RMP_MASK)    /*!< TIM21_TI1 is connected to Ored GPIO1 */
#define LL_TIM_TIM21_TI1_RMP_RTC_WK  (TIM21_OR_TI1_RMP_0 | TIM21_OR_RMP_MASK)       /*!< TIM21_TI1 is connected to RTC_WAKEUP */
#define LL_TIM_TIM21_TI1_RMP_HSE_RTC (TIM21_OR_TI1_RMP_1 | TIM21_OR_RMP_MASK)       /*!< TIM21_TI1 is connected to HSE_RTC */
#define LL_TIM_TIM21_TI1_RMP_MSI     (TIM21_OR_TI1_RMP_1 | TIM21_OR_TI1_RMP_0 | TIM21_OR_RMP_MASK)  /*!< TIM21_TI1 is connected to MSI */
#define LL_TIM_TIM21_TI1_RMP_LSE     (TIM21_OR_TI1_RMP_2 | TIM21_OR_RMP_MASK)                       /*!< TIM21_TI1 is connected to LSE */
#define LL_TIM_TIM21_TI1_RMP_LSI     (TIM21_OR_TI1_RMP_2 | TIM21_OR_TI1_RMP_0 | TIM21_OR_RMP_MASK)  /*!< TIM21_TI1 is connected to LSI */
#define LL_TIM_TIM21_TI1_RMP_COMP1   (TIM21_OR_TI1_RMP_2 | TIM21_OR_TI1_RMP_1 | TIM21_OR_RMP_MASK)  /*!< TIM21_TI1 is connected to COMP1_OUT */
#define LL_TIM_TIM21_TI1_RMP_MCO     (TIM21_OR_TI1_RMP | TIM21_OR_RMP_MASK)                         /*!< TIM21_TI1 is connected to MCO */
/**
  * @}
  */

/** @defgroup TIM_LL_EC_TIM21_TI2_RMP  TIM21 External Input Ch2 Remap
* @{
*/
#define LL_TIM_TIM21_TI2_RMP_GPIO    ((uint32_t)0x00000000U | TIM21_OR_RMP_MASK)  /*!< TIM21_TI2 is connected to Ored GPIO1 */
#define LL_TIM_TIM21_TI2_RMP_COMP2   (TIM21_OR_TI2_RMP | TIM21_OR_RMP_MASK)       /*!< TIM21_TI2 is connected to COMP2_OUT */
/**
  * @}
  */

#if defined(TIM22_OR_ETR_RMP)

/** @defgroup TIM_LL_EC_TIM22_ETR_RMP  TIM22 External Trigger Remap
* @{
*/
#define LL_TIM_TIM22_ETR_RMP_GPIO  ((uint32_t)0x00000000U | TIM22_OR_RMP_MASK) /*!< TIM22_ETR is connected to GPIO */
#define LL_TIM_TIM22_ETR_RMP_COMP2 (TIM22_OR_ETR_RMP_0 | TIM22_OR_RMP_MASK)    /*!< TIM22_ETR is connected to COMP2_OUT */
#define LL_TIM_TIM22_ETR_RMP_COMP1 (TIM22_OR_ETR_RMP_1 | TIM22_OR_RMP_MASK)    /*!< TIM22_ETR is connected to COMP1_OUT */
#define LL_TIM_TIM22_ETR_RMP_LSE   (TIM22_OR_ETR_RMP | TIM22_OR_RMP_MASK)      /*!< TIM22_ETR is connected to LSE */
/**
  * @}
  */
#endif /* defined(TIM22_OR_ETR_RMP) */

#if defined(TIM22_OR_TI1_RMP)
/** @defgroup TIM_LL_EC_TIM22_TI1_RMP  TIM22 External Input Ch1 Remap
* @{
*/
#define LL_TIM_TIM22_TI1_RMP_GPIO1  ((uint32_t)0x00000000U | TIM22_OR_RMP_MASK)  /*!< TIM22_TI1 is connected to GPIO1 */
#define LL_TIM_TIM22_TI1_RMP_COMP2  (TIM22_OR_TI1_RMP_0 | TIM22_OR_RMP_MASK)     /*!< TIM22_TI1 is connected to COMP2_OUT */
#define LL_TIM_TIM22_TI1_RMP_COMP1  (TIM22_OR_TI1_RMP_1 | TIM22_OR_RMP_MASK)     /*!< TIM22_TI1 is connected to COMP1_OUT */
#define LL_TIM_TIM22_TI1_RMP_GPIO2  (TIM22_OR_TI1_RMP | TIM22_OR_RMP_MASK)       /*!< TIM22_TI1 is connected to GPIO2 */
/**
  * @}
  */
#endif /* defined(TIM22_OR_TI1_RMP) */


/** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
  * @{
  */
#define LL_TIM_OCREF_CLR_INT_NC     ((uint32_t)0x00000000U ) /*!< OCREF_CLR_INT is not connected */
#define LL_TIM_OCREF_CLR_INT_ETR    TIM_SMCR_OCCS            /*!< OCREF_CLR_INT is connected to ETRF */
/**
  * @}
  */

/**
  * @}
  */

/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
  * @{
  */

/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
  * @{
  */
/**
  * @brief  Write a value in TIM register.
  * @param  __INSTANCE__ TIM Instance
  * @param  __REG__ Register to be written
  * @param  __VALUE__ Value to be written in the register
  * @retval None
  */
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))

/**
  * @brief  Read a value in TIM register.
  * @param  __INSTANCE__ TIM Instance
  * @param  __REG__ Register to be read
  * @retval Register value
  */
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
  * @}
  */

/** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
  * @{
  */


/**
  * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
  * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
  * @param  __CNTCLK__ counter clock frequency (in Hz)
  * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
  */
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
   ((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((__TIMCLK__)/(__CNTCLK__) - 1U) : 0U

/**
  * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
  * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
  * @param  __PSC__ prescaler
  * @param  __FREQ__ output signal frequency (in Hz)
  * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
  */
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
     (((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? ((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U)) - 1U) : 0U

/**
  * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare active/inactive delay.
  * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
  * @param  __PSC__ prescaler
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
  * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
  */
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
          / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))

/**
  * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration (when the timer operates in one pulse mode).
  * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
  * @param  __PSC__ prescaler
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
  * @param  __PULSE__ pulse duration (in us)
  * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
  */
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
 ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
           + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))

/**
  * @brief  HELPER macro retrieving the ratio of the input capture prescaler
  * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
  * @param  __ICPSC__ This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ICPSC_DIV1
  *         @arg @ref LL_TIM_ICPSC_DIV2
  *         @arg @ref LL_TIM_ICPSC_DIV4
  *         @arg @ref LL_TIM_ICPSC_DIV8
  * @retval Input capture prescaler ratio (1, 2, 4 or 8)
  */
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
   ((uint32_t)((uint32_t)0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))


/**
  * @}
  */


/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
  * @{
  */

/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
  * @{
  */
/**
  * @brief  Enable timer counter.
  * @rmtoll CR1          CEN           LL_TIM_EnableCounter
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->CR1, TIM_CR1_CEN);
}

/**
  * @brief  Disable timer counter.
  * @rmtoll CR1          CEN           LL_TIM_DisableCounter
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
}

/**
  * @brief  Indicates whether the timer counter is enabled.
  * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN));
}

/**
  * @brief  Enable update event generation.
  * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
}

/**
  * @brief  Disable update event generation.
  * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
}

/**
  * @brief  Indicates whether update event generation is enabled.
  * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (TIM_CR1_UDIS));
}

/**
  * @brief  Set update event source
  * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
  *       generate an update interrupt or DMA request if enabled:
  *        - Counter overflow/underflow
  *        - Setting the UG bit
  *        - Update generation through the slave mode controller
  * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
  *       overflow/underflow generates an update interrupt or DMA request if enabled.
  * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
  * @param  TIMx Timer instance
  * @param  UpdateSource This parameter can be one of the following values:
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
{
  MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
}

/**
  * @brief  Get actual event update source
  * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
  */
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
}

/**
  * @brief  Set one pulse mode (one shot v.s. repetitive).
  * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
  * @param  TIMx Timer instance
  * @param  OnePulseMode This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
{
  MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
}

/**
  * @brief  Get actual one pulse mode.
  * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
  */
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
}

/**
  * @brief  Set the timer counter counting mode.
  * @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
  *       check whether or not the counter mode selection feature is supported
  *       by a timer instance.
  * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
  *         CR1          CMS           LL_TIM_SetCounterMode
  * @param  TIMx Timer instance
  * @param  CounterMode This parameter can be one of the following values:
  *         @arg @ref LL_TIM_COUNTERMODE_UP
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
{
  MODIFY_REG(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS, CounterMode);
}

/**
  * @brief  Get actual counter mode.
  * @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
  *       check whether or not the counter mode selection feature is supported
  *       by a timer instance.
  * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
  *         CR1          CMS           LL_TIM_GetCounterMode
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_COUNTERMODE_UP
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
  */
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS));
}

