mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Revision:
149:156823d33999
Parent:
144:ef7eb2e8f9f7
Child:
151:5eaa88a5bcc7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_NORDIC/TARGET_MCU_NRF51822/pwmout_api.c	Fri Oct 28 11:17:30 2016 +0100
@@ -0,0 +1,380 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2013 Nordic Semiconductor
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "mbed_assert.h"
+#include "pwmout_api.h"
+#include "cmsis.h"
+#include "pinmap.h"
+#include "mbed_error.h"
+
+#define NO_PWMS         3
+#define TIMER_PRECISION 4 //4us ticks
+#define TIMER_PRESCALER 6 //4us ticks  =   16Mhz/(2**6)
+static const PinMap PinMap_PWM[] = {
+    {p0,  PWM_1, 1},
+    {p1,  PWM_1, 1},
+    {p2,  PWM_1, 1},
+    {p3,  PWM_1, 1},
+    {p4,  PWM_1, 1},
+    {p5,  PWM_1, 1},
+    {p6,  PWM_1, 1},
+    {p7,  PWM_1, 1},
+    {p8,  PWM_1, 1},
+    {p9,  PWM_1, 1},
+    {p10,  PWM_1, 1},
+    {p11,  PWM_1, 1},
+    {p12,  PWM_1, 1},
+    {p13,  PWM_1, 1},
+    {p14,  PWM_1, 1},
+    {p15,  PWM_1, 1},
+    {p16,  PWM_1, 1},
+    {p17,  PWM_1, 1},
+    {p18,  PWM_1, 1},
+    {p19,  PWM_1, 1},
+    {p20,  PWM_1, 1},
+    {p21,  PWM_1, 1},
+    {p22,  PWM_1, 1},
+    {p23,  PWM_1, 1},
+    {p24,  PWM_1, 1},
+    {p25,  PWM_1, 1},
+    {p28,  PWM_1, 1},
+    {p29,  PWM_1, 1},
+    {p30,  PWM_1, 1},
+    {NC, NC, 0}
+};
+
+static NRF_TIMER_Type *Timers[1] = {
+    NRF_TIMER2
+};
+
+uint16_t PERIOD            = 20000 / TIMER_PRECISION;  //20ms
+uint8_t PWM_taken[NO_PWMS] = {0, 0, 0};
+uint16_t PULSE_WIDTH[NO_PWMS] = {1, 1, 1}; //set to 1 instead of 0
+uint16_t ACTUAL_PULSE[NO_PWMS] = {0, 0, 0};
+
+
+/** @brief Function for handling timer 2 peripheral interrupts.
+ */
+#ifdef __cplusplus
+extern "C" {
+#endif
+void TIMER2_IRQHandler(void)
+{
+    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
+    NRF_TIMER2->CC[3]             =  PERIOD;
+
+    if (PWM_taken[0]) {
+        NRF_TIMER2->CC[0] = PULSE_WIDTH[0];
+    }
+    if (PWM_taken[1]) {
+        NRF_TIMER2->CC[1] = PULSE_WIDTH[1];
+    }
+    if (PWM_taken[2]) {
+        NRF_TIMER2->CC[2] = PULSE_WIDTH[2];
+    }
+
+    NRF_TIMER2->TASKS_START = 1;
+}
+
+#ifdef __cplusplus
+}
+#endif
+/** @brief Function for initializing the Timer peripherals.
+ */
+void timer_init(uint8_t pwmChoice)
+{
+    NRF_TIMER_Type *timer = Timers[0];
+    timer->TASKS_STOP = 0;
+
+    if (pwmChoice == 0) {
+        timer->POWER     = 0;
+        timer->POWER     = 1;
+        timer->MODE      = TIMER_MODE_MODE_Timer;
+        timer->BITMODE   = TIMER_BITMODE_BITMODE_16Bit << TIMER_BITMODE_BITMODE_Pos;
+        timer->PRESCALER = TIMER_PRESCALER;
+        timer->CC[3]     = PERIOD;
+    }
+
+    timer->CC[pwmChoice] = PULSE_WIDTH[pwmChoice];
+
+    //high priority application interrupt
+    NVIC_SetPriority(TIMER2_IRQn, 1);
+    NVIC_EnableIRQ(TIMER2_IRQn);
+
+    timer->TASKS_START = 0x01;
+}
+
+static void timer_free()
+{
+    NRF_TIMER_Type *timer = Timers[0];
+    for(uint8_t i = 1; i < NO_PWMS; i++){
+        if(PWM_taken[i]){
+            break;
+        }
+        if((i == NO_PWMS - 1) && (!PWM_taken[i]))
+            timer->TASKS_STOP = 0x01;
+    }
+}
+
+
+/** @brief Function for initializing the GPIO Tasks/Events peripheral.
