mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Revision:
149:156823d33999
Parent:
144:ef7eb2e8f9f7
Child:
156:95d6b41a828b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_STM/TARGET_STM32F0/device/stm32f0xx_hal_uart.c	Fri Oct 28 11:17:30 2016 +0100
@@ -0,0 +1,2033 @@
+/**
+  ******************************************************************************
+  * @file    stm32f0xx_hal_uart.c
+  * @author  MCD Application Team
+  * @version V1.4.0
+  * @date    27-May-2016
+  * @brief   UART HAL module driver.
+  *          This file provides firmware functions to manage the following 
+  *          functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral:
+  *           + Initialization and de-initialization functions
+  *           + IO operation functions
+  *           + Peripheral Control functions
+  *           + Peripheral State and Errors functions
+  *
+  @verbatim
+ ===============================================================================
+                        ##### How to use this driver #####
+ ===============================================================================
+  [..]
+    The UART HAL driver can be used as follows:
+
+    (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
+    (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
+        (++) Enable the USARTx interface clock.
+        (++) UART pins configuration:
+            (+++) Enable the clock for the UART GPIOs.
+            (+++) Configure these UART pins as alternate function pull-up.
+        (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
+             and HAL_UART_Receive_IT() APIs):
+            (+++) Configure the USARTx interrupt priority.
+            (+++) Enable the NVIC USART IRQ handle.
+        (++) UART interrupts handling:
+              -@@-  The specific UART interrupts (Transmission complete interrupt,
+                RXNE interrupt and Error Interrupts) are managed using the macros
+                __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit and receive processes.
+        (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
+             and HAL_UART_Receive_DMA() APIs):
+            (+++) Declare a DMA handle structure for the Tx/Rx channel.
+            (+++) Enable the DMAx interface clock.
+            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
+            (+++) Configure the DMA Tx/Rx channel.
+            (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
+            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
+
+    (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
+        flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
+
+    (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
+        in the huart handle AdvancedInit structure.
+
+    (#) For the UART asynchronous mode, initialize the UART registers by calling
+        the HAL_UART_Init() API.
+
+    (#) For the UART Half duplex mode, initialize the UART registers by calling
+        the HAL_HalfDuplex_Init() API.
+
+    (#) For the UART Multiprocessor mode, initialize the UART registers
+        by calling the HAL_MultiProcessor_Init() API.
+
+    (#) For the UART RS485 Driver Enabled mode, initialize the UART registers
+        by calling the HAL_RS485Ex_Init() API.
+
+   [..]
+    (@) These APIs(HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_MultiProcessor_Init(),
+        also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
+        calling the customized HAL_UART_MspInit() API.
+
+        Three operation modes are available within this driver :     
+  
+     *** Polling mode IO operation ***
+     =================================
+     [..]    
+       (+) Send an amount of data in blocking mode using HAL_UART_Transmit() 
+       (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
+       
+     *** Interrupt mode IO operation ***    
+     ===================================
+     [..]    
+       (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() 
+       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback 
+       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_TxCpltCallback
+       (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() 
+       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback 
+       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_RxCpltCallback                                      
+       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
+            add his own code by customization of function pointer HAL_UART_ErrorCallback
+
+     *** DMA mode IO operation ***    
+     ==============================
+     [..] 
+       (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() 
+       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback 
+       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_TxCpltCallback
+       (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() 
+       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback 
+       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
+            add his own code by customization of function pointer HAL_UART_RxCpltCallback                                      
+       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
+            add his own code by customization of function pointer HAL_UART_ErrorCallback
+       (+) Pause the DMA Transfer using HAL_UART_DMAPause()      
+       (+) Resume the DMA Transfer using HAL_UART_DMAResume()  
+       (+) Stop the DMA Transfer using HAL_UART_DMAStop()      
+    
+     *** UART HAL driver macros list ***
+     ============================================= 
+     [..]
+       Below the list of most used macros in UART HAL driver.
+       
+      (+) __HAL_UART_ENABLE: Enable the UART peripheral 
+      (+) __HAL_UART_DISABLE: Disable the UART peripheral     
+      (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
+      (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
+      (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
+      (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
+      
+     [..] 
+       (@) You can refer to the UART HAL driver header file for more useful macros 
+      
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f0xx_hal.h"
+
+/** @addtogroup STM32F0xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup UART UART
+  * @brief HAL UART module driver
+  * @{
+  */
+
+#ifdef HAL_UART_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup UART_Private_Constants UART Private Constants
+  * @{
+  */
+#define UART_TEACK_REACK_TIMEOUT ((uint32_t) 1000)              /*!< UART TX or RX enable acknowledge time-out value */
+#define UART_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
+                                     USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
+/**
+  * @}
+  */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup UART_Private_Functions   UART Private Functions
+  * @{
+  */
+static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMAError(DMA_HandleTypeDef *hdma);
+/**
+  * @}
+  */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup UART_Exported_Functions UART Exported Functions
+  * @{
+  */
+
+/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
+  *  @brief    Initialization and Configuration functions
+  *
+@verbatim
+===============================================================================
+            ##### Initialization and Configuration functions #####
+ ===============================================================================
+    [..]
+    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
+    in asynchronous mode.
+      (+) For the asynchronous mode the parameters below can be configured:
+        (++) Baud Rate
+        (++) Word Length
+        (++) Stop Bit
+        (++) Parity
+        (++) Hardware flow control
+        (++) Receiver/transmitter modes
+        (++) Over Sampling Method
+        (++) One-Bit Sampling Method
+      (+) For the asynchronous mode, the following advanced features can be configured as well:
+        (++) TX and/or RX pin level inversion
+        (++) data logical level inversion
+        (++) RX and TX pins swap
+        (++) RX overrun detection disabling
+        (++) DMA disabling on RX error
+        (++) MSB first on communication line
+        (++) auto Baud rate detection
+    [..]
