mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Committer:
AnnaBridge
Date:
Thu Apr 19 17:12:19 2018 +0100
Revision:
184:08ed48f1de7f
Parent:
180:96ed750bd169
mbed-dev library. Release version 161

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /***************************************************************************//**
<> 144:ef7eb2e8f9f7 2 * @file spi_api.c
<> 144:ef7eb2e8f9f7 3 *******************************************************************************
<> 144:ef7eb2e8f9f7 4 * @section License
<> 144:ef7eb2e8f9f7 5 * <b>(C) Copyright 2015 Silicon Labs, http://www.silabs.com</b>
<> 144:ef7eb2e8f9f7 6 *******************************************************************************
<> 144:ef7eb2e8f9f7 7 *
<> 144:ef7eb2e8f9f7 8 * SPDX-License-Identifier: Apache-2.0
<> 144:ef7eb2e8f9f7 9 *
<> 144:ef7eb2e8f9f7 10 * Licensed under the Apache License, Version 2.0 (the "License"); you may
<> 144:ef7eb2e8f9f7 11 * not use this file except in compliance with the License.
<> 144:ef7eb2e8f9f7 12 * You may obtain a copy of the License at
<> 144:ef7eb2e8f9f7 13 *
<> 144:ef7eb2e8f9f7 14 * http://www.apache.org/licenses/LICENSE-2.0
<> 144:ef7eb2e8f9f7 15 *
<> 144:ef7eb2e8f9f7 16 * Unless required by applicable law or agreed to in writing, software
<> 144:ef7eb2e8f9f7 17 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
<> 144:ef7eb2e8f9f7 18 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
<> 144:ef7eb2e8f9f7 19 * See the License for the specific language governing permissions and
<> 144:ef7eb2e8f9f7 20 * limitations under the License.
<> 144:ef7eb2e8f9f7 21 *
<> 144:ef7eb2e8f9f7 22 ******************************************************************************/
<> 144:ef7eb2e8f9f7 23
<> 144:ef7eb2e8f9f7 24 #include "device.h"
<> 144:ef7eb2e8f9f7 25 #include "clocking.h"
<> 144:ef7eb2e8f9f7 26 #if DEVICE_SPI
<> 144:ef7eb2e8f9f7 27
<> 144:ef7eb2e8f9f7 28 #include "mbed_assert.h"
AnnaBridge 184:08ed48f1de7f 29 #include "mbed_power_mgmt.h"
<> 144:ef7eb2e8f9f7 30 #include "PeripheralPins.h"
<> 144:ef7eb2e8f9f7 31 #include "pinmap.h"
<> 144:ef7eb2e8f9f7 32 #include "pinmap_function.h"
<> 150:02e0a0aed4ec 33 #include "mbed_error.h"
<> 144:ef7eb2e8f9f7 34
<> 144:ef7eb2e8f9f7 35 #include "dma_api.h"
<> 144:ef7eb2e8f9f7 36 #include "dma_api_HAL.h"
<> 144:ef7eb2e8f9f7 37 #include "serial_api_HAL.h"
<> 144:ef7eb2e8f9f7 38 #include "spi_api.h"
<> 144:ef7eb2e8f9f7 39 #include "em_usart.h"
<> 144:ef7eb2e8f9f7 40 #include "em_cmu.h"
<> 144:ef7eb2e8f9f7 41 #include "em_dma.h"
<> 144:ef7eb2e8f9f7 42 #include "sleep_api.h"
<> 144:ef7eb2e8f9f7 43
<> 144:ef7eb2e8f9f7 44 static uint16_t fill_word = SPI_FILL_WORD;
<> 144:ef7eb2e8f9f7 45
<> 144:ef7eb2e8f9f7 46 static inline CMU_Clock_TypeDef spi_get_clock_tree(spi_t *obj)
<> 144:ef7eb2e8f9f7 47 {
<> 144:ef7eb2e8f9f7 48 switch ((int)obj->spi.spi) {
<> 144:ef7eb2e8f9f7 49 #ifdef USART0
<> 144:ef7eb2e8f9f7 50 case SPI_0:
<> 144:ef7eb2e8f9f7 51 return cmuClock_USART0;
<> 144:ef7eb2e8f9f7 52 #endif
<> 144:ef7eb2e8f9f7 53 #ifdef USART1
<> 144:ef7eb2e8f9f7 54 case SPI_1:
<> 144:ef7eb2e8f9f7 55 return cmuClock_USART1;
<> 144:ef7eb2e8f9f7 56 #endif
<> 144:ef7eb2e8f9f7 57 #ifdef USART2
<> 144:ef7eb2e8f9f7 58 case SPI_2:
<> 144:ef7eb2e8f9f7 59 return cmuClock_USART2;
<> 144:ef7eb2e8f9f7 60 #endif
AnnaBridge 179:b0033dcd6934 61 #ifdef USART3
AnnaBridge 179:b0033dcd6934 62 case SPI_3:
AnnaBridge 179:b0033dcd6934 63 return cmuClock_USART3;
AnnaBridge 179:b0033dcd6934 64 #endif
AnnaBridge 179:b0033dcd6934 65 #ifdef USART4
AnnaBridge 179:b0033dcd6934 66 case SPI_4:
AnnaBridge 179:b0033dcd6934 67 return cmuClock_USART4;
AnnaBridge 179:b0033dcd6934 68 #endif
AnnaBridge 179:b0033dcd6934 69 #ifdef USART5
AnnaBridge 179:b0033dcd6934 70 case SPI_5:
AnnaBridge 179:b0033dcd6934 71 return cmuClock_USART5;
AnnaBridge 179:b0033dcd6934 72 #endif
<> 144:ef7eb2e8f9f7 73 default:
<> 144:ef7eb2e8f9f7 74 error("Spi module not available.. Out of bound access.");
<> 144:ef7eb2e8f9f7 75 return cmuClock_HFPER;
<> 144:ef7eb2e8f9f7 76 }
<> 144:ef7eb2e8f9f7 77 }
<> 144:ef7eb2e8f9f7 78
<> 144:ef7eb2e8f9f7 79 static inline uint8_t spi_get_index(spi_t *obj)
<> 144:ef7eb2e8f9f7 80 {
<> 144:ef7eb2e8f9f7 81 uint8_t index = 0;
<> 144:ef7eb2e8f9f7 82 switch ((int)obj->spi.spi) {
<> 144:ef7eb2e8f9f7 83 #ifdef USART0
<> 144:ef7eb2e8f9f7 84 case SPI_0:
<> 144:ef7eb2e8f9f7 85 index = 0;
<> 144:ef7eb2e8f9f7 86 break;
<> 144:ef7eb2e8f9f7 87 #endif
<> 144:ef7eb2e8f9f7 88 #ifdef USART1
<> 144:ef7eb2e8f9f7 89 case SPI_1:
<> 144:ef7eb2e8f9f7 90 index = 1;
<> 144:ef7eb2e8f9f7 91 break;
<> 144:ef7eb2e8f9f7 92 #endif
<> 144:ef7eb2e8f9f7 93 #ifdef USART2
<> 144:ef7eb2e8f9f7 94 case SPI_2:
<> 144:ef7eb2e8f9f7 95 index = 2;
<> 144:ef7eb2e8f9f7 96 break;
<> 144:ef7eb2e8f9f7 97 #endif
AnnaBridge 179:b0033dcd6934 98 #ifdef USART3
AnnaBridge 179:b0033dcd6934 99 case SPI_3:
AnnaBridge 179:b0033dcd6934 100 index = 3;
AnnaBridge 179:b0033dcd6934 101 break;
AnnaBridge 179:b0033dcd6934 102 #endif
AnnaBridge 179:b0033dcd6934 103 #ifdef USART4
AnnaBridge 179:b0033dcd6934 104 case SPI_4:
AnnaBridge 179:b0033dcd6934 105 index = 4;
AnnaBridge 179:b0033dcd6934 106 break;
AnnaBridge 179:b0033dcd6934 107 #endif
AnnaBridge 179:b0033dcd6934 108 #ifdef USART5
AnnaBridge 179:b0033dcd6934 109 case SPI_5:
AnnaBridge 179:b0033dcd6934 110 index = 5;
AnnaBridge 179:b0033dcd6934 111 break;
AnnaBridge 179:b0033dcd6934 112 #endif
<> 144:ef7eb2e8f9f7 113 default:
<> 144:ef7eb2e8f9f7 114 error("Spi module not available.. Out of bound access.");
<> 144:ef7eb2e8f9f7 115 break;
<> 144:ef7eb2e8f9f7 116 }
<> 144:ef7eb2e8f9f7 117 return index;
<> 144:ef7eb2e8f9f7 118 }
<> 144:ef7eb2e8f9f7 119
<> 144:ef7eb2e8f9f7 120 uint8_t spi_get_module(spi_t *obj)
<> 144:ef7eb2e8f9f7 121 {
<> 144:ef7eb2e8f9f7 122 return spi_get_index(obj);
<> 144:ef7eb2e8f9f7 123 }
<> 144:ef7eb2e8f9f7 124
<> 144:ef7eb2e8f9f7 125 static void usart_init(spi_t *obj, uint32_t baudrate, USART_Databits_TypeDef databits, bool master, USART_ClockMode_TypeDef clockMode )
<> 144:ef7eb2e8f9f7 126 {
<> 144:ef7eb2e8f9f7 127 USART_InitSync_TypeDef init = USART_INITSYNC_DEFAULT;
<> 144:ef7eb2e8f9f7 128 init.enable = usartDisable;
<> 144:ef7eb2e8f9f7 129 init.baudrate = baudrate;
<> 144:ef7eb2e8f9f7 130 init.databits = databits;
<> 144:ef7eb2e8f9f7 131 init.master = master;
<> 144:ef7eb2e8f9f7 132 init.msbf = 1;
<> 144:ef7eb2e8f9f7 133 init.clockMode = clockMode;
<> 144:ef7eb2e8f9f7 134
<> 144:ef7eb2e8f9f7 135 /* Determine the reference clock, because the correct clock may not be set up at init time (e.g. before main()) */
<> 144:ef7eb2e8f9f7 136 init.refFreq = REFERENCE_FREQUENCY;
<> 144:ef7eb2e8f9f7 137
<> 144:ef7eb2e8f9f7 138 USART_InitSync(obj->spi.spi, &init);
<> 144:ef7eb2e8f9f7 139 }
<> 144:ef7eb2e8f9f7 140