+ */
+void gpiote_init(PinName pin, uint8_t channel_number)
+{
+    // Connect GPIO input buffers and configure PWM_OUTPUT_PIN_NUMBER as an output.
+    NRF_GPIO->PIN_CNF[pin] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
+                            | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
+                            | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
+                            | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
+                            | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
+    NRF_GPIO->OUTCLR = (1UL << pin);
+    // Configure GPIOTE channel 0 to toggle the PWM pin state
+    // @note Only one GPIOTE task can be connected to an output pin.
+    /* Configure channel to Pin31, not connected to the pin, and configure as a tasks that will set it to proper level */
+    NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
+                                         (31UL << GPIOTE_CONFIG_PSEL_Pos) |
+                                         (GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
+    /* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
+    __NOP();
+    __NOP();
+    __NOP();
+    /* Launch the task to take the GPIOTE channel output to the desired level */
+    NRF_GPIOTE->TASKS_OUT[channel_number] = 1;
+
+    /* Finally configure the channel as the caller expects. If OUTINIT works, the channel is configured properly.
+       If it does not, the channel output inheritance sets the proper level. */
+    NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
+                                         ((uint32_t)pin << GPIOTE_CONFIG_PSEL_Pos) |
+                                         ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos) |
+                                         ((uint32_t)GPIOTE_CONFIG_OUTINIT_Low << GPIOTE_CONFIG_OUTINIT_Pos); // ((uint32_t)GPIOTE_CONFIG_OUTINIT_High <<
+                                                                                                             // GPIOTE_CONFIG_OUTINIT_Pos);//
+
+    /* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
+    __NOP();
+    __NOP();
+    __NOP();
+}
+
+static void gpiote_free(PinName pin,uint8_t channel_number)
+{
+    NRF_GPIOTE->TASKS_OUT[channel_number] = 0;
+    NRF_GPIOTE->CONFIG[channel_number] = 0;
+    NRF_GPIO->PIN_CNF[pin] = (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos);
+
+}
+
+/** @brief Function for initializing the Programmable Peripheral Interconnect peripheral.
+ */
+static void ppi_init(uint8_t pwm)
+{
+    //using ppi channels 0-7 (only 0-7 are available)
+    uint8_t channel_number = 2 * pwm;
+    NRF_TIMER_Type *timer  = Timers[0];
+
+    // Configure PPI channel 0 to toggle ADVERTISING_LED_PIN_NO on every TIMER1 COMPARE[0] match
+    NRF_PPI->CH[channel_number].TEP     = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
+    NRF_PPI->CH[channel_number + 1].TEP = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
+    NRF_PPI->CH[channel_number].EEP     = (uint32_t)&timer->EVENTS_COMPARE[pwm];
+    NRF_PPI->CH[channel_number + 1].EEP = (uint32_t)&timer->EVENTS_COMPARE[3];
+
+    // Enable PPI channels.
+    NRF_PPI->CHEN |= (1 << channel_number) |
+                     (1 << (channel_number + 1));
+}
+
+static void ppi_free(uint8_t pwm)
+{
+    //using ppi channels 0-7 (only 0-7 are available)
+    uint8_t channel_number = 2*pwm;
+
+    // Disable PPI channels.