+    The HAL_UART_Init(), HAL_HalfDuplex_Init() and HAL_MultiProcessor_Init()
+    API follow respectively the UART asynchronous, UART Half duplex and multiprocessor mode
+    configuration procedures (details for the procedures are available in reference manual).
+
+@endverbatim
+  * @{
+  */
+
+/*
+  Additional Table:  If the parity is enabled, then the MSB bit of the data written
+                     in the data register is transmitted but is changed by the parity bit.
+                     According to device capability (support or not of 7-bit word length),
+                     frame length is either defined by the M bit (8-bits or 9-bits)
+                     or by the M1 and M0 bits (7-bit, 8-bit or 9-bit).
+                     Possible UART frame formats are as listed in the following table:
+            
+      Table 1. UART frame format.             
+      +-----------------------------------------------------------------------+
+      |       M bit       |  PCE bit  |             UART frame                |
+      |-------------------|-----------|---------------------------------------|
+      |         0         |     0     |    | SB |    8-bit data   | STB |     |
+      |-------------------|-----------|---------------------------------------|
+      |         0         |     1     |    | SB | 7-bit data | PB | STB |     |
+      |-------------------|-----------|---------------------------------------|
+      |         1         |     0     |    | SB |    9-bit data   | STB |     |
+      |-------------------|-----------|---------------------------------------|
+      |         1         |     1     |    | SB | 8-bit data | PB | STB |     |
+      +-----------------------------------------------------------------------+
+      |  M1 bit |  M0 bit |  PCE bit  |             UART frame                |
+      |---------|---------|-----------|---------------------------------------|
+      |    0    |    0    |     0     |    | SB |    8 bit data   | STB |     |
+      |---------|---------|-----------|---------------------------------------|
+      |    0    |    0    |     1     |    | SB | 7 bit data | PB | STB |     |
+      |---------|---------|-----------|---------------------------------------|
+      |    0    |    1    |     0     |    | SB |    9 bit data   | STB |     |
+      |---------|---------|-----------|---------------------------------------|
+      |    0    |    1    |     1     |    | SB | 8 bit data | PB | STB |     |
+      |---------|---------|-----------|---------------------------------------|
+      |    1    |    0    |     0     |    | SB |    7 bit data   | STB |     |
+      |---------|---------|-----------|---------------------------------------|
+      |    1    |    0    |     1     |    | SB | 6 bit data | PB | STB |     |
+      +-----------------------------------------------------------------------+
+
+*/
+
+/**
+  * @brief Initialize the UART mode according to the specified
+  *         parameters in the UART_InitTypeDef and initialize the associated handle.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
+{
+  /* Check the UART handle allocation */
+  if(huart == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
+  {
+    /* Check the parameters */
+    assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
+  }
+  else
+  {
+    /* Check the parameters */
+    assert_param(IS_UART_INSTANCE(huart->Instance));
+  }
+
+  if(huart->gState == HAL_UART_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    huart->Lock = HAL_UNLOCKED;
+
+    /* Init the low level hardware : GPIO, CLOCK */
+    HAL_UART_MspInit(huart);
+  }
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Disable the Peripheral */
+  __HAL_UART_DISABLE(huart);
+
+  /* Set the UART Communication parameters */
+  if (UART_SetConfig(huart) == HAL_ERROR)
+  {
+    return HAL_ERROR;
+  }
+
+  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+  {
+    UART_AdvFeatureConfig(huart);
+  }
+
+  /* In asynchronous mode, the following bits must be kept cleared:
+  - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register,
+  - SCEN (if Smartcard is supported), HDSEL and IREN (if IrDA is supported)  bits in the USART_CR3 register. */
+#if defined (USART_CR2_LINEN)
+  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN);
+#else
+  huart->Instance->CR2 &= ~(USART_CR2_CLKEN);
+#endif
+#if defined (USART_CR3_SCEN)
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
+#else
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL);
+#endif
+#else
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN);
+#else
+  huart->Instance->CR3 &= ~(USART_CR3_HDSEL);
+#endif
+#endif
+
+  /* Enable the Peripheral */
+  __HAL_UART_ENABLE(huart);
+
+  /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+  return (UART_CheckIdleState(huart));
+}
+
+/**
+  * @brief Initialize the half-duplex mode according to the specified
+  *         parameters in the UART_InitTypeDef and creates the associated handle.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
+{
+  /* Check the UART handle allocation */
+  if(huart == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Check UART instance */
+  assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
+
+  if(huart->gState == HAL_UART_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    huart->Lock = HAL_UNLOCKED;
+
+    /* Init the low level hardware : GPIO, CLOCK */
+    HAL_UART_MspInit(huart);
+  }
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Disable the Peripheral */
+  __HAL_UART_DISABLE(huart);
+
+  /* Set the UART Communication parameters */
+  if (UART_SetConfig(huart) == HAL_ERROR)
+  {
+    return HAL_ERROR;
+  }
+
+  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+  {
+    UART_AdvFeatureConfig(huart);
+  }
+
+  /* In half-duplex mode, the following bits must be kept cleared:
+  - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register,
+  - SCEN (if Smartcard is supported), and IREN (if IrDA is supported)  bits in the USART_CR3 register. */
+#if defined (USART_CR2_LINEN)
+  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN);
+#else
+  huart->Instance->CR2 &= ~(USART_CR2_CLKEN);
+#endif
+#if defined (USART_CR3_SCEN)
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_IREN);
+#else
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN);
+#endif
+#else
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_IREN);
+#endif
+#endif
+
+  /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
+  huart->Instance->CR3 |= USART_CR3_HDSEL;
+
+  /* Enable the Peripheral */
+  __HAL_UART_ENABLE(huart);
+
+  /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+  return (UART_CheckIdleState(huart));
+}
+
+
+/**
+  * @brief Initialize the multiprocessor mode according to the specified
+  *         parameters in the UART_InitTypeDef and initialize the associated handle.