/**
  * @brief  Enable auto-reload (ARR) preload.
  * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
}

/**
  * @brief  Disable auto-reload (ARR) preload.
  * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
}

/**
  * @brief  Indicates whether auto-reload (ARR) preload is enabled.
  * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE));
}

/**
  * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
  * @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
  *       whether or not the clock division feature is supported by the timer
  *       instance.
  * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
  * @param  TIMx Timer instance
  * @param  ClockDivision This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
{
  MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
}

/**
  * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
  * @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
  *       whether or not the clock division feature is supported by the timer
  *       instance.
  * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
  */
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
}

/**
  * @brief  Set the counter value.
  * @rmtoll CNT          CNT           LL_TIM_SetCounter
  * @param  TIMx Timer instance
  * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF)
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
{
  WRITE_REG(TIMx->CNT, Counter);
}

/**
  * @brief  Get the counter value.
  * @rmtoll CNT          CNT           LL_TIM_GetCounter
  * @param  TIMx Timer instance
  * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF)
  */
__STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CNT));
}

/**
  * @brief  Get the current direction of the counter
  * @rmtoll CR1          DIR           LL_TIM_GetDirection
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
  *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
  */
__STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
}

/**
  * @brief  Set the prescaler value.
  * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
  * @note The prescaler can be changed on the fly as this control register is buffered. The new
  *       prescaler ratio is taken into account at the next update event.
  * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
  * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
  * @param  TIMx Timer instance
  * @param  Prescaler between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
{
  WRITE_REG(TIMx->PSC, Prescaler);
}

/**
  * @brief  Get the prescaler value.
  * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
  * @param  TIMx Timer instance
  * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
  */
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->PSC));
}

/**
  * @brief  Set the auto-reload value.
  * @note The counter is blocked while the auto-reload value is null.
  * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
  * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
  * @param  TIMx Timer instance
  * @param  AutoReload between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
{
  WRITE_REG(TIMx->ARR, AutoReload);
}

/**
  * @brief  Get the auto-reload value.
  * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
  * @param  TIMx Timer instance
  * @retval Auto-reload value
  */
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->ARR));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
  * @{
  */
/**
  * @brief  Set the trigger of the capture/compare DMA request.
  * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
  * @param  TIMx Timer instance
  * @param  DMAReqTrigger This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
  * @retval None
  */
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
{
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
}

/**
  * @brief  Get actual trigger of the capture/compare DMA request.
  * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
  * @param  TIMx Timer instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
  */
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
}

/**
  * @brief  Enable capture/compare channels.
  * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
  *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
  *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
  *         CCER         CC4E          LL_TIM_CC_EnableChannel
  * @param  TIMx Timer instance
  * @param  Channels This parameter can be a combination of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
  SET_BIT(TIMx->CCER, Channels);
}

/**
  * @brief  Disable capture/compare channels.
  * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
  *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
  *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
  *         CCER         CC4E          LL_TIM_CC_DisableChannel
  * @param  TIMx Timer instance
  * @param  Channels This parameter can be a combination of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
  CLEAR_BIT(TIMx->CCER, Channels);
}

/**
  * @brief  Indicate whether channel(s) is(are) enabled.
  * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
  *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
  *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
  *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel
  * @param  TIMx Timer instance
  * @param  Channels This parameter can be a combination of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
{
  return (READ_BIT(TIMx->CCER, Channels) == (Channels));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
  * @{
  */
/**
  * @brief  Configure an output channel.
  * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
  *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
  *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
  *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
  *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
  *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
  *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
  *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  Configuration This parameter must be a combination of all the following values:
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
             (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Define the behavior of the output reference signal OCxREF from which
  *         OCx and OCxN (when relevant) are derived.
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
  *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
  *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
  *         CCMR2        OC4M          LL_TIM_OC_SetMode
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  Mode This parameter can be one of the following values:
  *         @arg @ref LL_TIM_OCMODE_FROZEN
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
  *         @arg @ref LL_TIM_OCMODE_PWM1
  *         @arg @ref LL_TIM_OCMODE_PWM2
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]),  Mode << SHIFT_TAB_OCxx[iChannel]);
}

/**
  * @brief  Get the output compare mode of an output channel.
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
  *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
  *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
  *         CCMR2        OC4M          LL_TIM_OC_GetMode
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_OCMODE_FROZEN
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
  *         @arg @ref LL_TIM_OCMODE_PWM1
  *         @arg @ref LL_TIM_OCMODE_PWM2
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
}

