mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Revision:
188:bcfe06ba3d64
Parent:
187:0387e8f68319
Child:
189:f392fc9709a3
--- a/targets/TARGET_STM/rtc_api.c	Thu Sep 06 13:40:20 2018 +0100
+++ b/targets/TARGET_STM/rtc_api.c	Thu Nov 08 11:46:34 2018 +0000
@@ -36,8 +36,8 @@
 #include "mbed_critical.h"
 
 #if DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM
-volatile uint32_t LP_continuous_time = 0;
-volatile uint32_t LP_last_RTC_time = 0;
+volatile uint32_t LPTICKER_counter = 0;
+volatile uint32_t LPTICKER_RTC_time = 0;
 #endif
 
 static int RTC_inited = 0;
@@ -60,14 +60,12 @@
 
 #if MBED_CONF_TARGET_LSE_AVAILABLE
     RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
-    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
+    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE;
     RCC_OscInitStruct.LSEState       = RCC_LSE_ON;
-
     if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
         error("Cannot initialize RTC with LSE\n");
     }
 
-    __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE);
     __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE);
 
     PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
@@ -76,19 +74,13 @@
         error("PeriphClkInitStruct RTC failed with LSE\n");
     }
 #else /*  MBED_CONF_TARGET_LSE_AVAILABLE */
-    // Reset Backup domain
-    __HAL_RCC_BACKUPRESET_FORCE();
-    __HAL_RCC_BACKUPRESET_RELEASE();
-
-    // Enable LSI clock
     RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
-    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
+    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE;
     RCC_OscInitStruct.LSIState       = RCC_LSI_ON;
     if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
         error("Cannot initialize RTC with LSI\n");
     }
 
-    __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI);
     __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI);
 
     PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
@@ -116,14 +108,14 @@
 #endif /* TARGET_STM32F1 */
 
     if (HAL_RTC_Init(&RtcHandle) != HAL_OK) {
-        error("RTC initialization failed");
+        error("RTC initialization failed\n");
     }
 
 #if !(TARGET_STM32F1) && !(TARGET_STM32F2)
     /* STM32F1 : there are no shadow registers */
     /* STM32F2 : shadow registers can not be bypassed */
     if (HAL_RTCEx_EnableBypassShadow(&RtcHandle) != HAL_OK) {
-        error("EnableBypassShadow error");
+        error("EnableBypassShadow error\n");
     }
 #endif /* TARGET_STM32F1 || TARGET_STM32F2 */
 }
@@ -149,51 +141,15 @@
 For date, there is no specific register, only a software structure.
 It is then not a problem to not use shifts.
 */
-#if TARGET_STM32F1
 time_t rtc_read(void)
 {
-    RTC_DateTypeDef dateStruct = {0};
-    RTC_TimeTypeDef timeStruct = {0};
-    struct tm timeinfo;
+#if TARGET_STM32F1
 
     RtcHandle.Instance = RTC;
-
-    // Read actual date and time
-    // Warning: the time must be read first!
-    HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN);
-    HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN);
-
-    /* date information is null before first write procedure */
-    /* set 01/01/1970 as default values */
-    if (dateStruct.Year == 0) {
-        dateStruct.Year = 2 ;
-        dateStruct.Month = 1 ;
-        dateStruct.Date = 1 ;
-    }
-
-    // Setup a tm structure based on the RTC
-    /* tm_wday information is ignored by _rtc_maketime */
-    /* tm_isdst information is ignored by _rtc_maketime */
-    timeinfo.tm_mon  = dateStruct.Month - 1;
-    timeinfo.tm_mday = dateStruct.Date;
-    timeinfo.tm_year = dateStruct.Year + 68;
-    timeinfo.tm_hour = timeStruct.Hours;
-    timeinfo.tm_min  = timeStruct.Minutes;
-    timeinfo.tm_sec  = timeStruct.Seconds;
-
-    // Convert to timestamp
-    time_t t;
-    if (_rtc_maketime(&timeinfo, &t, RTC_4_YEAR_LEAP_YEAR_SUPPORT) == false) {
-        return 0;
-    }
-
-    return t;
-}
+    return RTC_ReadTimeCounter(&RtcHandle);
 
