mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

targets/TARGET_ARM_SSG/TARGET_CM3DS_MPS2/spi_api.c

Committer:
Kojto
Date:
2017-08-03
Revision:
170:19eb464bc2be
Parent:
168:9672193075cf
Child:
184:08ed48f1de7f

File content as of revision 170:19eb464bc2be:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2017 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <math.h>

#include "spi_api.h"
#include "spi_def.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "mbed_wait_api.h"

#define SPI_PL022_MIN_SSPCPSR_VALUE  2
#define SPI_PL022_MAX_SSPCPSR_VALUE  254
#define SPI_PL022_MAX_SRC_VALUE      255
#define SPI_PL022_SSPCR0_SCR_POS     8
#define SPI_PL022_SSPCR0_SCR_MSK     (0xFFul<<SPI_PL022_SSPCR0_SCR_POS)

static const PinMap PinMap_SPI_SCLK[] = {
    {SPI_SCLK         , SPI_0, 0},
    {CLCD_SCLK        , SPI_1, 0},
    {ADC_SCLK         , SPI_2, ALTERNATE_FUNC},
    {SHIELD_0_SPI_SCK , SPI_3, ALTERNATE_FUNC},
    {SHIELD_1_SPI_SCK , SPI_4, ALTERNATE_FUNC},
    {NC               , NC   , 0}
};

static const PinMap PinMap_SPI_MOSI[] = {
    {SPI_MOSI         , SPI_0, 0},
    {CLCD_MOSI        , SPI_1, 0},
    {ADC_MOSI         , SPI_2, ALTERNATE_FUNC},
    {SHIELD_0_SPI_MOSI, SPI_3, ALTERNATE_FUNC},
    {SHIELD_1_SPI_MOSI, SPI_4, ALTERNATE_FUNC},
    {NC               , NC   , 0}
};

static const PinMap PinMap_SPI_MISO[] = {
    {SPI_MISO         , SPI_0, 0},
    {CLCD_MISO        , SPI_1, 0},
    {ADC_MISO         , SPI_2, ALTERNATE_FUNC},
    {SHIELD_0_SPI_MISO, SPI_3, ALTERNATE_FUNC},
    {SHIELD_1_SPI_MISO, SPI_4, ALTERNATE_FUNC},
    {NC               , NC   , 0}
};

static const PinMap PinMap_SPI_SSEL[] = {
    {SPI_SSEL        , SPI_0, 0},
    {CLCD_SSEL       , SPI_1, 0},
    {ADC_SSEL        , SPI_2, ALTERNATE_FUNC},
    {SHIELD_0_SPI_nCS, SPI_3, ALTERNATE_FUNC},
    {SHIELD_1_SPI_nCS, SPI_4, ALTERNATE_FUNC},
    {NC              , NC   , 0}
};

static inline int ssp_disable(spi_t *obj);
static inline int ssp_enable(spi_t *obj);

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    /* Determine the SPI to use */
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (MPS2_SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl);
    if ((int)obj->spi == NC) {
        error("SPI pinout mapping failed");
    }

    /* Enable power and clocking */
    switch ((int)obj->spi) {
        case SPI_0:
            obj->spi->CR1   = 0;
            obj->spi->CR0   = SSP_CR0_SCR_DFLT | SSP_CR0_FRF_MOT | SSP_CR0_DSS_8;
            obj->spi->CPSR  = SSP_CPSR_DFLT;
            obj->spi->IMSC  = 0x8;
            obj->spi->DMACR = 0;
            obj->spi->CR1   = SSP_CR1_SSE_Msk;
            obj->spi->ICR   = 0x3;
            break;
        case SPI_1: /* Configure SSP used for LCD */
            obj->spi->CR1   = 0;                /* Synchronous serial port disable  */
            obj->spi->DMACR = 0;                /* Disable FIFO DMA                 */
            obj->spi->IMSC  = 0;                /* Mask all FIFO/IRQ interrupts     */
            obj->spi->ICR   = ((1ul <<  0) |    /* Clear SSPRORINTR interrupt       */
                               (1ul <<  1) );   /* Clear SSPRTINTR interrupt        */
            obj->spi->CR0   = ((7ul <<  0) |    /* 8 bit data size                  */
                               (0ul <<  4) |    /* Motorola frame format            */
                               (0ul <<  6) |    /* CPOL = 0                         */
                               (0ul <<  7) |    /* CPHA = 0                         */
                               (1ul <<  8) );   /* Set serial clock rate            */
            obj->spi->CPSR  = (2ul <<  0);      /* set SSP clk to 6MHz (6.6MHz max) */
            obj->spi->CR1   = ((1ul <<  1) |    /* Synchronous serial port enable   */
                               (0ul <<  2) );   /* Device configured as master      */
            break;
        case SPI_2:  /* Shield ADC SPI */
        case SPI_3:  /* Shield 0 SPI */
        case SPI_4:  /* Shield 1 SPI */
            obj->spi->CR1   = 0;
            obj->spi->CR0   = SSP_CR0_SCR_DFLT | SSP_CR0_FRF_MOT | SSP_CR0_DSS_8;
            obj->spi->CPSR  = SSP_CPSR_DFLT;
            obj->spi->IMSC  = 0x8;
            obj->spi->DMACR = 0;
            obj->spi->CR1   = SSP_CR1_SSE_Msk;
            obj->spi->ICR   = 0x3;
            /* Set pin function as an alt-function */
            if (mosi != NC) {
                pin_function(mosi, ALTERNATE_FUNC);
            }
            if (miso != NC) {
                pin_function(miso, ALTERNATE_FUNC);
            }
            if (sclk != NC) {
                pin_function(sclk, ALTERNATE_FUNC);
            }
            if (ssel != NC) {
                pin_function(ssel, ALTERNATE_FUNC);
            }
            break;
    }