<> 144:ef7eb2e8f9f7 141 void spi_preinit(spi_t *obj, PinName mosi, PinName miso, PinName clk, PinName cs)
<> 144:ef7eb2e8f9f7 142 {
<> 144:ef7eb2e8f9f7 143 SPIName spi_mosi = (SPIName) pinmap_peripheral(mosi, PinMap_SPI_MOSI);
<> 144:ef7eb2e8f9f7 144 SPIName spi_miso = (SPIName) pinmap_peripheral(miso, PinMap_SPI_MISO);
<> 144:ef7eb2e8f9f7 145 SPIName spi_clk = (SPIName) pinmap_peripheral(clk, PinMap_SPI_CLK);
<> 144:ef7eb2e8f9f7 146 SPIName spi_cs = (SPIName) pinmap_peripheral(cs, PinMap_SPI_CS);
<> 144:ef7eb2e8f9f7 147 SPIName spi_data = (SPIName) pinmap_merge(spi_mosi, spi_miso);
<> 144:ef7eb2e8f9f7 148 SPIName spi_ctrl = (SPIName) pinmap_merge(spi_clk, spi_cs);
<> 144:ef7eb2e8f9f7 149
<> 144:ef7eb2e8f9f7 150 obj->spi.spi = (USART_TypeDef *) pinmap_merge(spi_data, spi_ctrl);
AnnaBridge 179:b0033dcd6934 151 MBED_ASSERT((unsigned int) obj->spi.spi != NC);
<> 144:ef7eb2e8f9f7 152
<> 144:ef7eb2e8f9f7 153 if (cs != NC) { /* Slave mode */
<> 144:ef7eb2e8f9f7 154 obj->spi.master = false;
<> 144:ef7eb2e8f9f7 155 } else {
<> 144:ef7eb2e8f9f7 156 obj->spi.master = true;
<> 144:ef7eb2e8f9f7 157 }
<> 144:ef7eb2e8f9f7 158
<> 144:ef7eb2e8f9f7 159 #if defined(_SILICON_LABS_32B_PLATFORM_1)
<> 144:ef7eb2e8f9f7 160 // On P1, we need to ensure all pins are on same location
<> 144:ef7eb2e8f9f7 161 uint32_t loc_mosi = pin_location(mosi, PinMap_SPI_MOSI);
<> 144:ef7eb2e8f9f7 162 uint32_t loc_miso = pin_location(miso, PinMap_SPI_MISO);
<> 144:ef7eb2e8f9f7 163 uint32_t loc_clk = pin_location(clk, PinMap_SPI_CLK);
<> 144:ef7eb2e8f9f7 164 uint32_t loc_cs = pin_location(cs, PinMap_SPI_CS);
<> 144:ef7eb2e8f9f7 165 uint32_t loc_data = pinmap_merge(loc_mosi, loc_miso);
<> 144:ef7eb2e8f9f7 166 uint32_t loc_ctrl = pinmap_merge(loc_clk, loc_cs);
<> 144:ef7eb2e8f9f7 167 obj->spi.location = pinmap_merge(loc_data, loc_ctrl);
<> 144:ef7eb2e8f9f7 168 MBED_ASSERT(obj->spi.location != NC);
<> 144:ef7eb2e8f9f7 169 #endif
<> 144:ef7eb2e8f9f7 170
<> 144:ef7eb2e8f9f7 171 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
<> 144:ef7eb2e8f9f7 172 }
<> 144:ef7eb2e8f9f7 173
<> 144:ef7eb2e8f9f7 174 void spi_enable_pins(spi_t *obj, uint8_t enable, PinName mosi, PinName miso, PinName clk, PinName cs)
<> 144:ef7eb2e8f9f7 175 {
<> 144:ef7eb2e8f9f7 176 if (enable) {
<> 144:ef7eb2e8f9f7 177 if (obj->spi.master) { /* Master mode */
<> 144:ef7eb2e8f9f7 178 /* Either mosi or miso can be NC */
<> 144:ef7eb2e8f9f7 179 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 180 pin_mode(mosi, PushPull);
<> 144:ef7eb2e8f9f7 181 }
<> 144:ef7eb2e8f9f7 182 if (miso != NC) {
<> 144:ef7eb2e8f9f7 183 pin_mode(miso, Input);
<> 144:ef7eb2e8f9f7 184 }
<> 144:ef7eb2e8f9f7 185 pin_mode(clk, PushPull);
<> 144:ef7eb2e8f9f7 186 /* Don't set cs pin, since we toggle it manually */
<> 144:ef7eb2e8f9f7 187 } else { /* Slave mode */
<> 144:ef7eb2e8f9f7 188 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 189 pin_mode(mosi, Input);
<> 144:ef7eb2e8f9f7 190 }
<> 144:ef7eb2e8f9f7 191 if (miso != NC) {
<> 144:ef7eb2e8f9f7 192 pin_mode(miso, PushPull);
<> 144:ef7eb2e8f9f7 193 }
<> 144:ef7eb2e8f9f7 194 pin_mode(clk, Input);
<> 144:ef7eb2e8f9f7 195 pin_mode(cs, Input);
<> 144:ef7eb2e8f9f7 196 }
<> 144:ef7eb2e8f9f7 197 } else {
<> 144:ef7eb2e8f9f7 198 // TODO_LP return PinMode to the previous state
<> 144:ef7eb2e8f9f7 199 if (obj->spi.master) { /* Master mode */
<> 144:ef7eb2e8f9f7 200 /* Either mosi or miso can be NC */
<> 144:ef7eb2e8f9f7 201 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 202 pin_mode(mosi, Disabled);
<> 144:ef7eb2e8f9f7 203 }
<> 144:ef7eb2e8f9f7 204 if (miso != NC) {
<> 144:ef7eb2e8f9f7 205 pin_mode(miso, Disabled);
<> 144:ef7eb2e8f9f7 206 }
<> 144:ef7eb2e8f9f7 207 pin_mode(clk, Disabled);
<> 144:ef7eb2e8f9f7 208 /* Don't set cs pin, since we toggle it manually */
<> 144:ef7eb2e8f9f7 209 } else { /* Slave mode */
<> 144:ef7eb2e8f9f7 210 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 211 pin_mode(mosi, Disabled);
<> 144:ef7eb2e8f9f7 212 }
<> 144:ef7eb2e8f9f7 213 if (miso != NC) {
<> 144:ef7eb2e8f9f7 214 pin_mode(miso, Disabled);
<> 144:ef7eb2e8f9f7 215 }
<> 144:ef7eb2e8f9f7 216 pin_mode(clk, Disabled);
<> 144:ef7eb2e8f9f7 217 pin_mode(cs, Disabled);
<> 144:ef7eb2e8f9f7 218 }
<> 144:ef7eb2e8f9f7 219 }
<> 144:ef7eb2e8f9f7 220
<> 144:ef7eb2e8f9f7 221 /* Enabling pins and setting location */
<> 144:ef7eb2e8f9f7 222 #ifdef _USART_ROUTEPEN_RESETVALUE
<> 144:ef7eb2e8f9f7 223 uint32_t route = USART_ROUTEPEN_CLKPEN;
AnnaBridge 167:e84263d55307 224
<> 144:ef7eb2e8f9f7 225 obj->spi.spi->ROUTELOC0 &= ~_USART_ROUTELOC0_CLKLOC_MASK;
<> 144:ef7eb2e8f9f7 226 obj->spi.spi->ROUTELOC0 |= pin_location(clk, PinMap_SPI_CLK)<<_USART_ROUTELOC0_CLKLOC_SHIFT;
<> 144:ef7eb2e8f9f7 227 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 228 route |= USART_ROUTEPEN_TXPEN;
<> 144:ef7eb2e8f9f7 229 obj->spi.spi->ROUTELOC0 &= ~_USART_ROUTELOC0_TXLOC_MASK;
<> 144:ef7eb2e8f9f7 230 obj->spi.spi->ROUTELOC0 |= pin_location(mosi, PinMap_SPI_MOSI)<<_USART_ROUTELOC0_TXLOC_SHIFT;
<> 144:ef7eb2e8f9f7 231 }
<> 144:ef7eb2e8f9f7 232 if (miso != NC) {
<> 144:ef7eb2e8f9f7 233 route |= USART_ROUTEPEN_RXPEN;
<> 144:ef7eb2e8f9f7 234 obj->spi.spi->ROUTELOC0 &= ~_USART_ROUTELOC0_RXLOC_MASK;
AnnaBridge 167:e84263d55307 235 obj->spi.spi->ROUTELOC0 |= pin_location(miso, PinMap_SPI_MISO)<<_USART_ROUTELOC0_RXLOC_SHIFT;
<> 144:ef7eb2e8f9f7 236 }
<> 144:ef7eb2e8f9f7 237 if (!obj->spi.master) {
<> 144:ef7eb2e8f9f7 238 route |= USART_ROUTEPEN_CSPEN;
<> 144:ef7eb2e8f9f7 239 obj->spi.spi->ROUTELOC0 &= ~_USART_ROUTELOC0_CSLOC_MASK;
AnnaBridge 167:e84263d55307 240 obj->spi.spi->ROUTELOC0 |= pin_location(cs, PinMap_SPI_CS)<<_USART_ROUTELOC0_CSLOC_SHIFT;
<> 144:ef7eb2e8f9f7 241 }
Anna Bridge 163:74e0ce7f98e8 242 obj->spi.location = obj->spi.spi->ROUTELOC0;
Anna Bridge 163:74e0ce7f98e8 243 obj->spi.route = route;
<> 144:ef7eb2e8f9f7 244 obj->spi.spi->ROUTEPEN = route;
<> 144:ef7eb2e8f9f7 245 }
<> 144:ef7eb2e8f9f7 246 #else
Anna Bridge 163:74e0ce7f98e8 247 uint32_t route = USART_ROUTE_CLKPEN;
<> 144:ef7eb2e8f9f7 248
<> 144:ef7eb2e8f9f7 249 if (mosi != NC) {
<> 144:ef7eb2e8f9f7 250 route |= USART_ROUTE_TXPEN;
<> 144:ef7eb2e8f9f7 251 }
<> 144:ef7eb2e8f9f7 252 if (miso != NC) {
<> 144:ef7eb2e8f9f7 253 route |= USART_ROUTE_RXPEN;
<> 144:ef7eb2e8f9f7 254 }
<> 144:ef7eb2e8f9f7 255 if (!obj->spi.master) {
<> 144:ef7eb2e8f9f7 256 route |= USART_ROUTE_CSPEN;
<> 144:ef7eb2e8f9f7 257 }
Anna Bridge 163:74e0ce7f98e8 258 route |= obj->spi.location << _USART_ROUTE_LOCATION_SHIFT;
<> 144:ef7eb2e8f9f7 259 obj->spi.spi->ROUTE = route;
Anna Bridge 163:74e0ce7f98e8 260 obj->spi.route = route;
<> 144:ef7eb2e8f9f7 261 }
<> 144:ef7eb2e8f9f7 262 #endif
<> 144:ef7eb2e8f9f7 263 void spi_enable(spi_t *obj, uint8_t enable)
<> 144:ef7eb2e8f9f7 264 {