+  * @param huart: UART handle.
+  * @param Address: UART node address (4-, 6-, 7- or 8-bit long).
+  * @param WakeUpMethod: specifies the UART wakeup method.
+  *        This parameter can be one of the following values:
+  *          @arg UART_WAKEUPMETHOD_IDLELINE: WakeUp by an idle line detection
+  *          @arg UART_WAKEUPMETHOD_ADDRESSMARK: WakeUp by an address mark
+  * @note  If the user resorts to idle line detection wake up, the Address parameter
+  *        is useless and ignored by the initialization function.
+  * @note  If the user resorts to address mark wake up, the address length detection
+  *        is configured by default to 4 bits only. For the UART to be able to
+  *        manage 6-, 7- or 8-bit long addresses detection, the API
+  *        HAL_MultiProcessorEx_AddressLength_Set() must be called after
+  *        HAL_MultiProcessor_Init().
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
+{
+  /* Check the UART handle allocation */
+  if(huart == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Check the wake up method parameter */
+  assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
+
+  if(huart->gState == HAL_UART_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    huart->Lock = HAL_UNLOCKED;
+
+    /* Init the low level hardware : GPIO, CLOCK */
+    HAL_UART_MspInit(huart);
+  }
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Disable the Peripheral */
+  __HAL_UART_DISABLE(huart);
+
+  /* Set the UART Communication parameters */
+  if (UART_SetConfig(huart) == HAL_ERROR)
+  {
+    return HAL_ERROR;
+  }
+
+  if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+  {
+    UART_AdvFeatureConfig(huart);
+  }
+
+  /* In multiprocessor mode, the following bits must be kept cleared:
+  - LINEN (if LIN is supported) and CLKEN bits in the USART_CR2 register,
+  - SCEN (if Smartcard is supported), HDSEL and IREN (if IrDA is supported) bits in the USART_CR3 register. */
+#if defined (USART_CR2_LINEN)
+  huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN);
+#else
+  huart->Instance->CR2 &= ~(USART_CR2_CLKEN);
+#endif
+#if defined (USART_CR3_SCEN)
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
+#else
+  huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL);
+#endif
+#else
+#if defined (USART_CR3_IREN)
+  huart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN);
+#else
+  huart->Instance->CR3 &= ~(USART_CR3_HDSEL);
+#endif
+#endif
+
+  if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
+  {
+    /* If address mark wake up method is chosen, set the USART address node */
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
+  }
+
+  /* Set the wake up method by setting the WAKE bit in the CR1 register */
+  MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
+
+  /* Enable the Peripheral */
+  __HAL_UART_ENABLE(huart);
+
+  /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+  return (UART_CheckIdleState(huart));
+}
+
+/**
+  * @brief DeInitialize the UART peripheral.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
+{
+  /* Check the UART handle allocation */
+  if(huart == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Check the parameters */
+  assert_param(IS_UART_INSTANCE(huart->Instance));
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Disable the Peripheral */
+  __HAL_UART_DISABLE(huart);
+
+  huart->Instance->CR1 = 0x0;
+  huart->Instance->CR2 = 0x0;
+  huart->Instance->CR3 = 0x0;
+
+  /* DeInit the low level hardware */
+  HAL_UART_MspDeInit(huart);
+
+  huart->ErrorCode = HAL_UART_ERROR_NONE;
+  huart->gState = HAL_UART_STATE_RESET;
+  huart->RxState = HAL_UART_STATE_RESET;
+
+  /* Process Unlock */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief Initialize the UART MSP.
+  * @param huart: UART handle.
+  * @retval None
+  */
+ __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_UART_MspInit can be implemented in the user file
+   */
+}
+
+/**
+  * @brief DeInitialize the UART MSP.
+  * @param huart: UART handle.
+  * @retval None
+  */
+ __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_UART_MspDeInit can be implemented in the user file
+   */
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup UART_Exported_Functions_Group2 IO operation functions
+  *  @brief UART Transmit/Receive functions
+  *
+@verbatim
+ ===============================================================================
+                      ##### IO operation functions #####
+ ===============================================================================
+    This subsection provides a set of functions allowing to manage the UART asynchronous
+    and Half duplex data transfers.
+
+    (#) There are two mode of transfer:
+       (+) Blocking mode: The communication is performed in polling mode.
+            The HAL status of all data processing is returned by the same function
+            after finishing transfer.
+       (+) No-Blocking mode: The communication is performed using Interrupts
+           or DMA, These API's return the HAL status.
+           The end of the data processing will be indicated through the
+           dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
+           using DMA mode.
+           The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
+           will be executed respectively at the end of the transmit or Receive process
+           The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
+
+    (#) Blocking mode API's are :
+        (+) HAL_UART_Transmit()
+        (+) HAL_UART_Receive()
+
+    (#) Non-Blocking mode API's with Interrupt are :
+        (+) HAL_UART_Transmit_IT()
+        (+) HAL_UART_Receive_IT()
+        (+) HAL_UART_IRQHandler()
+
+    (#) No-Blocking mode API's with DMA are :
+        (+) HAL_UART_Transmit_DMA()
+        (+) HAL_UART_Receive_DMA()
+        (+) HAL_UART_DMAPause()
+        (+) HAL_UART_DMAResume()
+        (+) HAL_UART_DMAStop()
+
+    (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode:
+        (+) HAL_UART_TxHalfCpltCallback()
+        (+) HAL_UART_TxCpltCallback()
+        (+) HAL_UART_RxHalfCpltCallback()
+        (+) HAL_UART_RxCpltCallback()
+        (+) HAL_UART_ErrorCallback()
+
+
+    -@- In the Half duplex communication, it is forbidden to run the transmit
+        and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief Send an amount of data in blocking mode.