/**
  * @brief  Set the polarity of an output channel.
  * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
  *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
  *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
  *         CCER         CC4P          LL_TIM_OC_SetPolarity
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  Polarity This parameter can be one of the following values:
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Get the polarity of an output channel.
  * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
  *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
  *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
  *         CCER         CC4P          LL_TIM_OC_GetPolarity
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Enable fast mode for the output channel.
  * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
  *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
  *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
  *         CCMR2        OC4FE          LL_TIM_OC_EnableFast
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));

}

/**
  * @brief  Disable fast mode for the output channel.
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
  *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
  *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
  *         CCMR2        OC4FE          LL_TIM_OC_DisableFast
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));

}

/**
  * @brief  Indicates whether fast mode is enabled for the output channel.
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
  *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
  *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
  *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  register uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
  return (READ_BIT(*pReg, bitfield) == bitfield);
}

/**
  * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
  *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
  *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
  *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}

/**
  * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
  *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
  *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
  *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
}

/**
  * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
  *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
  *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
  *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  register uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
  return (READ_BIT(*pReg, bitfield) == bitfield);
}

/**
  * @brief  Enable clearing the output channel on an external event.
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
  * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
  *       or not a timer instance can clear the OCxREF signal on an external event.
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
  *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
  *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
  *         CCMR2        OC4CE          LL_TIM_OC_EnableClear
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}

/**
  * @brief  Disable clearing the output channel on an external event.
  * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
  *       or not a timer instance can clear the OCxREF signal on an external event.
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
  *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
  *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
  *         CCMR2        OC4CE          LL_TIM_OC_DisableClear
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
}

/**
  * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
  * @note This function enables clearing the output channel on an external event.
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
  * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
  *       or not a timer instance can clear the OCxREF signal on an external event.
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
  *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
  *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
  *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  register uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
  return (READ_BIT(*pReg, bitfield) == bitfield);
}

/**
  * @brief  Set compare value for output channel 1 (TIMx_CCR1).
  * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 1 is supported by a timer instance.
  * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
  * @param  TIMx Timer instance
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
  WRITE_REG(TIMx->CCR1, CompareValue);
}

/**
  * @brief  Set compare value for output channel 2 (TIMx_CCR2).
  * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 2 is supported by a timer instance.
  * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
  * @param  TIMx Timer instance
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
  WRITE_REG(TIMx->CCR2, CompareValue);
}

/**
  * @brief  Set compare value for output channel 3 (TIMx_CCR3).
  * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
  *       output channel is supported by a timer instance.
  * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
  * @param  TIMx Timer instance
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
  WRITE_REG(TIMx->CCR3, CompareValue);
}

/**
  * @brief  Set compare value for output channel 4 (TIMx_CCR4).
  * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 4 is supported by a timer instance.
  * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
  * @param  TIMx Timer instance
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
  * @retval None
  */
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
{
  WRITE_REG(TIMx->CCR4, CompareValue);
}

/**
  * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
  * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 1 is supported by a timer instance.
  * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
  * @param  TIMx Timer instance
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR1));
}

/**
  * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
  * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 2 is supported by a timer instance.
  * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
  * @param  TIMx Timer instance
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR2));
}

/**
  * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
  * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 3 is supported by a timer instance.
  * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
  * @param  TIMx Timer instance
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR3));
}

/**
  * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
  * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
  *       output channel 4 is supported by a timer instance.
  * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
  * @param  TIMx Timer instance
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR4));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
  * @{
  */
/**
  * @brief  Configure input channel.
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
  *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
  *         CCMR1        IC1F          LL_TIM_IC_Config\n
  *         CCMR1        CC2S          LL_TIM_IC_Config\n
  *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
  *         CCMR1        IC2F          LL_TIM_IC_Config\n
  *         CCMR2        CC3S          LL_TIM_IC_Config\n
  *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
  *         CCMR2        IC3F          LL_TIM_IC_Config\n
  *         CCMR2        CC4S          LL_TIM_IC_Config\n
  *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
  *         CCMR2        IC4F          LL_TIM_IC_Config\n
  *         CCER         CC1P          LL_TIM_IC_Config\n
  *         CCER         CC1NP         LL_TIM_IC_Config\n
  *         CCER         CC2P          LL_TIM_IC_Config\n
  *         CCER         CC2NP         LL_TIM_IC_Config\n
  *         CCER         CC3P          LL_TIM_IC_Config\n
  *         CCER         CC3NP         LL_TIM_IC_Config\n
  *         CCER         CC4P          LL_TIM_IC_Config\n
  *         CCER         CC4NP         LL_TIM_IC_Config
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  Configuration This parameter must be a combination of all the following values:
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
  *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
  *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
             ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))  << SHIFT_TAB_ICxx[iChannel]);
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
             (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Set the active input.
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
  *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
  *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
  *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  ICActiveInput This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}