<> 144:ef7eb2e8f9f7 265 USART_Enable(obj->spi.spi, (enable ? usartEnable : usartDisable));
<> 144:ef7eb2e8f9f7 266 }
<> 144:ef7eb2e8f9f7 267
<> 144:ef7eb2e8f9f7 268 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName clk, PinName cs)
<> 144:ef7eb2e8f9f7 269 {
<> 144:ef7eb2e8f9f7 270 CMU_ClockEnable(cmuClock_HFPER, true);
<> 144:ef7eb2e8f9f7 271 spi_preinit(obj, mosi, miso, clk, cs);
<> 144:ef7eb2e8f9f7 272 CMU_ClockEnable(spi_get_clock_tree(obj), true);
<> 144:ef7eb2e8f9f7 273 usart_init(obj, 100000, usartDatabits8, true, usartClockMode0);
<> 144:ef7eb2e8f9f7 274
<> 144:ef7eb2e8f9f7 275 spi_enable_pins(obj, true, mosi, miso, clk, cs);
<> 144:ef7eb2e8f9f7 276 spi_enable(obj, true);
<> 144:ef7eb2e8f9f7 277 }
<> 144:ef7eb2e8f9f7 278
<> 144:ef7eb2e8f9f7 279 void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
<> 144:ef7eb2e8f9f7 280 {
<> 144:ef7eb2e8f9f7 281 if(enable) obj->spi.event |= event;
<> 144:ef7eb2e8f9f7 282 else obj->spi.event &= ~event;
<> 144:ef7eb2e8f9f7 283 }
<> 144:ef7eb2e8f9f7 284
<> 144:ef7eb2e8f9f7 285 /****************************************************************************
<> 144:ef7eb2e8f9f7 286 * void spi_enable_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
<> 144:ef7eb2e8f9f7 287 *
<> 144:ef7eb2e8f9f7 288 * This will enable the interrupt in NVIC for the associated USART RX channel
<> 144:ef7eb2e8f9f7 289 *
<> 144:ef7eb2e8f9f7 290 * * obj: pointer to spi object
<> 144:ef7eb2e8f9f7 291 * * handler: pointer to interrupt handler for this channel
<> 144:ef7eb2e8f9f7 292 * * enable: Whether to enable (true) or disable (false) the interrupt
<> 144:ef7eb2e8f9f7 293 *
<> 144:ef7eb2e8f9f7 294 ****************************************************************************/
<> 144:ef7eb2e8f9f7 295 void spi_enable_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
<> 144:ef7eb2e8f9f7 296 {
<> 144:ef7eb2e8f9f7 297 IRQn_Type IRQvector;
<> 144:ef7eb2e8f9f7 298
<> 144:ef7eb2e8f9f7 299 switch ((uint32_t)obj->spi.spi) {
<> 144:ef7eb2e8f9f7 300 #ifdef USART0
<> 144:ef7eb2e8f9f7 301 case USART_0:
<> 144:ef7eb2e8f9f7 302 IRQvector = USART0_RX_IRQn;
<> 144:ef7eb2e8f9f7 303 break;
<> 144:ef7eb2e8f9f7 304 #endif
<> 144:ef7eb2e8f9f7 305 #ifdef USART1
<> 144:ef7eb2e8f9f7 306 case USART_1:
<> 144:ef7eb2e8f9f7 307 IRQvector = USART1_RX_IRQn;
<> 144:ef7eb2e8f9f7 308 break;
<> 144:ef7eb2e8f9f7 309 #endif
<> 144:ef7eb2e8f9f7 310 #ifdef USART2
<> 144:ef7eb2e8f9f7 311 case USART_2:
<> 144:ef7eb2e8f9f7 312 IRQvector = USART2_RX_IRQn;
<> 144:ef7eb2e8f9f7 313 break;
<> 144:ef7eb2e8f9f7 314 #endif
AnnaBridge 179:b0033dcd6934 315 #ifdef USART3
AnnaBridge 179:b0033dcd6934 316 case USART_3:
AnnaBridge 179:b0033dcd6934 317 IRQvector = USART3_RX_IRQn;
AnnaBridge 179:b0033dcd6934 318 break;
AnnaBridge 179:b0033dcd6934 319 #endif
AnnaBridge 179:b0033dcd6934 320 #ifdef USART4
AnnaBridge 179:b0033dcd6934 321 case USART_4:
AnnaBridge 179:b0033dcd6934 322 IRQvector = USART4_RX_IRQn;
AnnaBridge 179:b0033dcd6934 323 break;
AnnaBridge 179:b0033dcd6934 324 #endif
AnnaBridge 179:b0033dcd6934 325 #ifdef USART5
AnnaBridge 179:b0033dcd6934 326 case USART_5:
AnnaBridge 179:b0033dcd6934 327 IRQvector = USART5_RX_IRQn;
AnnaBridge 179:b0033dcd6934 328 break;
AnnaBridge 179:b0033dcd6934 329 #endif
<> 144:ef7eb2e8f9f7 330 default:
<> 144:ef7eb2e8f9f7 331 error("Undefined SPI peripheral");
<> 144:ef7eb2e8f9f7 332 return;
<> 144:ef7eb2e8f9f7 333 }
<> 144:ef7eb2e8f9f7 334
<> 144:ef7eb2e8f9f7 335 if (enable == true) {
<> 144:ef7eb2e8f9f7 336 NVIC_SetVector(IRQvector, handler);
<> 144:ef7eb2e8f9f7 337 USART_IntEnable(obj->spi.spi, USART_IEN_RXDATAV);
<> 144:ef7eb2e8f9f7 338 NVIC_EnableIRQ(IRQvector);
<> 144:ef7eb2e8f9f7 339 } else {
<> 144:ef7eb2e8f9f7 340 NVIC_SetVector(IRQvector, handler);
<> 144:ef7eb2e8f9f7 341 USART_IntDisable(obj->spi.spi, USART_IEN_RXDATAV);
<> 144:ef7eb2e8f9f7 342 NVIC_DisableIRQ(IRQvector);
<> 144:ef7eb2e8f9f7 343 }
<> 144:ef7eb2e8f9f7 344 }
<> 144:ef7eb2e8f9f7 345
<> 144:ef7eb2e8f9f7 346 void spi_format(spi_t *obj, int bits, int mode, int slave)
<> 144:ef7eb2e8f9f7 347 {
<> 144:ef7eb2e8f9f7 348 /* Bits: values between 4 and 16 are valid */
<> 144:ef7eb2e8f9f7 349 MBED_ASSERT(bits >= 4 && bits <= 16);
<> 144:ef7eb2e8f9f7 350 obj->spi.bits = bits;
<> 144:ef7eb2e8f9f7 351 /* 0x01 = usartDatabits4, etc, up to 0x0D = usartDatabits16 */
<> 144:ef7eb2e8f9f7 352 USART_Databits_TypeDef databits = (USART_Databits_TypeDef) (bits - 3);
<> 144:ef7eb2e8f9f7 353
<> 144:ef7eb2e8f9f7 354 USART_ClockMode_TypeDef clockMode;
<> 144:ef7eb2e8f9f7 355 MBED_ASSERT(mode >= 0 && mode <= 3);
<> 144:ef7eb2e8f9f7 356 switch (mode) {
<> 144:ef7eb2e8f9f7 357 case 0:
<> 144:ef7eb2e8f9f7 358 clockMode = usartClockMode0;
<> 144:ef7eb2e8f9f7 359 break;
<> 144:ef7eb2e8f9f7 360 case 1:
<> 144:ef7eb2e8f9f7 361 clockMode = usartClockMode1;
<> 144:ef7eb2e8f9f7 362 break;
<> 144:ef7eb2e8f9f7 363 case 2:
<> 144:ef7eb2e8f9f7 364 clockMode = usartClockMode2;
<> 144:ef7eb2e8f9f7 365 break;
<> 144:ef7eb2e8f9f7 366 case 3:
<> 144:ef7eb2e8f9f7 367 clockMode = usartClockMode3;
<> 144:ef7eb2e8f9f7 368 break;
<> 144:ef7eb2e8f9f7 369 default:
<> 144:ef7eb2e8f9f7 370 clockMode = usartClockMode0;
<> 144:ef7eb2e8f9f7 371 }
<> 144:ef7eb2e8f9f7 372 uint32_t iflags = obj->spi.spi->IEN;
<> 144:ef7eb2e8f9f7 373 bool enabled = (obj->spi.spi->STATUS & (USART_STATUS_RXENS | USART_STATUS_TXENS)) != 0;
<> 144:ef7eb2e8f9f7 374
<> 144:ef7eb2e8f9f7 375 usart_init(obj, 100000, databits, (slave ? false : true), clockMode);
<> 144:ef7eb2e8f9f7 376
<> 144:ef7eb2e8f9f7 377 //restore state
<> 144:ef7eb2e8f9f7 378 #ifdef _USART_ROUTEPEN_RESETVALUE
Anna Bridge 163:74e0ce7f98e8 379 obj->spi.spi->ROUTEPEN = obj->spi.route;
Anna Bridge 163:74e0ce7f98e8 380 obj->spi.spi->ROUTELOC0 = obj->spi.location;
<> 144:ef7eb2e8f9f7 381 #else
Anna Bridge 163:74e0ce7f98e8 382 obj->spi.spi->ROUTE = obj->spi.route;
<> 144:ef7eb2e8f9f7 383 #endif
<> 144:ef7eb2e8f9f7 384 obj->spi.spi->IEN = iflags;
<> 144:ef7eb2e8f9f7 385
<> 144:ef7eb2e8f9f7 386 if(enabled) spi_enable(obj, enabled);
<> 144:ef7eb2e8f9f7 387 }
<> 144:ef7eb2e8f9f7 388
<> 144:ef7eb2e8f9f7 389 void spi_frequency(spi_t *obj, int hz)
<> 144:ef7eb2e8f9f7 390 {
<> 144:ef7eb2e8f9f7 391 USART_BaudrateSyncSet(obj->spi.spi, REFERENCE_FREQUENCY, hz);
<> 144:ef7eb2e8f9f7 392 }
<> 144:ef7eb2e8f9f7 393
<> 144:ef7eb2e8f9f7 394 /* Read/Write */
<> 144:ef7eb2e8f9f7 395
<> 144:ef7eb2e8f9f7 396 void spi_write(spi_t *obj, int value)
<> 144:ef7eb2e8f9f7 397 {
<> 144:ef7eb2e8f9f7 398 if (obj->spi.bits <= 8) {
<> 144:ef7eb2e8f9f7 399 USART_Tx(obj->spi.spi, (uint8_t) value);
<> 144:ef7eb2e8f9f7 400 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 401 USART_TxExt(obj->spi.spi, (uint16_t) value & 0x1FF);
<> 144:ef7eb2e8f9f7 402 } else {