+  * @param huart: UART handle.
+  * @param pData: Pointer to data buffer.
+  * @param Size: Amount of data to be sent.
+  * @param Timeout: Timeout duration.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
+  *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+   uint16_t* tmp;
+
+  /* Check that a Tx process is not already ongoing */
+  if(huart->gState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return  HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data to be filled into TDR will be 
+       handled through a u16 cast. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->gState = HAL_UART_STATE_BUSY_TX;
+
+    huart->TxXferSize = Size;
+    huart->TxXferCount = Size;
+    while(huart->TxXferCount > 0)
+    {
+      huart->TxXferCount--;
+      if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+      {
+        tmp = (uint16_t*) pData;
+        huart->Instance->TDR = (*tmp & (uint16_t)0x01FF);
+        pData += 2;
+      }
+      else
+      {
+        huart->Instance->TDR = (*pData++ & (uint8_t)0xFF);
+      }
+    }
+    if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, Timeout) != HAL_OK)
+    {
+      return HAL_TIMEOUT;
+    }
+
+    /* At end of Tx process, restore huart->gState to Ready */
+    huart->gState = HAL_UART_STATE_READY;
+
+    /* Process Unlocked */
+    __HAL_UNLOCK(huart);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Receive an amount of data in blocking mode.
+  * @param huart: UART handle.
+  * @param pData: pointer to data buffer.
+  * @param Size: amount of data to be received.
+  * @param Timeout: Timeout duration.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
+  *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+  uint16_t* tmp;
+  uint16_t uhMask;
+
+  /* Check that a Rx process is not already ongoing */
+  if(huart->RxState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return  HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data to be received from RDR will be 
+       handled through a u16 cast. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->RxState = HAL_UART_STATE_BUSY_RX;
+
+    huart->RxXferSize = Size;
+    huart->RxXferCount = Size;
+
+    /* Computation of UART mask to apply to RDR register */
+    UART_MASK_COMPUTATION(huart);
+    uhMask = huart->Mask;
+
+    /* as long as data have to be received */
+    while(huart->RxXferCount > 0)
+    {
+      huart->RxXferCount--;
+      if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+      {
+        tmp = (uint16_t*) pData ;
+        *tmp = (uint16_t)(huart->Instance->RDR & uhMask);
+        pData +=2;
+      }
+      else
+      {
+        *pData++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
+      }
+    }
+
+    /* At end of Rx process, restore huart->RxState to Ready */
+    huart->RxState = HAL_UART_STATE_READY;
+
+    /* Process Unlocked */
+    __HAL_UNLOCK(huart);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Send an amount of data in interrupt mode.
+  * @param huart: UART handle.
+  * @param pData: pointer to data buffer.
+  * @param Size: amount of data to be sent.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
+  *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+  /* Check that a Tx process is not already ongoing */
+  if(huart->gState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data to be filled into TDR will be 
+       handled through a u16 cast. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->pTxBuffPtr = pData;
+    huart->TxXferSize = Size;
+    huart->TxXferCount = Size;
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->gState = HAL_UART_STATE_BUSY_TX;
+
+    /* Process Unlocked */
+    __HAL_UNLOCK(huart);
+
+    /* Enable the UART Transmit Data Register Empty Interrupt */
+    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Receive an amount of data in interrupt mode.
+  * @param huart: UART handle.
+  * @param pData: pointer to data buffer.
+  * @param Size: amount of data to be received.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
+  *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+  /* Check that a Rx process is not already ongoing */
+  if(huart->RxState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data to be received from RDR will be 
+       handled through a u16 cast. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->pRxBuffPtr = pData;
+    huart->RxXferSize = Size;
+    huart->RxXferCount = Size;
+
+    /* Computation of UART mask to apply to RDR register */
+    UART_MASK_COMPUTATION(huart);
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->RxState = HAL_UART_STATE_BUSY_RX;
+
+    /* Enable the UART Parity Error Interrupt */
+    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
+
+    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
+
+    /* Process Unlocked */
+    __HAL_UNLOCK(huart);
+
+    /* Enable the UART Data Register not empty Interrupt */
+    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Handle UART interrupt request.
+  * @param huart: UART handle.