 #else /* TARGET_STM32F1 */
 
-time_t rtc_read(void)
-{
     struct tm timeinfo;
 
     /* Since the shadow registers are bypassed we have to read the time twice and compare them until both times are the same */
@@ -231,12 +187,23 @@
     }
 
     return t;
+
+#endif /* TARGET_STM32F1 */
 }
 
-#endif /* TARGET_STM32F1 */
+
 
 void rtc_write(time_t t)
 {
+#if TARGET_STM32F1
+
+    RtcHandle.Instance = RTC;
+    if (RTC_WriteTimeCounter(&RtcHandle, t) != HAL_OK) {
+        error("RTC_WriteTimeCounter error\n");
+    }
+
+#else /* TARGET_STM32F1 */
+
     RTC_DateTypeDef dateStruct = {0};
     RTC_TimeTypeDef timeStruct = {0};
 
@@ -261,22 +228,19 @@
     timeStruct.Hours          = timeinfo.tm_hour;
     timeStruct.Minutes        = timeinfo.tm_min;
     timeStruct.Seconds        = timeinfo.tm_sec;
-
-#if !(TARGET_STM32F1)
     timeStruct.TimeFormat     = RTC_HOURFORMAT_24;
     timeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
     timeStruct.StoreOperation = RTC_STOREOPERATION_RESET;
-#endif /* TARGET_STM32F1 */
 
 #if DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM
-    /* Need to update LP_continuous_time value before new RTC time */
+    /* Before setting the new time, we need to update the LPTICKER_counter value */
+    /* rtc_read_lp function is then called */
     rtc_read_lp();
 
-    /* LP_last_RTC_time value is updated with the new RTC time */
-    LP_last_RTC_time = timeStruct.Seconds + timeStruct.Minutes * 60 + timeStruct.Hours * 60 * 60;
-
-    /* Save current SSR */
-    uint32_t Read_SubSeconds = (uint32_t)(RTC->SSR);
+    /* In rtc_read_lp, LPTICKER_RTC_time value has been updated with the current time */
+    /* We need now to overwrite the value with the new RTC time */
+    /* Note that when a new RTC time is set by HW, the RTC SubSeconds counter is reset to PREDIV_S_VALUE */
+    LPTICKER_RTC_time = (timeStruct.Seconds + timeStruct.Minutes * 60 + timeStruct.Hours * 60 * 60) * PREDIV_S_VALUE;
 #endif /* DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM */
 
     // Change the RTC current date/time
@@ -287,12 +251,8 @@
         error("HAL_RTC_SetTime error\n");
     }
 
-#if DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM
-    while (Read_SubSeconds != (RTC->SSR)) {
-    }
-#endif /* DEVICE_LPTICKER && !MBED_CONF_TARGET_LPTICKER_LPTIM */
-
     core_util_critical_section_exit();
+#endif /* TARGET_STM32F1 */
 }
 
 int rtc_isenabled(void)
@@ -341,11 +301,18 @@
 
 uint32_t rtc_read_lp(void)
 {
+    /* RTC_time_tick is the addition of the RTC time register (in second) and the RTC sub-second register
+    *  This time value is breaking each 24h (= 86400s = 0x15180)
+    *  In order to get a U32 continuous time information, we use an internal counter : LPTICKER_counter
+    *  This counter is the addition of each spent time since last function call
+    *  Current RTC time is saved into LPTICKER_RTC_time
+    *  NB: rtc_read_lp() output is not the time in us, but the LPTICKER_counter (frequency LSE/4 = 8kHz => 122us)
+    */
+    core_util_critical_section_enter();
     struct tm timeinfo;
 