<> 144:ef7eb2e8f9f7 403 USART_TxDouble(obj->spi.spi, (uint16_t) value);
<> 144:ef7eb2e8f9f7 404 }
<> 144:ef7eb2e8f9f7 405 }
<> 144:ef7eb2e8f9f7 406
<> 144:ef7eb2e8f9f7 407 int spi_read(spi_t *obj)
<> 144:ef7eb2e8f9f7 408 {
<> 144:ef7eb2e8f9f7 409 if (obj->spi.bits <= 8) {
<> 144:ef7eb2e8f9f7 410 return (int) obj->spi.spi->RXDATA;
<> 144:ef7eb2e8f9f7 411 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 412 return (int) obj->spi.spi->RXDATAX & 0x1FF;
<> 144:ef7eb2e8f9f7 413 } else {
<> 144:ef7eb2e8f9f7 414 return (int) obj->spi.spi->RXDOUBLE;
<> 144:ef7eb2e8f9f7 415 }
<> 144:ef7eb2e8f9f7 416 }
<> 144:ef7eb2e8f9f7 417
<> 144:ef7eb2e8f9f7 418 int spi_read_asynch(spi_t *obj)
<> 144:ef7eb2e8f9f7 419 {
<> 144:ef7eb2e8f9f7 420 return spi_read(obj);
<> 144:ef7eb2e8f9f7 421 }
<> 144:ef7eb2e8f9f7 422
<> 144:ef7eb2e8f9f7 423 int spi_master_write(spi_t *obj, int value)
<> 144:ef7eb2e8f9f7 424 {
<> 144:ef7eb2e8f9f7 425 spi_write(obj, value);
<> 144:ef7eb2e8f9f7 426
<> 144:ef7eb2e8f9f7 427 /* Wait for transmission of last byte */
<> 144:ef7eb2e8f9f7 428 while (!(obj->spi.spi->STATUS & USART_STATUS_TXC)) {
<> 144:ef7eb2e8f9f7 429 }
<> 144:ef7eb2e8f9f7 430
<> 144:ef7eb2e8f9f7 431 return spi_read(obj);
<> 144:ef7eb2e8f9f7 432 }
<> 144:ef7eb2e8f9f7 433
Kojto 170:19eb464bc2be 434 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
Kojto 170:19eb464bc2be 435 char *rx_buffer, int rx_length, char write_fill) {
AnnaBridge 167:e84263d55307 436 int total = (tx_length > rx_length) ? tx_length : rx_length;
AnnaBridge 167:e84263d55307 437
AnnaBridge 167:e84263d55307 438 for (int i = 0; i < total; i++) {
Kojto 170:19eb464bc2be 439 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
AnnaBridge 167:e84263d55307 440 char in = spi_master_write(obj, out);
AnnaBridge 167:e84263d55307 441 if (i < rx_length) {
AnnaBridge 167:e84263d55307 442 rx_buffer[i] = in;
AnnaBridge 167:e84263d55307 443 }
AnnaBridge 167:e84263d55307 444 }
AnnaBridge 167:e84263d55307 445
AnnaBridge 167:e84263d55307 446 return total;
AnnaBridge 167:e84263d55307 447 }
AnnaBridge 167:e84263d55307 448
<> 144:ef7eb2e8f9f7 449 inline uint8_t spi_master_tx_ready(spi_t *obj)
<> 144:ef7eb2e8f9f7 450 {
<> 144:ef7eb2e8f9f7 451 return (obj->spi.spi->STATUS & USART_STATUS_TXBL) ? true : false;
<> 144:ef7eb2e8f9f7 452 }
<> 144:ef7eb2e8f9f7 453
<> 144:ef7eb2e8f9f7 454 uint8_t spi_master_rx_ready(spi_t *obj)
<> 144:ef7eb2e8f9f7 455 {
<> 144:ef7eb2e8f9f7 456 return (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) ? true : false;
<> 144:ef7eb2e8f9f7 457 }
<> 144:ef7eb2e8f9f7 458
<> 144:ef7eb2e8f9f7 459 uint8_t spi_master_tx_int_flag(spi_t *obj)
<> 144:ef7eb2e8f9f7 460 {
<> 144:ef7eb2e8f9f7 461 return (obj->spi.spi->IF & USART_IF_TXBL) ? true : false;
<> 144:ef7eb2e8f9f7 462 }
<> 144:ef7eb2e8f9f7 463
<> 144:ef7eb2e8f9f7 464 uint8_t spi_master_rx_int_flag(spi_t *obj)
<> 144:ef7eb2e8f9f7 465 {
<> 144:ef7eb2e8f9f7 466 return (obj->spi.spi->IF & (USART_IF_RXDATAV | USART_IF_RXFULL)) ? true : false;
<> 144:ef7eb2e8f9f7 467 }
<> 144:ef7eb2e8f9f7 468
<> 144:ef7eb2e8f9f7 469 void spi_master_read_asynch_complete(spi_t *obj)
<> 144:ef7eb2e8f9f7 470 {
<> 144:ef7eb2e8f9f7 471 obj->spi.spi->IFC = USART_IFC_RXFULL; // in case it got full
<> 144:ef7eb2e8f9f7 472 }
<> 144:ef7eb2e8f9f7 473
<> 144:ef7eb2e8f9f7 474 void spi_master_write_asynch_complete(spi_t *obj)
<> 144:ef7eb2e8f9f7 475 {
<> 144:ef7eb2e8f9f7 476 obj->spi.spi->IFC = USART_IFC_TXC;
<> 144:ef7eb2e8f9f7 477 }
<> 144:ef7eb2e8f9f7 478
<> 144:ef7eb2e8f9f7 479 void spi_irq_handler(spi_t *obj)
<> 144:ef7eb2e8f9f7 480 {
<> 144:ef7eb2e8f9f7 481 spi_read(obj); //TODO_LP store data to the object?
<> 144:ef7eb2e8f9f7 482 }
<> 144:ef7eb2e8f9f7 483
<> 144:ef7eb2e8f9f7 484 uint8_t spi_active(spi_t *obj)
<> 144:ef7eb2e8f9f7 485 {
<> 144:ef7eb2e8f9f7 486 switch(obj->spi.dmaOptionsTX.dmaUsageState) {
<> 144:ef7eb2e8f9f7 487 case DMA_USAGE_TEMPORARY_ALLOCATED:
<> 144:ef7eb2e8f9f7 488 return true;
<> 144:ef7eb2e8f9f7 489 case DMA_USAGE_ALLOCATED:
<> 144:ef7eb2e8f9f7 490 /* Check whether the allocated DMA channel is active */
<> 144:ef7eb2e8f9f7 491 #ifdef LDMA_PRESENT
<> 144:ef7eb2e8f9f7 492 return(LDMAx_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel) || LDMAx_ChannelEnabled(obj->spi.dmaOptionsRX.dmaChannel));
<> 144:ef7eb2e8f9f7 493 #else
<> 144:ef7eb2e8f9f7 494 return(DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel) || DMA_ChannelEnabled(obj->spi.dmaOptionsRX.dmaChannel));
<> 144:ef7eb2e8f9f7 495 #endif
<> 144:ef7eb2e8f9f7 496 default:
<> 144:ef7eb2e8f9f7 497 /* Check whether interrupt for spi is enabled */
<> 144:ef7eb2e8f9f7 498 return (obj->spi.spi->IEN & (USART_IEN_RXDATAV | USART_IEN_TXBL)) ? true : false;
<> 144:ef7eb2e8f9f7 499 }
<> 144:ef7eb2e8f9f7 500 }
<> 144:ef7eb2e8f9f7 501
<> 144:ef7eb2e8f9f7 502 void spi_buffer_set(spi_t *obj, const void *tx, uint32_t tx_length, void *rx, uint32_t rx_length, uint8_t bit_width)
<> 144:ef7eb2e8f9f7 503 {
<> 144:ef7eb2e8f9f7 504 uint32_t i;
<> 144:ef7eb2e8f9f7 505 uint16_t *tx_ptr = (uint16_t *) tx;
<> 144:ef7eb2e8f9f7 506
<> 144:ef7eb2e8f9f7 507 obj->tx_buff.buffer = (void *)tx;
<> 144:ef7eb2e8f9f7 508 obj->rx_buff.buffer = rx;
<> 144:ef7eb2e8f9f7 509 obj->tx_buff.length = tx_length;
<> 144:ef7eb2e8f9f7 510 obj->rx_buff.length = rx_length;
<> 144:ef7eb2e8f9f7 511 obj->tx_buff.pos = 0;
<> 144:ef7eb2e8f9f7 512 obj->rx_buff.pos = 0;
<> 144:ef7eb2e8f9f7 513 obj->tx_buff.width = bit_width;
<> 144:ef7eb2e8f9f7 514 obj->rx_buff.width = bit_width;
<> 144:ef7eb2e8f9f7 515
<> 144:ef7eb2e8f9f7 516 if((obj->spi.bits == 9) && (tx != 0)) {
<> 144:ef7eb2e8f9f7 517 // Make sure we don't have inadvertent non-zero bits outside 9-bit frames which could trigger unwanted operation
<> 144:ef7eb2e8f9f7 518 for(i = 0; i < (tx_length / 2); i++) {
<> 144:ef7eb2e8f9f7 519 tx_ptr[i] &= 0x1FF;
<> 144:ef7eb2e8f9f7 520 }
<> 144:ef7eb2e8f9f7 521 }
<> 144:ef7eb2e8f9f7 522 }
<> 144:ef7eb2e8f9f7 523
<> 144:ef7eb2e8f9f7 524 static void spi_buffer_tx_write(spi_t *obj)
<> 144:ef7eb2e8f9f7 525 {
<> 144:ef7eb2e8f9f7 526 uint32_t data = 0;
<> 144:ef7eb2e8f9f7 527
<> 144:ef7eb2e8f9f7 528 // Interpret buffer according to declared width
<> 144:ef7eb2e8f9f7 529 if (!obj->tx_buff.buffer) {
<> 144:ef7eb2e8f9f7 530 data = SPI_FILL_WORD;
<> 144:ef7eb2e8f9f7 531 } else if (obj->tx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 532 uint32_t * tx = (uint32_t *)obj->tx_buff.buffer;
<> 144:ef7eb2e8f9f7 533 data = tx[obj->tx_buff.pos];
<> 144:ef7eb2e8f9f7 534 } else if (obj->tx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 535 uint16_t * tx = (uint16_t *)obj->tx_buff.buffer;
<> 144:ef7eb2e8f9f7 536 data = tx[obj->tx_buff.pos];
<> 144:ef7eb2e8f9f7 537 } else {
<> 144:ef7eb2e8f9f7 538 uint8_t * tx = (uint8_t *)obj->tx_buff.buffer;