+  * @retval None
+  */
+void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
+{
+  /* UART parity error interrupt occurred -------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE) != RESET))
+  {
+    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_PEF);
+
+    huart->ErrorCode |= HAL_UART_ERROR_PE;
+  }
+
+  /* UART frame error interrupt occurred --------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
+  {
+    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_FEF);
+
+    huart->ErrorCode |= HAL_UART_ERROR_FE;
+  }
+
+  /* UART noise error interrupt occurred --------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_NE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
+  {
+    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_NEF);
+
+    huart->ErrorCode |= HAL_UART_ERROR_NE;
+  }
+
+  /* UART Over-Run interrupt occurred -----------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET))
+  {
+    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF);
+
+    huart->ErrorCode |= HAL_UART_ERROR_ORE;
+  }
+
+#if !defined(STM32F030x6) && !defined(STM32F030x8)&& !defined(STM32F070xB)&& !defined(STM32F070x6)&& !defined(STM32F030xC)
+  /* UART wakeup from Stop mode interrupt occurred -------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_WUF) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_WUF) != RESET))
+  {
+    __HAL_UART_CLEAR_IT(huart, UART_CLEAR_WUF);
+    /* Set the UART state ready to be able to start again the process */
+    huart->gState = HAL_UART_STATE_READY;
+    huart->RxState = HAL_UART_STATE_READY;
+    HAL_UARTEx_WakeupCallback(huart);
+  }
+#endif /* !defined(STM32F030x6) && !defined(STM32F030x8)&& !defined(STM32F070xB)&& !defined(STM32F070x6)&& !defined(STM32F030xC) */
+
+  /* UART in mode Receiver ---------------------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET))
+  {
+    UART_Receive_IT(huart);
+  }
+
+
+  /* UART in mode Transmitter ------------------------------------------------*/
+  if((__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE) != RESET))
+  {
+    UART_Transmit_IT(huart);
+  }
+
+  /* UART in mode Transmitter (transmission end) -----------------------------*/
+ if((__HAL_UART_GET_IT(huart, UART_IT_TC) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET))
+  {
+    UART_EndTransmit_IT(huart);
+  }
+
+  if(huart->ErrorCode != HAL_UART_ERROR_NONE)
+  {
+    /* Set the UART state ready to be able to start again the Tx/Rx process */
+    huart->gState = HAL_UART_STATE_READY;
+    huart->RxState = HAL_UART_STATE_READY;
+
+    HAL_UART_ErrorCallback(huart);
+  }  
+}
+
+/**
+  * @brief Send an amount of data in DMA mode.
+  * @param huart: UART handle.
+  * @param pData: pointer to data buffer.
+  * @param Size: amount of data to be sent.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
+  *         (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+  uint32_t *tmp;
+
+  /* Check that a Tx process is not already ongoing */
+  if(huart->gState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data copy into TDR will be 
+       handled by DMA from a u16 frontier. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->pTxBuffPtr = pData;
+    huart->TxXferSize = Size;
+    huart->TxXferCount = Size;
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->gState = HAL_UART_STATE_BUSY_TX;
+
+    /* Set the UART DMA transfer complete callback */
+    huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
+
+    /* Set the UART DMA Half transfer complete callback */
+    huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
+
+    /* Set the DMA error callback */
+    huart->hdmatx->XferErrorCallback = UART_DMAError;
+
+    /* Enable the UART transmit DMA channel */
+    tmp = (uint32_t*)&pData;
+    HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->TDR, Size);
+
+    /* Clear the TC flag in the ICR register */
+    __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
+
+    /* Enable the DMA transfer for transmit request by setting the DMAT bit
+       in the UART CR3 register */
+    huart->Instance->CR3 |= USART_CR3_DMAT;
+
+    /* Process Unlocked */
+    __HAL_UNLOCK(huart);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Receive an amount of data in DMA mode.
+  * @param huart: UART handle.
+  * @param pData: pointer to data buffer.
+  * @param Size: amount of data to be received.
+  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+  *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
+  *         (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
+  *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+  uint32_t *tmp;
+
+  /* Check that a Rx process is not already ongoing */
+  if(huart->RxState == HAL_UART_STATE_READY)
+  {
+    if((pData == NULL ) || (Size == 0))
+    {
+      return HAL_ERROR;
+    }
+
+    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
+       should be aligned on a u16 frontier, as data copy from RDR will be 
+       handled by DMA from a u16 frontier. */
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      if((((uint32_t)pData)&1) != 0)
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(huart);
+
+    huart->pRxBuffPtr = pData;
+    huart->RxXferSize = Size;
+
+    huart->ErrorCode = HAL_UART_ERROR_NONE;
+    huart->RxState = HAL_UART_STATE_BUSY_RX;
+
+    /* Set the UART DMA transfer complete callback */
+    huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
+
+    /* Set the UART DMA Half transfer complete callback */
+    huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
+
+    /* Set the DMA error callback */
+    huart->hdmarx->XferErrorCallback = UART_DMAError;
+
+    /* Enable the DMA channel */
+    tmp = (uint32_t*)&pData;
+    HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, *(uint32_t*)tmp, Size);
+
+    /* Enable the DMA transfer for the receiver request by setting the DMAR bit
+       in the UART CR3 register */
+     huart->Instance->CR3 |= USART_CR3_DMAR;
+
+     /* Process Unlocked */
+     __HAL_UNLOCK(huart);
+
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief Pause the DMA Transfer.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+
+  if(huart->gState == HAL_UART_STATE_BUSY_TX)
+  {
+    /* Disable the UART DMA Tx request */
+    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT);
+  }
+  if(huart->RxState == HAL_UART_STATE_BUSY_RX)
+  {
+    /* Disable the UART DMA Rx request */
+    huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR);
+  }
+
+  /* Process Unlocked */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief Resume the DMA Transfer.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+
+  if(huart->gState == HAL_UART_STATE_BUSY_TX)
+  {
+    /* Enable the UART DMA Tx request */
+    huart->Instance->CR3 |= USART_CR3_DMAT;
+  }
+  if(huart->RxState == HAL_UART_STATE_BUSY_RX)
+  {
+    /* Clear the Overrun flag before resumming the Rx transfer*/
+    __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
+
+    /* Enable the UART DMA Rx request */
+    huart->Instance->CR3 |= USART_CR3_DMAR;
+  }
+
+  /* Process Unlocked */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief Stop the DMA Transfer.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
+{
+  /* The Lock is not implemented on this API to allow the user application
+     to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
+     HAL_UART_TxHalfCpltCallback() / HAL_UART_RxHalfCpltCallback (): 
+     indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete interrupt is 
+     generated if the DMA transfer interruption occurs at the middle or at the end of the stream
+     and the corresponding call back is executed. 