/**
  * @brief  Get the current active input.
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
  *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
  *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
  *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}

/**
  * @brief  Set the prescaler of input channel.
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
  *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
  *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
  *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  ICPrescaler This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ICPSC_DIV1
  *         @arg @ref LL_TIM_ICPSC_DIV2
  *         @arg @ref LL_TIM_ICPSC_DIV4
  *         @arg @ref LL_TIM_ICPSC_DIV8
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}

/**
  * @brief  Get the current prescaler value acting on an  input channel.
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
  *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
  *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
  *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_ICPSC_DIV1
  *         @arg @ref LL_TIM_ICPSC_DIV2
  *         @arg @ref LL_TIM_ICPSC_DIV4
  *         @arg @ref LL_TIM_ICPSC_DIV8
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}

/**
  * @brief  Set the input filter duration.
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
  *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
  *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
  *         CCMR2        IC4F          LL_TIM_IC_SetFilter
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  ICFilter This parameter can be one of the following values:
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
}

/**
  * @brief  Get the input filter duration.
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
  *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
  *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
  *         CCMR2        IC4F          LL_TIM_IC_GetFilter
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
}

/**
  * @brief  Set the input channel polarity.
  * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
  *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
  *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
  *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
  *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
  *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
  *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
  *         CCER         CC4NP         LL_TIM_IC_SetPolarity
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @param  ICPolarity This parameter can be one of the following values:
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
             ICPolarity << SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Get the current input channel polarity.
  * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
  *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
  *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
  *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
  *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
  *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
  *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
  *         CCER         CC4NP         LL_TIM_IC_GetPolarity
  * @param  TIMx Timer instance
  * @param  Channel This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CHANNEL_CH1
  *         @arg @ref LL_TIM_CHANNEL_CH2
  *         @arg @ref LL_TIM_CHANNEL_CH3
  *         @arg @ref LL_TIM_CHANNEL_CH4
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
{
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
  return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
          SHIFT_TAB_CCxP[iChannel]);
}

/**
  * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
  * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance provides an XOR input.
  * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
}

/**
  * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
  * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance provides an XOR input.
  * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
}

/**
  * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
  * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
  * a timer instance provides an XOR input.
  * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S));
}

/**
  * @brief  Get captured value for input channel 1.
  * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
  *       input channel 1 is supported by a timer instance.
  * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
  * @param  TIMx Timer instance
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR1));
}

/**
  * @brief  Get captured value for input channel 2.
  * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
  *       input channel 2 is supported by a timer instance.
  * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
  * @param  TIMx Timer instance
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR2));
}

/**
  * @brief  Get captured value for input channel 3.
  * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
  *       input channel 3 is supported by a timer instance.
  * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
  * @param  TIMx Timer instance
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR3));
}

/**
  * @brief  Get captured value for input channel 4.
  * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
  *       input channel 4 is supported by a timer instance.
  * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
  * @param  TIMx Timer instance
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
  */
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx)
{
  return (uint32_t)(READ_REG(TIMx->CCR4));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
  * @{
  */
/**
  * @brief  Enable external clock mode 2.
  * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
  * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports external clock mode2.
  * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}

/**
  * @brief  Disable external clock mode 2.
  * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports external clock mode2.
  * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
}

/**
  * @brief  Indicate whether external clock mode 2 is enabled.
  * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports external clock mode2.
  * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE));
}

/**
  * @brief  Set the clock source of the counter clock.
  * @note when selected clock source is external clock mode 1, the timer input
  *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
  *       function. This timer input must be configured by calling
  *       the @ref LL_TIM_IC_Config() function.
  * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports external clock mode1.
  * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports external clock mode2.
  * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
  *         SMCR         ECE           LL_TIM_SetClockSource
  * @param  TIMx Timer instance
  * @param  ClockSource This parameter can be one of the following values:
  *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
}