<> 144:ef7eb2e8f9f7 539 data = tx[obj->tx_buff.pos];
<> 144:ef7eb2e8f9f7 540 }
<> 144:ef7eb2e8f9f7 541 obj->tx_buff.pos++;
<> 144:ef7eb2e8f9f7 542
<> 144:ef7eb2e8f9f7 543 // Send buffer
<> 144:ef7eb2e8f9f7 544 if (obj->spi.bits > 9) {
<> 144:ef7eb2e8f9f7 545 obj->spi.spi->TXDOUBLE = data;
<> 144:ef7eb2e8f9f7 546 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 547 obj->spi.spi->TXDATAX = data;
<> 144:ef7eb2e8f9f7 548 } else {
<> 144:ef7eb2e8f9f7 549 obj->spi.spi->TXDATA = data;
<> 144:ef7eb2e8f9f7 550 }
<> 144:ef7eb2e8f9f7 551 }
<> 144:ef7eb2e8f9f7 552
<> 144:ef7eb2e8f9f7 553 static void spi_buffer_rx_read(spi_t *obj)
<> 144:ef7eb2e8f9f7 554 {
<> 144:ef7eb2e8f9f7 555 uint32_t data;
<> 144:ef7eb2e8f9f7 556
<> 144:ef7eb2e8f9f7 557 if (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) {
<> 144:ef7eb2e8f9f7 558 // Read from the FIFO
<> 144:ef7eb2e8f9f7 559 if (obj->spi.bits > 9) {
<> 144:ef7eb2e8f9f7 560 data = obj->spi.spi->RXDOUBLE;
<> 144:ef7eb2e8f9f7 561 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 562 data = obj->spi.spi->RXDATAX;
<> 144:ef7eb2e8f9f7 563 } else {
<> 144:ef7eb2e8f9f7 564 data = obj->spi.spi->RXDATA;
<> 144:ef7eb2e8f9f7 565 }
<> 144:ef7eb2e8f9f7 566
<> 144:ef7eb2e8f9f7 567 // If there is room in the buffer, store the data
<> 144:ef7eb2e8f9f7 568 if (obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) {
<> 144:ef7eb2e8f9f7 569 if (obj->rx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 570 uint32_t * rx = (uint32_t *)(obj->rx_buff.buffer);
<> 144:ef7eb2e8f9f7 571 rx[obj->rx_buff.pos] = data;
<> 144:ef7eb2e8f9f7 572 } else if (obj->rx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 573 uint16_t * rx = (uint16_t *)(obj->rx_buff.buffer);
<> 144:ef7eb2e8f9f7 574 rx[obj->rx_buff.pos] = data;
<> 144:ef7eb2e8f9f7 575 } else {
<> 144:ef7eb2e8f9f7 576 uint8_t * rx = (uint8_t *)(obj->rx_buff.buffer);
<> 144:ef7eb2e8f9f7 577 rx[obj->rx_buff.pos] = data;
<> 144:ef7eb2e8f9f7 578 }
<> 144:ef7eb2e8f9f7 579 obj->rx_buff.pos++;
<> 144:ef7eb2e8f9f7 580 }
<> 144:ef7eb2e8f9f7 581 }
<> 144:ef7eb2e8f9f7 582 }
<> 144:ef7eb2e8f9f7 583
<> 144:ef7eb2e8f9f7 584 int spi_master_write_asynch(spi_t *obj)
<> 144:ef7eb2e8f9f7 585 {
<> 144:ef7eb2e8f9f7 586 int ndata = 0;
<> 144:ef7eb2e8f9f7 587 while ((obj->tx_buff.pos < obj->tx_buff.length) && (obj->spi.spi->STATUS & USART_STATUS_TXBL)) {
<> 144:ef7eb2e8f9f7 588 spi_buffer_tx_write(obj);
<> 144:ef7eb2e8f9f7 589 ndata++;
<> 144:ef7eb2e8f9f7 590 }
<> 144:ef7eb2e8f9f7 591 return ndata;
<> 144:ef7eb2e8f9f7 592 }
<> 144:ef7eb2e8f9f7 593
<> 144:ef7eb2e8f9f7 594 int spi_master_read_asynch(spi_t *obj)
<> 144:ef7eb2e8f9f7 595 {
<> 144:ef7eb2e8f9f7 596 int ndata = 0;
<> 144:ef7eb2e8f9f7 597 while ((obj->rx_buff.pos < obj->rx_buff.length) && (obj->spi.spi->STATUS & (USART_STATUS_RXDATAV | USART_STATUS_RXFULL))) {
<> 144:ef7eb2e8f9f7 598 spi_buffer_rx_read(obj);
<> 144:ef7eb2e8f9f7 599 ndata++;
<> 144:ef7eb2e8f9f7 600 }
<> 144:ef7eb2e8f9f7 601 // all sent but still more to receive? need to align tx buffer
<> 144:ef7eb2e8f9f7 602 if ((obj->tx_buff.pos >= obj->tx_buff.length) && (obj->rx_buff.pos < obj->rx_buff.length)) {
<> 144:ef7eb2e8f9f7 603 obj->tx_buff.buffer = (void *)0;
<> 144:ef7eb2e8f9f7 604 obj->tx_buff.length = obj->rx_buff.length;
<> 144:ef7eb2e8f9f7 605 }
<> 144:ef7eb2e8f9f7 606
<> 144:ef7eb2e8f9f7 607 return ndata;
<> 144:ef7eb2e8f9f7 608 }
<> 144:ef7eb2e8f9f7 609
<> 144:ef7eb2e8f9f7 610 uint8_t spi_buffer_rx_empty(spi_t *obj)
<> 144:ef7eb2e8f9f7 611 {
<> 144:ef7eb2e8f9f7 612 return (obj->rx_buff.pos >= obj->rx_buff.length ? true : false );
<> 144:ef7eb2e8f9f7 613 }
<> 144:ef7eb2e8f9f7 614
<> 144:ef7eb2e8f9f7 615 uint8_t spi_buffer_tx_empty(spi_t *obj)
<> 144:ef7eb2e8f9f7 616 {
<> 144:ef7eb2e8f9f7 617 return (obj->tx_buff.pos >= obj->tx_buff.length ? true : false );
<> 144:ef7eb2e8f9f7 618 }
<> 144:ef7eb2e8f9f7 619
<> 144:ef7eb2e8f9f7 620 //TODO_LP implement slave
<> 144:ef7eb2e8f9f7 621
<> 144:ef7eb2e8f9f7 622 int spi_slave_receive(spi_t *obj)
<> 144:ef7eb2e8f9f7 623 {
<> 144:ef7eb2e8f9f7 624 if (obj->spi.bits <= 9) {
<> 144:ef7eb2e8f9f7 625 return (obj->spi.spi->STATUS & USART_STATUS_RXDATAV) ? 1 : 0;
<> 144:ef7eb2e8f9f7 626 } else {
<> 144:ef7eb2e8f9f7 627 return (obj->spi.spi->STATUS & USART_STATUS_RXFULL) ? 1 : 0;
<> 144:ef7eb2e8f9f7 628 }
<> 144:ef7eb2e8f9f7 629 }
<> 144:ef7eb2e8f9f7 630
<> 144:ef7eb2e8f9f7 631 int spi_slave_read(spi_t *obj)
<> 144:ef7eb2e8f9f7 632 {
<> 144:ef7eb2e8f9f7 633 return spi_read(obj);
<> 144:ef7eb2e8f9f7 634 }
<> 144:ef7eb2e8f9f7 635
<> 144:ef7eb2e8f9f7 636 void spi_slave_write(spi_t *obj, int value)
<> 144:ef7eb2e8f9f7 637 {
<> 144:ef7eb2e8f9f7 638 spi_write(obj, value);
<> 144:ef7eb2e8f9f7 639 }
<> 144:ef7eb2e8f9f7 640
<> 144:ef7eb2e8f9f7 641 uint32_t spi_event_check(spi_t *obj)
<> 144:ef7eb2e8f9f7 642 {
<> 144:ef7eb2e8f9f7 643 uint32_t requestedEvent = obj->spi.event;
<> 144:ef7eb2e8f9f7 644 uint32_t event = 0;
<> 144:ef7eb2e8f9f7 645 uint8_t quit = spi_buffer_rx_empty(obj) & spi_buffer_tx_empty(obj);
<> 144:ef7eb2e8f9f7 646 if (((requestedEvent & SPI_EVENT_COMPLETE) != 0) && (quit == true)) {
<> 144:ef7eb2e8f9f7 647 event |= SPI_EVENT_COMPLETE;
<> 144:ef7eb2e8f9f7 648 }
<> 144:ef7eb2e8f9f7 649
<> 144:ef7eb2e8f9f7 650 if(quit == true) {
<> 144:ef7eb2e8f9f7 651 event |= SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
<> 144:ef7eb2e8f9f7 652 }
<> 144:ef7eb2e8f9f7 653
<> 144:ef7eb2e8f9f7 654 return event;
<> 144:ef7eb2e8f9f7 655 }
<> 144:ef7eb2e8f9f7 656 /******************************************
<> 144:ef7eb2e8f9f7 657 * void transferComplete(uint channel, bool primary, void* user)
<> 144:ef7eb2e8f9f7 658 *
<> 144:ef7eb2e8f9f7 659 * Callback function which gets called upon DMA transfer completion
<> 144:ef7eb2e8f9f7 660 * the user-defined pointer is pointing to the CPP-land thunk
<> 144:ef7eb2e8f9f7 661 ******************************************/
<> 144:ef7eb2e8f9f7 662 void transferComplete(unsigned int channel, bool primary, void *user)
<> 144:ef7eb2e8f9f7 663 {
<> 144:ef7eb2e8f9f7 664 (void) channel;
<> 144:ef7eb2e8f9f7 665 (void) primary;
<> 144:ef7eb2e8f9f7 666
<> 144:ef7eb2e8f9f7 667 /* User pointer should be a thunk to CPP land */
<> 144:ef7eb2e8f9f7 668 if (user != NULL) {
<> 144:ef7eb2e8f9f7 669 ((DMACallback)user)();
<> 144:ef7eb2e8f9f7 670 }
<> 144:ef7eb2e8f9f7 671 }
<> 144:ef7eb2e8f9f7 672
<> 144:ef7eb2e8f9f7 673 /******************************************
<> 144:ef7eb2e8f9f7 674 * bool spi_allocate_dma(spi_t *obj);
<> 144:ef7eb2e8f9f7 675 * (helper function for spi_enable_dma)
<> 144:ef7eb2e8f9f7 676 *
<> 144:ef7eb2e8f9f7 677 * This function will request two DMA channels from the DMA API if needed
<> 144:ef7eb2e8f9f7 678 * by the hint provided. They will be allocated to the SPI object pointed to.