+     */
+  
+  /* Disable the UART Tx/Rx DMA requests */
+  huart->Instance->CR3 &= ~USART_CR3_DMAT;
+  huart->Instance->CR3 &= ~USART_CR3_DMAR;
+
+  /* Abort the UART DMA tx channel */
+  if(huart->hdmatx != NULL)
+  {
+    HAL_DMA_Abort(huart->hdmatx);
+  }
+  /* Abort the UART DMA rx channel */
+  if(huart->hdmarx != NULL)
+  {
+    HAL_DMA_Abort(huart->hdmarx);
+  }
+
+  huart->gState = HAL_UART_STATE_READY;
+  huart->RxState = HAL_UART_STATE_READY;
+
+  return HAL_OK;
+}
+
+/**
+  * @brief Tx Transfer completed callback.
+  * @param huart: UART handle.
+  * @retval None
+  */
+ __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_UART_TxCpltCallback can be implemented in the user file.
+   */
+}
+
+/**
+  * @brief  Tx Half Transfer completed callback.
+  * @param  huart: UART handle.
+  * @retval None
+  */
+ __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE: This function should not be modified, when the callback is needed,
+           the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
+   */
+}
+
+/**
+  * @brief Rx Transfer completed callback.
+  * @param huart: UART handle.
+  * @retval None
+  */
+__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_UART_RxCpltCallback can be implemented in the user file.
+   */
+}
+
+/**
+  * @brief  Rx Half Transfer completed callback.
+  * @param  huart: UART handle.
+  * @retval None
+  */
+__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE: This function should not be modified, when the callback is needed,
+           the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
+   */
+}
+
+/**
+  * @brief UART error callback.
+  * @param huart: UART handle.
+  * @retval None
+  */
+ __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(huart);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_UART_ErrorCallback can be implemented in the user file.
+   */
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
+  *  @brief   UART control functions
+  *
+@verbatim
+ ===============================================================================
+                      ##### Peripheral Control functions #####
+ ===============================================================================
+    [..]
+    This subsection provides a set of functions allowing to control the UART.
+     (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
+     (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
+     (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
+     (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
+     (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief Enable UART in mute mode (does not mean UART enters mute mode;
+  * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Enable USART mute mode by setting the MME bit in the CR1 register */
+  huart->Instance->CR1 |= USART_CR1_MME;
+
+  huart->gState = HAL_UART_STATE_READY;
+
+  return (UART_CheckIdleState(huart));
+}
+
+/**
+  * @brief Disable UART mute mode (does not mean the UART actually exits mute mode
+  * as it may not have been in mute mode at this very moment).
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+
+  huart->gState = HAL_UART_STATE_BUSY;
+
+   /* Disable USART mute mode by clearing the MME bit in the CR1 register */
+  huart->Instance->CR1 &= ~(USART_CR1_MME);
+
+  huart->gState = HAL_UART_STATE_READY;
+
+  return (UART_CheckIdleState(huart));
+}
+
+/**
+  * @brief Enter UART mute mode (means UART actually enters mute mode).
+  * @note  To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
+  * @param huart: UART handle.
+  * @retval None
+  */
+void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
+{
+  __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
+}
+
+/**
+  * @brief  Enable the UART transmitter and disable the UART receiver.
+  * @param  huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Clear TE and RE bits */
+  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
+  /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
+  SET_BIT(huart->Instance->CR1, USART_CR1_TE);
+
+  huart->gState = HAL_UART_STATE_READY;
+
+  /* Process Unlocked */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Enable the UART receiver and disable the UART transmitter.
+  * @param  huart: UART handle.
+  * @retval HAL status.
+  */
+HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
+{
+  /* Process Locked */
+  __HAL_LOCK(huart);
+  huart->gState = HAL_UART_STATE_BUSY;
+
+  /* Clear TE and RE bits */
+  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
+  /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
+  SET_BIT(huart->Instance->CR1, USART_CR1_RE);
+
+  huart->gState = HAL_UART_STATE_READY;
+  /* Process Unlocked */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
+ *  @brief   UART Peripheral State functions
+ *
+@verbatim
+  ==============================================================================
+            ##### Peripheral State and Error functions #####
+  ==============================================================================
+    [..]
+    This subsection provides functions allowing to :
+      (+) Return the UART handle state.
+      (+) Return the UART handle error code
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Return the UART handle state.
+  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
+  *               the configuration information for the specified UART.
+  * @retval HAL state
+  */
+HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
+{
+  uint32_t temp1= 0x00, temp2 = 0x00;
+  temp1 = huart->gState;
+  temp2 = huart->RxState;
+  
+  return (HAL_UART_StateTypeDef)(temp1 | temp2);
+}
+
+/**
+  * @brief  Return the UART handle error code.
+  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
+  *               the configuration information for the specified UART.