    /* Set default format and frequency */
    if (ssel == NC) {
        spi_format(obj, 8, 0, 0);  /* 8 bits, mode 0, master */
    } else {
        spi_format(obj, 8, 0, 1);  /* 8 bits, mode 0, slave */
    }

    /* Default SPI frequency */
    spi_frequency(obj, 1000000);

    /* Enable the ssp channel */
    ssp_enable(obj);
}

void spi_free(spi_t *obj)
{
    error("SPI free error");
}

void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    ssp_disable(obj);
    if (!(bits >= 4 && bits <= 16) || !(mode >= 0 && mode <= 3)) {
        error("SPI format error");
    }

    int polarity = (mode & 0x2) ? 1 : 0;
    int phase = (mode & 0x1) ? 1 : 0;

    // set it up
    int DSS = bits - 1;            /* DSS (data select size) */
    int SPO = (polarity) ? 1 : 0;  /* SPO - clock out polarity */
    int SPH = (phase) ? 1 : 0;     /* SPH - clock out phase */

    int FRF = 0;                   /* FRF (frame format) = SPI */
    uint32_t tmp = obj->spi->CR0;
    tmp &= ~(0xFFFF);
    tmp |= DSS << 0
        | FRF << 4
        | SPO << 6
        | SPH << 7;
    obj->spi->CR0 = tmp;

    tmp = obj->spi->CR1;
    tmp &= ~(0xD);
    tmp |= 0 << 0                  /* LBM - loop back mode - off */
        | ((slave) ? 1 : 0) << 2   /* MS  - master slave mode, 1 = slave */
        | 0 << 3;                  /* SOD - slave output disable - na */
    obj->spi->CR1 = tmp;

    ssp_enable(obj);
}

void spi_frequency(spi_t *obj, int hz)
{
    uint32_t clkps_dvsr, scr;
    uint32_t sys_clk = SystemCoreClock;

    for(clkps_dvsr = SPI_PL022_MIN_SSPCPSR_VALUE;
        clkps_dvsr <= SPI_PL022_MAX_SSPCPSR_VALUE; clkps_dvsr += 2) {

        /* Calculate clock rate based on the new clock prescale divisor */
        scr = (sys_clk / (clkps_dvsr * hz)) - 1;

        /* Checks if it can be supported by the divider */
        if (scr <= SPI_PL022_MAX_SRC_VALUE) {
            ssp_disable(obj);
            obj->spi->CPSR = clkps_dvsr;
            obj->spi->CR0 &= ~SPI_PL022_SSPCR0_SCR_MSK;
            obj->spi->CR0 |= (scr << SPI_PL022_SSPCR0_SCR_POS);
            ssp_enable(obj);
            return;
        }
    }

    error("Couldn't setup requested SPI frequency %dHz", hz);
}

static inline int ssp_disable(spi_t *obj)
{
    return obj->spi->CR1 &= ~(1 << 1);
}

static inline int ssp_enable(spi_t *obj)
{
    return obj->spi->CR1 |= SSP_CR1_SSE_Msk;
}

static inline int ssp_readable(spi_t *obj)
{
    return obj->spi->SR & (1 << 2);
}

static inline int ssp_writeable(spi_t *obj)
{
    return obj->spi->SR & SSP_SR_BSY_Msk;
}

static inline void ssp_write(spi_t *obj, int value)
{
    obj->spi->DR = value;
    while (ssp_writeable(obj));
}
static inline int ssp_read(spi_t *obj)
{
    int read_DR = obj->spi->DR;
    return read_DR;
}

static inline int ssp_busy(spi_t *obj)
{
    return (obj->spi->SR & (1 << 4)) ? (1) : (0);
}

int spi_master_write(spi_t *obj, int value)
{
    ssp_write(obj, value);
    while (obj->spi->SR & SSP_SR_BSY_Msk);  /* Wait for send to finish */
    return (ssp_read(obj));
}

int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
                           char *rx_buffer, int rx_length, char write_fill)
{
    int total = (tx_length > rx_length) ? tx_length : rx_length;
    char out, in;

    for (int i = 0; i < total; i++) {
        out = (i < tx_length) ? tx_buffer[i] : write_fill;
        in = spi_master_write(obj, out);
        if (i < rx_length) {
            rx_buffer[i] = in;
        }
    }

    return total;
}

int spi_slave_receive(spi_t *obj)
{
    return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
}

int spi_slave_read(spi_t *obj)
{
    return obj->spi->DR;
}

void spi_slave_write(spi_t *obj, int value)
{
    while (ssp_writeable(obj) == 0);
    obj->spi->DR = value;
}

int spi_busy(spi_t *obj)
{
    return ssp_busy(obj);
}