<> 144:ef7eb2e8f9f7 679 *
<> 144:ef7eb2e8f9f7 680 * return value: whether the channels were acquired successfully (true) or not.
<> 144:ef7eb2e8f9f7 681 ******************************************/
<> 144:ef7eb2e8f9f7 682 bool spi_allocate_dma(spi_t *obj)
<> 144:ef7eb2e8f9f7 683 {
<> 144:ef7eb2e8f9f7 684 int dmaChannelIn, dmaChannelOut;
<> 144:ef7eb2e8f9f7 685 dmaChannelIn = dma_channel_allocate(DMA_CAP_NONE);
<> 144:ef7eb2e8f9f7 686 if (dmaChannelIn == DMA_ERROR_OUT_OF_CHANNELS) {
<> 144:ef7eb2e8f9f7 687 return false;
<> 144:ef7eb2e8f9f7 688 }
<> 144:ef7eb2e8f9f7 689 dmaChannelOut = dma_channel_allocate(DMA_CAP_NONE);
<> 144:ef7eb2e8f9f7 690 if (dmaChannelOut == DMA_ERROR_OUT_OF_CHANNELS) {
<> 144:ef7eb2e8f9f7 691 dma_channel_free(dmaChannelIn);
<> 144:ef7eb2e8f9f7 692 return false;
<> 144:ef7eb2e8f9f7 693 }
<> 144:ef7eb2e8f9f7 694
<> 144:ef7eb2e8f9f7 695 obj->spi.dmaOptionsTX.dmaChannel = dmaChannelOut;
<> 144:ef7eb2e8f9f7 696 obj->spi.dmaOptionsRX.dmaChannel = dmaChannelIn;
<> 144:ef7eb2e8f9f7 697 return true;
<> 144:ef7eb2e8f9f7 698 }
<> 144:ef7eb2e8f9f7 699
<> 144:ef7eb2e8f9f7 700 /******************************************
<> 144:ef7eb2e8f9f7 701 * void spi_enable_dma(spi_t *obj, DMAUsage state)
<> 144:ef7eb2e8f9f7 702 *
<> 144:ef7eb2e8f9f7 703 * This function tries to allocate DMA as indicated by the hint (state).
<> 144:ef7eb2e8f9f7 704 * There are three possibilities:
<> 144:ef7eb2e8f9f7 705 * * state = NEVER:
<> 144:ef7eb2e8f9f7 706 * if there were channels allocated by state = ALWAYS, they will be released
<> 144:ef7eb2e8f9f7 707 * * state = OPPORTUNITIC:
<> 144:ef7eb2e8f9f7 708 * if there are channels available, they will get used, but freed upon transfer completion
<> 144:ef7eb2e8f9f7 709 * * state = ALWAYS
<> 144:ef7eb2e8f9f7 710 * if there are channels available, they will get allocated and not be freed until state changes
<> 144:ef7eb2e8f9f7 711 ******************************************/
<> 144:ef7eb2e8f9f7 712 void spi_enable_dma(spi_t *obj, DMAUsage state)
<> 144:ef7eb2e8f9f7 713 {
<> 144:ef7eb2e8f9f7 714 if (state == DMA_USAGE_ALWAYS && obj->spi.dmaOptionsTX.dmaUsageState != DMA_USAGE_ALLOCATED) {
<> 144:ef7eb2e8f9f7 715 /* Try to allocate channels */
<> 144:ef7eb2e8f9f7 716 if (spi_allocate_dma(obj)) {
<> 144:ef7eb2e8f9f7 717 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_ALLOCATED;
<> 144:ef7eb2e8f9f7 718 } else {
<> 144:ef7eb2e8f9f7 719 obj->spi.dmaOptionsTX.dmaUsageState = state;
<> 144:ef7eb2e8f9f7 720 }
<> 144:ef7eb2e8f9f7 721 } else if (state == DMA_USAGE_OPPORTUNISTIC) {
<> 144:ef7eb2e8f9f7 722 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED) {
<> 144:ef7eb2e8f9f7 723 /* Channels have already been allocated previously by an ALWAYS state, so after this transfer, we will release them */
<> 144:ef7eb2e8f9f7 724 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
<> 144:ef7eb2e8f9f7 725 } else {
<> 144:ef7eb2e8f9f7 726 /* Try to allocate channels */
<> 144:ef7eb2e8f9f7 727 if (spi_allocate_dma(obj)) {
<> 144:ef7eb2e8f9f7 728 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_TEMPORARY_ALLOCATED;
<> 144:ef7eb2e8f9f7 729 } else {
<> 144:ef7eb2e8f9f7 730 obj->spi.dmaOptionsTX.dmaUsageState = state;
<> 144:ef7eb2e8f9f7 731 }
<> 144:ef7eb2e8f9f7 732 }
<> 144:ef7eb2e8f9f7 733 } else if (state == DMA_USAGE_NEVER) {
<> 144:ef7eb2e8f9f7 734 /* If channels are allocated, get rid of them */
<> 144:ef7eb2e8f9f7 735 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED) {
<> 144:ef7eb2e8f9f7 736 dma_channel_free(obj->spi.dmaOptionsTX.dmaChannel);
<> 144:ef7eb2e8f9f7 737 dma_channel_free(obj->spi.dmaOptionsRX.dmaChannel);
<> 144:ef7eb2e8f9f7 738 }
<> 144:ef7eb2e8f9f7 739 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_NEVER;
<> 144:ef7eb2e8f9f7 740 }
<> 144:ef7eb2e8f9f7 741 }
<> 144:ef7eb2e8f9f7 742
<> 144:ef7eb2e8f9f7 743 #ifdef LDMA_PRESENT
<> 144:ef7eb2e8f9f7 744 /************************************************************************************
<> 144:ef7eb2e8f9f7 745 * DMA helper functions *
<> 144:ef7eb2e8f9f7 746 ************************************************************************************/
<> 144:ef7eb2e8f9f7 747 /******************************************
<> 144:ef7eb2e8f9f7 748 * static void serial_dmaTransferComplete(uint channel, bool primary, void* user)
<> 144:ef7eb2e8f9f7 749 *
<> 144:ef7eb2e8f9f7 750 * Callback function which gets called upon DMA transfer completion
<> 144:ef7eb2e8f9f7 751 * the user-defined pointer is pointing to the CPP-land thunk
<> 144:ef7eb2e8f9f7 752 ******************************************/
<> 144:ef7eb2e8f9f7 753 static void serial_dmaTransferComplete(unsigned int channel, bool primary, void *user)
<> 144:ef7eb2e8f9f7 754 {
<> 144:ef7eb2e8f9f7 755
<> 144:ef7eb2e8f9f7 756 /* User pointer should be a thunk to CPP land */
<> 144:ef7eb2e8f9f7 757 if (user != NULL) {
<> 144:ef7eb2e8f9f7 758 ((DMACallback)user)();
<> 144:ef7eb2e8f9f7 759 }
<> 144:ef7eb2e8f9f7 760 }
<> 144:ef7eb2e8f9f7 761 static void spi_master_dma_channel_setup(spi_t *obj, void* callback)
<> 144:ef7eb2e8f9f7 762 {
<> 144:ef7eb2e8f9f7 763 obj->spi.dmaOptionsRX.dmaCallback.userPtr = callback;
<> 144:ef7eb2e8f9f7 764 }
<> 144:ef7eb2e8f9f7 765 #else
<> 144:ef7eb2e8f9f7 766 /******************************************
<> 144:ef7eb2e8f9f7 767 * void spi_master_dma_channel_setup(spi_t *obj)
<> 144:ef7eb2e8f9f7 768 *
<> 144:ef7eb2e8f9f7 769 * This function will setup the DMA configuration for SPI transfers
<> 144:ef7eb2e8f9f7 770 *
<> 144:ef7eb2e8f9f7 771 * The channel numbers are fetched from the SPI instance, so this function
<> 144:ef7eb2e8f9f7 772 * should only be called when those channels have actually been allocated.