+  * @retval UART Error Code
+  */
+uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
+{
+  return huart->ErrorCode;
+}
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/** @defgroup UART_Private_Functions UART Private Functions
+  * @{
+  */
+
+/**
+  * @brief Configure the UART peripheral.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
+{
+  uint32_t tmpreg                     = 0x00000000;
+  UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
+  uint16_t brrtemp                    = 0x0000;
+  uint16_t usartdiv                   = 0x0000;
+  HAL_StatusTypeDef ret               = HAL_OK;
+
+  /* Check the parameters */
+  assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
+  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
+  assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
+  assert_param(IS_UART_PARITY(huart->Init.Parity));
+  assert_param(IS_UART_MODE(huart->Init.Mode));
+  assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
+  assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
+  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
+
+
+  /*-------------------------- USART CR1 Configuration -----------------------*/
+  /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
+   *  the UART Word Length, Parity, Mode and oversampling:
+   *  set the M bits according to huart->Init.WordLength value
+   *  set PCE and PS bits according to huart->Init.Parity value
+   *  set TE and RE bits according to huart->Init.Mode value
+   *  set OVER8 bit according to huart->Init.OverSampling value */
+  tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
+  MODIFY_REG(huart->Instance->CR1, UART_CR1_FIELDS, tmpreg);
+
+  /*-------------------------- USART CR2 Configuration -----------------------*/
+  /* Configure the UART Stop Bits: Set STOP[13:12] bits according
+   * to huart->Init.StopBits value */
+  MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
+
+  /*-------------------------- USART CR3 Configuration -----------------------*/
+  /* Configure
+   * - UART HardWare Flow Control: set CTSE and RTSE bits according
+   *   to huart->Init.HwFlowCtl value
+   * - one-bit sampling method versus three samples' majority rule according
+   *   to huart->Init.OneBitSampling */
+  tmpreg = (uint32_t)huart->Init.HwFlowCtl | huart->Init.OneBitSampling ;
+  MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT), tmpreg);
+
+  /*-------------------------- USART BRR Configuration -----------------------*/
+  UART_GETCLOCKSOURCE(huart, clocksource);
+  
+  /* Check UART Over Sampling to set Baud Rate Register */
+  if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
+  {
+    switch (clocksource)
+    {
+      case UART_CLOCKSOURCE_PCLK1:
+        usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_HSI:
+        usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_SYSCLK:
+        usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_LSE:
+        usartdiv = (uint16_t)(UART_DIV_SAMPLING8(LSE_VALUE, huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_UNDEFINED:
+      default:
+        ret = HAL_ERROR;
+        break;
+    }
+
+    brrtemp = usartdiv & 0xFFF0;
+    brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000F) >> 1U);
+    huart->Instance->BRR = brrtemp;
+  }
+  else
+  {
+    switch (clocksource)
+    {
+      case UART_CLOCKSOURCE_PCLK1:
+        huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_HSI:
+        huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate)); 
+        break;
+      case UART_CLOCKSOURCE_SYSCLK:
+        huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate));
+        break;
+      case UART_CLOCKSOURCE_LSE:
+        huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(LSE_VALUE, huart->Init.BaudRate)); 
+        break;
+      case UART_CLOCKSOURCE_UNDEFINED:
+      default:
+        ret = HAL_ERROR;
+        break;
+    }
+  }
+
+  return ret;
+
+}
+
+/**
+  * @brief Configure the UART peripheral advanced features.
+  * @param huart: UART handle.
+  * @retval None
+  */
+void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
+{
+  /* Check whether the set of advanced features to configure is properly set */
+  assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
+
+  /* if required, configure TX pin active level inversion */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
+  }
+
+  /* if required, configure RX pin active level inversion */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
+  }
+
+  /* if required, configure data inversion */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
+  }
+
+  /* if required, configure RX/TX pins swap */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
+  }
+
+  /* if required, configure RX overrun detection disabling */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
+  {
+    assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
+    MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
+  }
+
+  /* if required, configure DMA disabling on reception error */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
+    MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
+  }
+
+  /* if required, configure auto Baud rate detection scheme */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
+  {
+    assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
+    assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
+    /* set auto Baudrate detection parameters if detection is enabled */
+    if(huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
+    {
+      assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
+      MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
+    }
+  }
+
+  /* if required, configure MSB first on communication line */
+  if(HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
+  {
+    assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
+    MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
+  }
+}
+
+/**
+  * @brief Check the UART Idle State.
+  * @param huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
+{
+  /* Initialize the UART ErrorCode */
+  huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+  /* TEACK and REACK bits in ISR are checked only when available (not available on all F0 devices).
+     Bits are defined for some specific devices, and are available only for UART instances supporting WakeUp from Stop Mode feature. 
+  */
+#if !defined(STM32F030x6) && !defined(STM32F030x8)&& !defined(STM32F070xB)&& !defined(STM32F070x6)&& !defined(STM32F030xC)
+  if (IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance))
+  {
+    /* Check if the Transmitter is enabled */
+    if((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
+    {
+      /* Wait until TEACK flag is set */
+      if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, UART_TEACK_REACK_TIMEOUT) != HAL_OK)
+      {
+        /* Timeout occurred */
+        return HAL_TIMEOUT;
+      }
+    }
+
+    /* Check if the Receiver is enabled */
+    if((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
+    {
+      /* Wait until REACK flag is set */
+      if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET,  UART_TEACK_REACK_TIMEOUT) != HAL_OK)
+      {
+        /* Timeout occurred */
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+#endif /* !defined(STM32F030x6) && !defined(STM32F030x8)&& !defined(STM32F070xB)&& !defined(STM32F070x6)&& !defined(STM32F030xC) */
+
+  /* Initialize the UART State */
+  huart->gState= HAL_UART_STATE_READY;
+  huart->RxState= HAL_UART_STATE_READY;
+
+  /* Process Unlocked */
+  __HAL_UNLOCK(huart);
+
+  return HAL_OK;
+}
+
+
+/**
+  * @brief  Handle UART Communication Timeout.
+  * @param  huart: UART handle.
+  * @param  Flag: specifies the UART flag to check.
+  * @param  Status: the Flag status (SET or RESET).