/**
  * @brief  Set the encoder interface mode.
  * @note Macro @ref IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance supports the encoder mode.
  * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
  * @param  TIMx Timer instance
  * @param  EncoderMode This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
  *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
  * @{
  */
/**
  * @brief  Set the trigger output (TRGO) used for timer synchronization .
  * @note Macro @ref IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
  *       whether or not a timer instance can operate as a master timer.
  * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
  * @param  TIMx Timer instance
  * @param  TimerSynchronization This parameter can be one of the following values:
  *         @arg @ref LL_TIM_TRGO_RESET
  *         @arg @ref LL_TIM_TRGO_ENABLE
  *         @arg @ref LL_TIM_TRGO_UPDATE
  *         @arg @ref LL_TIM_TRGO_CC1IF
  *         @arg @ref LL_TIM_TRGO_OC1REF
  *         @arg @ref LL_TIM_TRGO_OC2REF
  *         @arg @ref LL_TIM_TRGO_OC3REF
  *         @arg @ref LL_TIM_TRGO_OC4REF
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
{
  MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
}

/**
  * @brief  Set the synchronization mode of a slave timer.
  * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance can operate as a slave timer.
  * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
  * @param  TIMx Timer instance
  * @param  SlaveMode This parameter can be one of the following values:
  *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
  *         @arg @ref LL_TIM_SLAVEMODE_RESET
  *         @arg @ref LL_TIM_SLAVEMODE_GATED
  *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
}

/**
  * @brief  Set the selects the trigger input to be used to synchronize the counter.
  * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance can operate as a slave timer.
  * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
  * @param  TIMx Timer instance
  * @param  TriggerInput This parameter can be one of the following values:
  *         @arg @ref LL_TIM_TS_ITR0
  *         @arg @ref LL_TIM_TS_ITR1
  *         @arg @ref LL_TIM_TS_ITR2
  *         @arg @ref LL_TIM_TS_ITR3
  *         @arg @ref LL_TIM_TS_TI1F_ED
  *         @arg @ref LL_TIM_TS_TI1FP1
  *         @arg @ref LL_TIM_TS_TI2FP2
  *         @arg @ref LL_TIM_TS_ETRF
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
}

/**
  * @brief  Enable the Master/Slave mode.
  * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance can operate as a slave timer.
  * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}

/**
  * @brief  Disable the Master/Slave mode.
  * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance can operate as a slave timer.
  * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
}

/**
  * @brief Indicates whether the Master/Slave mode is enabled.
  * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
  * a timer instance can operate as a slave timer.
  * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM));
}