<> 144:ef7eb2e8f9f7 773 ******************************************/
<> 144:ef7eb2e8f9f7 774 static void spi_master_dma_channel_setup(spi_t *obj, void* callback)
<> 144:ef7eb2e8f9f7 775 {
<> 144:ef7eb2e8f9f7 776 DMA_CfgChannel_TypeDef rxChnlCfg;
<> 144:ef7eb2e8f9f7 777 DMA_CfgChannel_TypeDef txChnlCfg;
<> 144:ef7eb2e8f9f7 778
<> 144:ef7eb2e8f9f7 779 /* Setting up channel for rx. */
<> 144:ef7eb2e8f9f7 780 obj->spi.dmaOptionsRX.dmaCallback.cbFunc = transferComplete;
<> 144:ef7eb2e8f9f7 781 obj->spi.dmaOptionsRX.dmaCallback.userPtr = callback;
<> 144:ef7eb2e8f9f7 782
<> 144:ef7eb2e8f9f7 783 rxChnlCfg.highPri = false;
<> 144:ef7eb2e8f9f7 784 rxChnlCfg.enableInt = true;
<> 144:ef7eb2e8f9f7 785 rxChnlCfg.cb = &(obj->spi.dmaOptionsRX.dmaCallback);
<> 144:ef7eb2e8f9f7 786
<> 144:ef7eb2e8f9f7 787 /* Setting up channel for tx. */
<> 144:ef7eb2e8f9f7 788 obj->spi.dmaOptionsTX.dmaCallback.cbFunc = transferComplete;
<> 144:ef7eb2e8f9f7 789 obj->spi.dmaOptionsTX.dmaCallback.userPtr = callback;
<> 144:ef7eb2e8f9f7 790
<> 144:ef7eb2e8f9f7 791 txChnlCfg.highPri = false;
<> 144:ef7eb2e8f9f7 792 txChnlCfg.enableInt = true;
<> 144:ef7eb2e8f9f7 793 txChnlCfg.cb = &(obj->spi.dmaOptionsTX.dmaCallback);
<> 144:ef7eb2e8f9f7 794
<> 144:ef7eb2e8f9f7 795 switch ((int)obj->spi.spi) {
<> 144:ef7eb2e8f9f7 796 #ifdef USART0
<> 144:ef7eb2e8f9f7 797 case SPI_0:
<> 144:ef7eb2e8f9f7 798 rxChnlCfg.select = DMAREQ_USART0_RXDATAV;
<> 144:ef7eb2e8f9f7 799 txChnlCfg.select = DMAREQ_USART0_TXEMPTY;
<> 144:ef7eb2e8f9f7 800 break;
<> 144:ef7eb2e8f9f7 801 #endif
<> 144:ef7eb2e8f9f7 802 #ifdef USART1
<> 144:ef7eb2e8f9f7 803 case SPI_1:
<> 144:ef7eb2e8f9f7 804 rxChnlCfg.select = DMAREQ_USART1_RXDATAV;
<> 144:ef7eb2e8f9f7 805 txChnlCfg.select = DMAREQ_USART1_TXEMPTY;
<> 144:ef7eb2e8f9f7 806 break;
<> 144:ef7eb2e8f9f7 807 #endif
<> 144:ef7eb2e8f9f7 808 #ifdef USART2
<> 144:ef7eb2e8f9f7 809 case SPI_2:
<> 144:ef7eb2e8f9f7 810 rxChnlCfg.select = DMAREQ_USART2_RXDATAV;
<> 144:ef7eb2e8f9f7 811 txChnlCfg.select = DMAREQ_USART2_TXEMPTY;
<> 144:ef7eb2e8f9f7 812 break;
<> 144:ef7eb2e8f9f7 813 #endif
AnnaBridge 179:b0033dcd6934 814 #ifdef USART3
AnnaBridge 179:b0033dcd6934 815 case SPI_3:
AnnaBridge 179:b0033dcd6934 816 rxChnlCfg.select = DMAREQ_USART3_RXDATAV;
AnnaBridge 179:b0033dcd6934 817 txChnlCfg.select = DMAREQ_USART3_TXEMPTY;
AnnaBridge 179:b0033dcd6934 818 break;
AnnaBridge 179:b0033dcd6934 819 #endif
AnnaBridge 179:b0033dcd6934 820 #ifdef USART4
AnnaBridge 179:b0033dcd6934 821 case SPI_4:
AnnaBridge 179:b0033dcd6934 822 rxChnlCfg.select = DMAREQ_USART4_RXDATAV;
AnnaBridge 179:b0033dcd6934 823 txChnlCfg.select = DMAREQ_USART4_TXEMPTY;
AnnaBridge 179:b0033dcd6934 824 break;
AnnaBridge 179:b0033dcd6934 825 #endif
AnnaBridge 179:b0033dcd6934 826 #ifdef USART5
AnnaBridge 179:b0033dcd6934 827 case SPI_5:
AnnaBridge 179:b0033dcd6934 828 rxChnlCfg.select = DMAREQ_USART5_RXDATAV;
AnnaBridge 179:b0033dcd6934 829 txChnlCfg.select = DMAREQ_USART5_TXEMPTY;
AnnaBridge 179:b0033dcd6934 830 break;
AnnaBridge 179:b0033dcd6934 831 #endif
<> 144:ef7eb2e8f9f7 832 default:
<> 144:ef7eb2e8f9f7 833 error("Spi module not available.. Out of bound access.");
<> 144:ef7eb2e8f9f7 834 break;
<> 144:ef7eb2e8f9f7 835 }
<> 144:ef7eb2e8f9f7 836 DMA_CfgChannel(obj->spi.dmaOptionsRX.dmaChannel, &rxChnlCfg);
<> 144:ef7eb2e8f9f7 837 DMA_CfgChannel(obj->spi.dmaOptionsTX.dmaChannel, &txChnlCfg);
<> 144:ef7eb2e8f9f7 838 }
<> 144:ef7eb2e8f9f7 839 #endif // LDMA_PRESENT
<> 144:ef7eb2e8f9f7 840 /******************************************
<> 144:ef7eb2e8f9f7 841 * void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int length)
<> 144:ef7eb2e8f9f7 842 *
<> 144:ef7eb2e8f9f7 843 * This function will start the DMA engine for SPI transfers
<> 144:ef7eb2e8f9f7 844 *
<> 144:ef7eb2e8f9f7 845 * * rxdata: pointer to RX buffer, if needed.
<> 144:ef7eb2e8f9f7 846 * * txdata: pointer to TX buffer, if needed. Else FF's.
<> 144:ef7eb2e8f9f7 847 * * tx_length: how many bytes will get sent.
<> 144:ef7eb2e8f9f7 848 * * rx_length: how many bytes will get received. If > tx_length, TX will get padded with n lower bits of SPI_FILL_WORD.
<> 144:ef7eb2e8f9f7 849 ******************************************/
<> 144:ef7eb2e8f9f7 850 #ifdef LDMA_PRESENT
<> 144:ef7eb2e8f9f7 851 static void spi_activate_dma(spi_t *obj, void* rxdata, const void* txdata, int tx_length, int rx_length)
<> 144:ef7eb2e8f9f7 852 {
<> 144:ef7eb2e8f9f7 853 LDMA_PeripheralSignal_t dma_periph;
<> 144:ef7eb2e8f9f7 854
<> 144:ef7eb2e8f9f7 855 if(rxdata) {
<> 144:ef7eb2e8f9f7 856 volatile const void *source_addr;
<> 144:ef7eb2e8f9f7 857 /* Select RX source address. 9 bit frame length requires to use extended register.
<> 144:ef7eb2e8f9f7 858 10 bit and larger frame requires to use RXDOUBLE register. */
<> 144:ef7eb2e8f9f7 859 switch((int)obj->spi.spi) {
AnnaBridge 179:b0033dcd6934 860 #ifdef USART0
<> 144:ef7eb2e8f9f7 861 case USART_0:
<> 144:ef7eb2e8f9f7 862 dma_periph = ldmaPeripheralSignal_USART0_RXDATAV;
<> 144:ef7eb2e8f9f7 863 break;
AnnaBridge 179:b0033dcd6934 864 #endif
AnnaBridge 179:b0033dcd6934 865 #ifdef USART1
<> 144:ef7eb2e8f9f7 866 case USART_1:
<> 144:ef7eb2e8f9f7 867 dma_periph = ldmaPeripheralSignal_USART1_RXDATAV;
<> 144:ef7eb2e8f9f7 868 break;
AnnaBridge 179:b0033dcd6934 869 #endif
AnnaBridge 179:b0033dcd6934 870 #ifdef USART2
AnnaBridge 179:b0033dcd6934 871 case USART_2:
AnnaBridge 179:b0033dcd6934 872 dma_periph = ldmaPeripheralSignal_USART2_RXDATAV;
AnnaBridge 179:b0033dcd6934 873 break;
AnnaBridge 179:b0033dcd6934 874 #endif
AnnaBridge 179:b0033dcd6934 875 #ifdef USART3
AnnaBridge 179:b0033dcd6934 876 case USART_3:
AnnaBridge 179:b0033dcd6934 877 dma_periph = ldmaPeripheralSignal_USART3_RXDATAV;
AnnaBridge 179:b0033dcd6934 878 break;
AnnaBridge 179:b0033dcd6934 879 #endif
AnnaBridge 179:b0033dcd6934 880 #ifdef USART4
AnnaBridge 179:b0033dcd6934 881 case USART_4:
AnnaBridge 179:b0033dcd6934 882 dma_periph = ldmaPeripheralSignal_USART4_RXDATAV;
AnnaBridge 179:b0033dcd6934 883 break;
AnnaBridge 179:b0033dcd6934 884 #endif
AnnaBridge 179:b0033dcd6934 885 #ifdef USART5
AnnaBridge 179:b0033dcd6934 886 case USART_5:
AnnaBridge 179:b0033dcd6934 887 dma_periph = ldmaPeripheralSignal_USART5_RXDATAV;
AnnaBridge 179:b0033dcd6934 888 break;
AnnaBridge 179:b0033dcd6934 889 #endif
<> 144:ef7eb2e8f9f7 890 default:
<> 144:ef7eb2e8f9f7 891 EFM_ASSERT(0);
<> 144:ef7eb2e8f9f7 892 while(1);
<> 144:ef7eb2e8f9f7 893 break;
<> 144:ef7eb2e8f9f7 894 }
<> 144:ef7eb2e8f9f7 895
<> 144:ef7eb2e8f9f7 896 if (obj->spi.bits <= 8) {
<> 144:ef7eb2e8f9f7 897 source_addr = &obj->spi.spi->RXDATA;
<> 144:ef7eb2e8f9f7 898 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 899 source_addr = &obj->spi.spi->RXDATAX;
<> 144:ef7eb2e8f9f7 900 } else {
<> 144:ef7eb2e8f9f7 901 source_addr = &obj->spi.spi->RXDOUBLE;
<> 144:ef7eb2e8f9f7 902 }
<> 144:ef7eb2e8f9f7 903
<> 144:ef7eb2e8f9f7 904 LDMA_TransferCfg_t xferConf = LDMA_TRANSFER_CFG_PERIPHERAL(dma_periph);
<> 144:ef7eb2e8f9f7 905 LDMA_Descriptor_t desc = LDMA_DESCRIPTOR_SINGLE_P2M_BYTE(source_addr, rxdata, rx_length);
<> 144:ef7eb2e8f9f7 906
<> 144:ef7eb2e8f9f7 907 if(obj->spi.bits >= 9){
<> 144:ef7eb2e8f9f7 908 desc.xfer.size = ldmaCtrlSizeHalf;
<> 144:ef7eb2e8f9f7 909 }
<> 144:ef7eb2e8f9f7 910
<> 144:ef7eb2e8f9f7 911 if (obj->tx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 912 if (obj->spi.bits >= 9) {
<> 144:ef7eb2e8f9f7 913 desc.xfer.dstInc = ldmaCtrlDstIncTwo;
<> 144:ef7eb2e8f9f7 914 } else {
<> 144:ef7eb2e8f9f7 915 desc.xfer.dstInc = ldmaCtrlDstIncFour;
<> 144:ef7eb2e8f9f7 916 }
<> 144:ef7eb2e8f9f7 917 } else if (obj->tx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 918 if (obj->spi.bits >= 9) {
<> 144:ef7eb2e8f9f7 919 desc.xfer.dstInc = ldmaCtrlDstIncOne;
<> 144:ef7eb2e8f9f7 920 } else {
<> 144:ef7eb2e8f9f7 921 desc.xfer.dstInc = ldmaCtrlDstIncTwo;
<> 144:ef7eb2e8f9f7 922 }
<> 144:ef7eb2e8f9f7 923 } else {
<> 144:ef7eb2e8f9f7 924 desc.xfer.dstInc = ldmaCtrlDstIncOne;
<> 144:ef7eb2e8f9f7 925 }
<> 144:ef7eb2e8f9f7 926
<> 144:ef7eb2e8f9f7 927 LDMAx_StartTransfer(obj->spi.dmaOptionsRX.dmaChannel, &xferConf, &desc, serial_dmaTransferComplete,obj->spi.dmaOptionsRX.dmaCallback.userPtr);
<> 144:ef7eb2e8f9f7 928 }
<> 144:ef7eb2e8f9f7 929
<> 144:ef7eb2e8f9f7 930 volatile void *target_addr;
<> 144:ef7eb2e8f9f7 931
<> 144:ef7eb2e8f9f7 932 /* Select TX target address. 9 bit frame length requires to use extended register.