+  * @param  Timeout: Timeout duration.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout)
+{
+  uint32_t tickstart = HAL_GetTick();
+
+  /* Wait until flag is set */
+  if(Status == RESET)
+  {
+    while(__HAL_UART_GET_FLAG(huart, Flag) == RESET)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
+        {
+          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
+          __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
+
+          huart->gState = HAL_UART_STATE_READY;
+          huart->RxState = HAL_UART_STATE_READY;
+
+          /* Process Unlocked */
+          __HAL_UNLOCK(huart);
+
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+  }
+  else
+  {
+    while(__HAL_UART_GET_FLAG(huart, Flag) != RESET)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
+        {
+          /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
+          __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
+          __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
+
+          huart->gState = HAL_UART_STATE_READY;
+          huart->RxState = HAL_UART_STATE_READY;
+
+          /* Process Unlocked */
+          __HAL_UNLOCK(huart);
+
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+  }
+  return HAL_OK;
+}
+
+/**
+  * @brief DMA UART transmit process complete callback.
+  * @param hdma: DMA handle.
+  * @retval None
+  */
+static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
+{
+  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* DMA Normal mode */
+  if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
+  {  
+    huart->TxXferCount = 0;
+  
+    /* Disable the DMA transfer for transmit request by resetting the DMAT bit
+    in the UART CR3 register */
+    huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT);
+
+    /* Enable the UART Transmit Complete Interrupt */
+    __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
+  }
+  /* DMA Circular mode */
+  else
+  {
+    HAL_UART_TxCpltCallback(huart);
+  }
+
+}
+
+/**
+  * @brief DMA UART transmit process half complete callback.
+  * @param hdma : DMA handle.
+  * @retval None
+  */
+static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+  HAL_UART_TxHalfCpltCallback(huart);
+}
+
+/**
+  * @brief DMA UART receive process complete callback.
+  * @param hdma: DMA handle.
+  * @retval None
+  */
+static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* DMA Normal mode */
+  if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) )
+  {
+    huart->RxXferCount = 0;
+
+    /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
+       in the UART CR3 register */
+    huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR);
+
+    /* At end of Rx process, restore huart->RxState to Ready */
+    huart->RxState = HAL_UART_STATE_READY;
+  }
+  
+  HAL_UART_RxCpltCallback(huart);
+}
+
+/**
+  * @brief DMA UART receive process half complete callback.
+  * @param hdma : DMA handle.
+  * @retval None
+  */
+static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+  HAL_UART_RxHalfCpltCallback(huart);
+}
+
+/**
+  * @brief DMA UART communication error callback.
+  * @param hdma: DMA handle.
+  * @retval None
+  */
+static void UART_DMAError(DMA_HandleTypeDef *hdma)
+{
+  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  huart->RxXferCount = 0;
+  huart->TxXferCount = 0;
+  huart->gState= HAL_UART_STATE_READY;
+  huart->RxState= HAL_UART_STATE_READY;
+  huart->ErrorCode |= HAL_UART_ERROR_DMA;
+  HAL_UART_ErrorCallback(huart);
+}
+
+/**
+  * @brief Send an amount of data in interrupt mode.
+  * @note   Function is called under interruption only, once
+  *         interruptions have been enabled by HAL_UART_Transmit_IT().
+  * @param  huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
+{
+  uint16_t* tmp;
+
+  /* Check that a Tx process is ongoing */
+  if (huart->gState == HAL_UART_STATE_BUSY_TX)
+  {
+    if(huart->TxXferCount == 0)
+    {
+      /* Disable the UART Transmit Data Register Empty Interrupt */
+      __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
+
+      /* Enable the UART Transmit Complete Interrupt */
+      __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
+
+      return HAL_OK;
+    }
+    else
+    {
+      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+      {
+        tmp = (uint16_t*) huart->pTxBuffPtr;
+        huart->Instance->TDR = (*tmp & (uint16_t)0x01FF);
+        huart->pTxBuffPtr += 2;
+      }
+      else
+      {
+        huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0xFF);
+      }
+
+      huart->TxXferCount--;
+
+      return HAL_OK;
+    }
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+/**
+  * @brief  Wrap up transmission in non-blocking mode.
+  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
+  *                the configuration information for the specified UART module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
+{
+  /* Disable the UART Transmit Complete Interrupt */
+  __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
+
+  /* Tx process is ended, restore huart->gState to Ready */
+  huart->gState = HAL_UART_STATE_READY;
+
+  HAL_UART_TxCpltCallback(huart);
+
+  return HAL_OK;
+}
+
+
+/**
+  * @brief Receive an amount of data in interrupt mode.
+  * @note   Function is called under interruption only, once
+  *         interruptions have been enabled by HAL_UART_Receive_IT()
+  * @param  huart: UART handle.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
+{
+  uint16_t* tmp;
+  uint16_t uhMask = huart->Mask;
+
+  /* Check that a Rx process is ongoing */
+  if(huart->RxState == HAL_UART_STATE_BUSY_RX)
+  {
+    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+    {
+      tmp = (uint16_t*) huart->pRxBuffPtr ;
+      *tmp = (uint16_t)(huart->Instance->RDR & uhMask);
+      huart->pRxBuffPtr +=2;
+    }
+    else
+    {
+      *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
+    }
+
+    if(--huart->RxXferCount == 0)
+    {
+      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
+
+      /* Disable the UART Parity Error Interrupt */
+      __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
+
+      /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+      __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
+
+      /* Rx process is completed, restore huart->RxState to Ready */
+      huart->RxState = HAL_UART_STATE_READY;
+
+      HAL_UART_RxCpltCallback(huart);
+
+      return HAL_OK;
+    }
+
+    return HAL_OK;
+  }
+  else
+  {
+    /* Clear RXNE interrupt flag */
+    __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @}
+  */
+
+#endif /* HAL_UART_MODULE_ENABLED */
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/