+    NRF_PPI->CHEN &= (~(1 << channel_number))
+                  &  (~(1 << (channel_number+1)));
+}
+
+void setModulation(pwmout_t *obj, uint8_t toggle, uint8_t high)
+{
+    if (high) {
+        NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);
+        if (toggle) {
+            NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
+                                            ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
+        } else {
+            NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
+            NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_LoToHi << GPIOTE_CONFIG_POLARITY_Pos);
+        }
+    } else {
+        NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);
+
+        if (toggle) {
+            NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
+                                            ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
+        } else {
+            NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
+            NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
+        }
+    }
+}
+
+void pwmout_init(pwmout_t *obj, PinName pin)
+{
+    // determine the channel
+    uint8_t pwmOutSuccess = 0;
+    PWMName pwm           = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
+
+    MBED_ASSERT(pwm != (PWMName)NC);
+
+    if (PWM_taken[(uint8_t)pwm]) {
+        for (uint8_t i = 1; !pwmOutSuccess && (i<NO_PWMS); i++) {
+            if (!PWM_taken[i]) {
+                pwm           = (PWMName)i;
+                PWM_taken[i]  = 1;
+                pwmOutSuccess = 1;
+            }
+        }
+    } else {
+        pwmOutSuccess           = 1;
+        PWM_taken[(uint8_t)pwm] = 1;
+    }
+
+    if (!pwmOutSuccess) {
+        error("PwmOut pin mapping failed. All available PWM channels are in use.");
+    }
+
+    obj->pwm = pwm;
+    obj->pin = pin;
+
+    gpiote_init(pin, (uint8_t)pwm);
+    ppi_init((uint8_t)pwm);
+
+    if (pwm == 0) {
+        NRF_POWER->TASKS_CONSTLAT = 1;
+    }
+
+    timer_init((uint8_t)pwm);
+
+    //default to 20ms: standard for servos, and fine for e.g. brightness control
+    pwmout_period_ms(obj, 20);
+    pwmout_write    (obj, 0);
+}
+
+void pwmout_free(pwmout_t* obj) {
+    MBED_ASSERT(obj->pwm != (PWMName)NC);
+    pwmout_write(obj, 0);
+    PWM_taken[obj->pwm] = 0;
+    timer_free();
+    ppi_free(obj->pwm);
+    gpiote_free(obj->pin,obj->pwm);
+}
+
+void pwmout_write(pwmout_t *obj, float value)
+{
+    uint16_t oldPulseWidth;
+
+    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
+    NRF_TIMER2->TASKS_STOP        = 1;
+
+    if (value < 0.0f) {
+        value = 0.0;
+    } else if (value > 1.0f) {
+        value = 1.0;
+    }
+
+    oldPulseWidth          = ACTUAL_PULSE[obj->pwm];
+    ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm]  = value * PERIOD;
+
+    if (PULSE_WIDTH[obj->pwm] == 0) {
+        PULSE_WIDTH[obj->pwm] = 1;
+        setModulation(obj, 0, 0);
+    } else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
+        PULSE_WIDTH[obj->pwm] = PERIOD - 1;
+        setModulation(obj, 0, 1);
+    } else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
+        setModulation(obj, 1, oldPulseWidth == PERIOD);
+    }
+
+    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
+    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
+    NRF_TIMER2->TASKS_START = 1;
+}
+
+float pwmout_read(pwmout_t *obj)
+{
+    return ((float)PULSE_WIDTH[obj->pwm] / (float)PERIOD);
+}
+
+void pwmout_period(pwmout_t *obj, float seconds)
+{
+    pwmout_period_us(obj, seconds * 1000000.0f);
+}
+
+void pwmout_period_ms(pwmout_t *obj, int ms)
+{
+    pwmout_period_us(obj, ms * 1000);
+}
+
+// Set the PWM period, keeping the duty cycle the same.
+void pwmout_period_us(pwmout_t *obj, int us)
+{
+    uint32_t periodInTicks = us / TIMER_PRECISION;
+
+    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
+    NRF_TIMER2->TASKS_STOP        = 1;
+
+    if (periodInTicks>((1 << 16) - 1)) {
+        PERIOD = (1 << 16) - 1; //131ms
+    } else if (periodInTicks<5) {
+        PERIOD = 5;
+    } else {
+        PERIOD = periodInTicks;
+    }
+    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
+    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
+    NRF_TIMER2->TASKS_START = 1;
+}
+
+void pwmout_pulsewidth(pwmout_t *obj, float seconds)
+{
+    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
+}
+
+void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
+{
+    pwmout_pulsewidth_us(obj, ms * 1000);
+}
+
+void pwmout_pulsewidth_us(pwmout_t *obj, int us)
+{
+    uint32_t pulseInTicks  = us / TIMER_PRECISION;
+    uint16_t oldPulseWidth = ACTUAL_PULSE[obj->pwm];
+
+    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
+    NRF_TIMER2->TASKS_STOP        = 1;
+
+    ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm]  = pulseInTicks;
+
+    if (PULSE_WIDTH[obj->pwm] == 0) {
+        PULSE_WIDTH[obj->pwm] = 1;
+        setModulation(obj, 0, 0);
+    } else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
+        PULSE_WIDTH[obj->pwm] = PERIOD - 1;
+        setModulation(obj, 0, 1);
+    } else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
+        setModulation(obj, 1, oldPulseWidth == PERIOD);
+    }
+    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
+    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
+    NRF_TIMER2->TASKS_START = 1;
+}