/**
  * @brief  Configure the external trigger (ETR) input.
  * @note Macro @ref IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
  *       a timer instance provides an external trigger input.
  * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
  *         SMCR         ETPS          LL_TIM_ConfigETR\n
  *         SMCR         ETF           LL_TIM_ConfigETR
  * @param  TIMx Timer instance
  * @param  ETRPolarity This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
  *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
  * @param  ETRPrescaler This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
  * @param  ETRFilter This parameter can be one of the following values:
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
                                      uint32_t ETRFilter)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
  * @{
  */
/**
  * @brief  Configures the timer DMA burst feature.
  * @note Macro @ref IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
  *       not a timer instance supports the DMA burst mode.
  * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
  *         DCR          DBA           LL_TIM_ConfigDMABurst
  * @param  TIMx Timer instance
  * @param  DMABurstBaseAddress This parameter can be one of the following values:
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR1
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR2
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR3
  * @param  DMABurstLength This parameter can be one of the following values:
  *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
  *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
  *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
{
  MODIFY_REG(TIMx->DCR, TIM_DCR_DBL | TIM_DCR_DBA, DMABurstBaseAddress | DMABurstLength);
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
  * @{
  */
/**
  * @brief  Remap TIM inputs (input channel, internal/external triggers).
  * @note Macro @ref IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
  *       a some timer inputs can be remapped.
  * @rmtoll TIM2_OR     ETR_RMP      LL_TIM_SetRemap\n
  *         TIM2_OR     TI4_RMP      LL_TIM_SetRemap\n
  *         TIM21_OR    ETR_RMP      LL_TIM_SetRemap\n
  *         TIM21_OR    TI1_RMP      LL_TIM_SetRemap\n
  *         TIM21_OR    TI2_RMP      LL_TIM_SetRemap\n
  *         TIM22_OR    ETR_RMP      LL_TIM_SetRemap\n
  *         TIM22_OR    TI1_RMP      LL_TIM_SetRemap\n
  *         TIM3_OR     ETR_RMP      LL_TIM_SetRemap\n
  *         TIM3_OR     TI1_RMP      LL_TIM_SetRemap\n
  *         TIM3_OR     TI2_RMP      LL_TIM_SetRemap\n
  *         TIM3_OR     TI4_RMP      LL_TIM_SetRemap
  * @param  TIMx Timer instance
  * @param  Remap Remap params depends on the TIMx. Description available only
  *         in CHM version of the User Manual (not in .pdf).
  *         Otherwise see Reference Manual description of OR registers.
  *
  *         Below description summarizes "Timer Instance" and "Remap" param combinations:
  *
  *         TIM2: any combination of ETR_RMP, TI4_RMP where
  *
  *            . . ETR_RMP can be one of the following values
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_GPIO
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_HSI   (*)
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_HSI48 (*)
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_LSE
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_COMP2
  *            @arg @ref LL_TIM_TIM2_ETR_RMP_COMP1
  *
  *            . . TI4_RMP can be one of the following values
  *            @arg @ref LL_TIM_TIM2_TI4_RMP_GPIO
  *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1
  *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP2
  *
  *         TIM3: any combination of the following values        (**)
  *
  *            . . ETR_RMP can be one of the following values    (**)
  *            @arg @ref LL_TIM_TIM3_ETR_RMP_GPIO
  *            @arg @ref LL_TIM_TIM3_ETR_RMP_HSI48DIV6
  *
  *            . . TI_RMP_TI1 can be one of the following values (**)
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI1_USB_SOF
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI1_GPIO
  *
  *            . . TI_RMP_TI2 can be one of the following values (**)
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI2_GPIO_DEF
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI2_GPIOB5_AF4
  *
  *            . . TI_RMP_TI4 can be one of the following values (**)
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI4_GPIO_DEF
  *            @arg @ref LL_TIM_TIM3_TI_RMP_TI4_GPIOC9_AF2
  *
  *         TIM21: any combination of ETR_RMP, TI1_RMP, TI2_RMP where
  *
  *            . . ETR_RMP can be one of the following values
  *            @arg @ref LL_TIM_TIM21_ETR_RMP_GPIO
  *            @arg @ref LL_TIM_TIM21_ETR_RMP_COMP2
  *            @arg @ref LL_TIM_TIM21_ETR_RMP_COMP1
  *            @arg @ref LL_TIM_TIM21_ETR_RMP_LSE
  *
  *            . . TI1_RMP can be one of the following values
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_GPIO
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_RTC_WK
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_HSE_RTC
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_MSI
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_LSE
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_LSI
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_COMP1
  *            @arg @ref LL_TIM_TIM21_TI1_RMP_MCO
  *
  *            . . TI2_RMP can be one of the following values
  *            @arg @ref LL_TIM_TIM21_TI2_RMP_GPIO
  *            @arg @ref LL_TIM_TIM21_TI2_RMP_COMP2
  *
  *         TIM22: any combination of ETR_RMP, TI1_RMP where  (**)
  *
  *            . . ETR_RMP can be one of the following values (**)
  *            @arg @ref LL_TIM_TIM22_ETR_RMP_GPIO
  *            @arg @ref LL_TIM_TIM22_ETR_RMP_COMP2
  *            @arg @ref LL_TIM_TIM22_ETR_RMP_COMP1
  *            @arg @ref LL_TIM_TIM22_ETR_RMP_LSE
  *
  *            . . TI1_RMP can be one of the following values (**)
  *            @arg @ref LL_TIM_TIM22_TI1_RMP_GPIO1
  *            @arg @ref LL_TIM_TIM22_TI1_RMP_COMP2
  *            @arg @ref LL_TIM_TIM22_TI1_RMP_COMP1
  *            @arg @ref LL_TIM_TIM22_TI1_RMP_GPIO2
  *
  *         (*) Value not defined in all devices. \n
  *         (*) Register not available in all devices.
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
{
  MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
  * @{
  */
/**
  * @brief  Set the OCREF clear input source
  * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
  * @note This function can only be used in Output compare and PWM modes.
  * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
  * @param  TIMx Timer instance
  * @param  OCRefClearInputSource This parameter can be one of the following values:
  *         @arg @ref LL_TIM_OCREF_CLR_INT_NC
  *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
  * @retval None
  */
__STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
{
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource);
}
/**
  * @}
  */

/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
  * @{
  */
/**
  * @brief  Clear the update interrupt flag (UIF).
  * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
}

/**
  * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
  * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF));
}

/**
  * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
  * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
}

/**
  * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
  * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF));
}

/**
  * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
  * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
}

/**
  * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
  * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF));
}

/**
  * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
  * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
}

/**
  * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
  * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF));
}

/**
  * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
  * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
}

/**
  * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
  * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF));
}

/**
  * @brief  Clear the trigger interrupt flag (TIF).
  * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
}

/**
  * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
  * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF));
}