     /* Since the shadow registers are bypassed we have to read the time twice and compare them until both times are the same */
     /* We don't have to read date as we bypass shadow registers */
-    uint32_t Read_SecondFraction = (uint32_t)(RTC->PRER & RTC_PRER_PREDIV_S);
     uint32_t Read_time = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK);
     uint32_t Read_SubSeconds = (uint32_t)(RTC->SSR);
 
@@ -358,17 +325,18 @@
     timeinfo.tm_min  = RTC_Bcd2ToByte((uint8_t)((Read_time & (RTC_TR_MNT | RTC_TR_MNU)) >> 8));
     timeinfo.tm_sec  = RTC_Bcd2ToByte((uint8_t)((Read_time & (RTC_TR_ST  | RTC_TR_SU))  >> 0));
 
-    uint32_t RTC_time_s = timeinfo.tm_sec + timeinfo.tm_min * 60 + timeinfo.tm_hour * 60 * 60; // Max 0x0001-517F => * 8191 + 8191 = 0x2A2E-AE80
+    uint32_t RTC_time_tick = (timeinfo.tm_sec + timeinfo.tm_min * 60 + timeinfo.tm_hour * 60 * 60) * PREDIV_S_VALUE + PREDIV_S_VALUE - Read_SubSeconds; // Max 0x0001-517F * 8191 + 8191 = 0x2A2E-AE80
 
-    if (LP_last_RTC_time <= RTC_time_s) {
-        LP_continuous_time += (RTC_time_s - LP_last_RTC_time);
+    if (LPTICKER_RTC_time <= RTC_time_tick) {
+        LPTICKER_counter += (RTC_time_tick - LPTICKER_RTC_time);
     } else {
-        /* Add 24h */
-        LP_continuous_time += (24 * 60 * 60 + RTC_time_s - LP_last_RTC_time);
+        /* When RTC time is 0h00.01 and was 11H59.59, difference is "current time + 24h - previous time" */
+        LPTICKER_counter += (RTC_time_tick + 24 * 60 * 60 * PREDIV_S_VALUE - LPTICKER_RTC_time);
     }
-    LP_last_RTC_time = RTC_time_s;
+    LPTICKER_RTC_time = RTC_time_tick;
 
-    return LP_continuous_time * PREDIV_S_VALUE + Read_SecondFraction - Read_SubSeconds;
+    core_util_critical_section_exit();
+    return LPTICKER_counter;
 }
 
 void rtc_set_wake_up_timer(timestamp_t timestamp)
@@ -388,7 +356,9 @@
         WakeUpCounter = 0xFFFF;
     }
 
+    core_util_critical_section_enter();
     RtcHandle.Instance = RTC;
+    HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle);
     if (HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle, WakeUpCounter, RTC_WAKEUPCLOCK_RTCCLK_DIV4) != HAL_OK) {
         error("rtc_set_wake_up_timer init error\n");
     }
@@ -396,6 +366,7 @@
     NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler);
     irq_handler = (void (*)(void))lp_ticker_irq_handler;
     NVIC_EnableIRQ(RTC_WKUP_IRQn);
+    core_util_critical_section_exit();
 }
 
 void rtc_fire_interrupt(void)
@@ -410,10 +381,7 @@
 void rtc_deactivate_wake_up_timer(void)
 {
     RtcHandle.Instance = RTC;
-    __HAL_RTC_WRITEPROTECTION_DISABLE(&RtcHandle);
-    __HAL_RTC_WAKEUPTIMER_DISABLE(&RtcHandle);
-    __HAL_RTC_WAKEUPTIMER_DISABLE_IT(&RtcHandle, RTC_IT_WUT);
-    __HAL_RTC_WRITEPROTECTION_ENABLE(&RtcHandle);
+    HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle);
     NVIC_DisableIRQ(RTC_WKUP_IRQn);
 }