/**
  * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
  * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
}

/**
  * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set (Capture/Compare 1 interrupt is pending).
  * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF));
}

/**
  * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
  * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
}

/**
  * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set (Capture/Compare 2 over-capture interrupt is pending).
  * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF));
}

/**
  * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
  * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
}

/**
  * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set (Capture/Compare 3 over-capture interrupt is pending).
  * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF));
}

/**
  * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
  * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
{
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
}

/**
  * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set (Capture/Compare 4 over-capture interrupt is pending).
  * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_IT_Management IT-Management
  * @{
  */
/**
  * @brief  Enable update interrupt (UIE).
  * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_UIE);
}

/**
  * @brief  Disable update interrupt (UIE).
  * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
}

/**
  * @brief  Indicates whether the update interrupt (UIE) is enabled.
  * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE));
}

/**
  * @brief  Enable capture/compare 1 interrupt (CC1IE).
  * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}

/**
  * @brief  Disable capture/compare 1  interrupt (CC1IE).
  * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
}

/**
  * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
  * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE));
}

/**
  * @brief  Enable capture/compare 2 interrupt (CC2IE).
  * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}

/**
  * @brief  Disable capture/compare 2  interrupt (CC2IE).
  * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
}

/**
  * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
  * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE));
}

/**
  * @brief  Enable capture/compare 3 interrupt (CC3IE).
  * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}

/**
  * @brief  Disable capture/compare 3  interrupt (CC3IE).
  * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
}

/**
  * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
  * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE));
}

/**
  * @brief  Enable capture/compare 4 interrupt (CC4IE).
  * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}

/**
  * @brief  Disable capture/compare 4  interrupt (CC4IE).
  * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
}

/**
  * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
  * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE));
}

/**
  * @brief  Enable trigger interrupt (TIE).
  * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_TIE);
}

/**
  * @brief  Disable trigger interrupt (TIE).
  * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
}

/**
  * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
  * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_DMA_Management DMA-Management
  * @{
  */
/**
  * @brief  Enable update DMA request (UDE).
  * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_UDE);
}

/**
  * @brief  Disable update DMA request (UDE).
  * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
}

/**
  * @brief  Indicates whether the update DMA request  (UDE) is enabled.
  * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE));
}

/**
  * @brief  Enable capture/compare 1 DMA request (CC1DE).
  * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}

/**
  * @brief  Disable capture/compare 1  DMA request (CC1DE).
  * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
}

/**
  * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
  * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE));
}

/**
  * @brief  Enable capture/compare 2 DMA request (CC2DE).
  * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}

/**
  * @brief  Disable capture/compare 2  DMA request (CC2DE).
  * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
}

/**
  * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
  * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE));
}

/**
  * @brief  Enable capture/compare 3 DMA request (CC3DE).
  * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}

/**
  * @brief  Disable capture/compare 3  DMA request (CC3DE).
  * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
}

/**
  * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
  * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE));
}

/**
  * @brief  Enable capture/compare 4 DMA request (CC4DE).
  * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}

/**
  * @brief  Disable capture/compare 4  DMA request (CC4DE).
  * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
}

/**
  * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
  * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE));
}

/**
  * @brief  Enable trigger interrupt (TDE).
  * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->DIER, TIM_DIER_TDE);
}

/**
  * @brief  Disable trigger interrupt (TDE).
  * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
{
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
}

/**
  * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
  * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
  * @param  TIMx Timer instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx)
{
  return (READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE));
}

/**
  * @}
  */

/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
  * @{
  */
/**
  * @brief  Generate an update event.
  * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_UG);
}

/**
  * @brief  Generate Capture/Compare 1 event.
  * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
}

/**
  * @brief  Generate Capture/Compare 2 event.
  * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
}

/**
  * @brief  Generate Capture/Compare 3 event.
  * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
}

/**
  * @brief  Generate Capture/Compare 4 event.
  * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
}

/**
  * @brief  Generate trigger event.
  * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
  * @param  TIMx Timer instance
  * @retval None
  */
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
{
  SET_BIT(TIMx->EGR, TIM_EGR_TG);
}

/**
  * @}
  */

#if defined(USE_FULL_LL_DRIVER)
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
  * @{
  */

ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct);
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */

/**
  * @}
  */

/**
  * @}
  */

#endif /* TIM1 || TIM3 || TIM21 || TIM22 || TIM6 || TIM7 */

/**
  * @}
  */

#ifdef __cplusplus
}
#endif

#endif /* __STM32L0xx_LL_TIM_H */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/