<> 144:ef7eb2e8f9f7 933 10 bit and larger frame requires to use TXDOUBLE register. */
<> 144:ef7eb2e8f9f7 934 switch ((int)obj->spi.spi) {
<> 144:ef7eb2e8f9f7 935 case USART_0:
<> 144:ef7eb2e8f9f7 936 dma_periph = ldmaPeripheralSignal_USART0_TXBL;
<> 144:ef7eb2e8f9f7 937 break;
<> 144:ef7eb2e8f9f7 938 case USART_1:
<> 144:ef7eb2e8f9f7 939 dma_periph = ldmaPeripheralSignal_USART1_TXBL;
<> 144:ef7eb2e8f9f7 940 break;
<> 144:ef7eb2e8f9f7 941 default:
<> 144:ef7eb2e8f9f7 942 EFM_ASSERT(0);
<> 144:ef7eb2e8f9f7 943 while(1);
<> 144:ef7eb2e8f9f7 944 break;
<> 144:ef7eb2e8f9f7 945 }
<> 144:ef7eb2e8f9f7 946
<> 144:ef7eb2e8f9f7 947 if (obj->spi.bits <= 8) {
<> 144:ef7eb2e8f9f7 948 target_addr = &obj->spi.spi->TXDATA;
<> 144:ef7eb2e8f9f7 949 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 950 target_addr = &obj->spi.spi->TXDATAX;
<> 144:ef7eb2e8f9f7 951 } else {
<> 144:ef7eb2e8f9f7 952 target_addr = &obj->spi.spi->TXDOUBLE;
<> 144:ef7eb2e8f9f7 953 }
<> 144:ef7eb2e8f9f7 954
<> 144:ef7eb2e8f9f7 955 /* Check the transmit length, and split long transfers to smaller ones */
<> 144:ef7eb2e8f9f7 956 int max_length = 1024;
<> 144:ef7eb2e8f9f7 957 #ifdef _LDMA_CH_CTRL_XFERCNT_MASK
<> 144:ef7eb2e8f9f7 958 max_length = (_LDMA_CH_CTRL_XFERCNT_MASK>>_LDMA_CH_CTRL_XFERCNT_SHIFT)+1;
<> 144:ef7eb2e8f9f7 959 #endif
<> 144:ef7eb2e8f9f7 960 if (tx_length > max_length) {
<> 144:ef7eb2e8f9f7 961 tx_length = max_length;
<> 144:ef7eb2e8f9f7 962 }
<> 144:ef7eb2e8f9f7 963
<> 144:ef7eb2e8f9f7 964 /* Save amount of TX done by DMA */
<> 144:ef7eb2e8f9f7 965 obj->tx_buff.pos += tx_length;
<> 144:ef7eb2e8f9f7 966
<> 144:ef7eb2e8f9f7 967 LDMA_TransferCfg_t xferConf = LDMA_TRANSFER_CFG_PERIPHERAL(dma_periph);
<> 144:ef7eb2e8f9f7 968 LDMA_Descriptor_t desc = LDMA_DESCRIPTOR_SINGLE_M2P_BYTE((txdata ? txdata : &fill_word), target_addr, tx_length);
<> 144:ef7eb2e8f9f7 969
<> 144:ef7eb2e8f9f7 970 if (obj->spi.bits >= 9) {
<> 144:ef7eb2e8f9f7 971 desc.xfer.size = ldmaCtrlSizeHalf;
<> 144:ef7eb2e8f9f7 972 }
<> 144:ef7eb2e8f9f7 973
<> 144:ef7eb2e8f9f7 974 if (!txdata) {
<> 144:ef7eb2e8f9f7 975 desc.xfer.srcInc = ldmaCtrlSrcIncNone;
<> 144:ef7eb2e8f9f7 976 } else if (obj->tx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 977 if (obj->spi.bits >= 9) {
<> 144:ef7eb2e8f9f7 978 desc.xfer.srcInc = ldmaCtrlSrcIncTwo;
<> 144:ef7eb2e8f9f7 979 } else {
<> 144:ef7eb2e8f9f7 980 desc.xfer.srcInc = ldmaCtrlSrcIncFour;
<> 144:ef7eb2e8f9f7 981 }
<> 144:ef7eb2e8f9f7 982 } else if (obj->tx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 983 if (obj->spi.bits >= 9) {
<> 144:ef7eb2e8f9f7 984 desc.xfer.srcInc = ldmaCtrlSrcIncOne;
<> 144:ef7eb2e8f9f7 985 } else {
<> 144:ef7eb2e8f9f7 986 desc.xfer.srcInc = ldmaCtrlSrcIncTwo;
<> 144:ef7eb2e8f9f7 987 }
<> 144:ef7eb2e8f9f7 988 } else {
<> 144:ef7eb2e8f9f7 989 desc.xfer.srcInc = ldmaCtrlSrcIncOne;
<> 144:ef7eb2e8f9f7 990 }
<> 144:ef7eb2e8f9f7 991
<> 144:ef7eb2e8f9f7 992 // Kick off DMA TX
<> 144:ef7eb2e8f9f7 993 LDMAx_StartTransfer(obj->spi.dmaOptionsTX.dmaChannel, &xferConf, &desc, serial_dmaTransferComplete,obj->spi.dmaOptionsTX.dmaCallback.userPtr);
<> 144:ef7eb2e8f9f7 994 }
<> 144:ef7eb2e8f9f7 995
<> 144:ef7eb2e8f9f7 996 #else
<> 144:ef7eb2e8f9f7 997 /******************************************
<> 144:ef7eb2e8f9f7 998 * void spi_activate_dma(spi_t *obj, void* rxdata, void* txdata, int length)
<> 144:ef7eb2e8f9f7 999 *
<> 144:ef7eb2e8f9f7 1000 * This function will start the DMA engine for SPI transfers
<> 144:ef7eb2e8f9f7 1001 *
<> 144:ef7eb2e8f9f7 1002 * * rxdata: pointer to RX buffer, if needed.
<> 144:ef7eb2e8f9f7 1003 * * txdata: pointer to TX buffer, if needed. Else FF's.
<> 144:ef7eb2e8f9f7 1004 * * tx_length: how many bytes will get sent.
<> 144:ef7eb2e8f9f7 1005 * * rx_length: how many bytes will get received. If > tx_length, TX will get padded with n lower bits of SPI_FILL_WORD.
<> 144:ef7eb2e8f9f7 1006 ******************************************/
<> 144:ef7eb2e8f9f7 1007 static void spi_activate_dma(spi_t *obj, void* rxdata, const void* txdata, int tx_length, int rx_length)
<> 144:ef7eb2e8f9f7 1008 {
<> 144:ef7eb2e8f9f7 1009 /* DMA descriptors */
<> 144:ef7eb2e8f9f7 1010 DMA_CfgDescr_TypeDef rxDescrCfg;
<> 144:ef7eb2e8f9f7 1011 DMA_CfgDescr_TypeDef txDescrCfg;
<> 144:ef7eb2e8f9f7 1012
<> 144:ef7eb2e8f9f7 1013 /* Split up transfers if the length is larger than what the DMA supports. */
<> 144:ef7eb2e8f9f7 1014 const int DMA_MAX_TRANSFER = (_DMA_CTRL_N_MINUS_1_MASK >> _DMA_CTRL_N_MINUS_1_SHIFT);
<> 144:ef7eb2e8f9f7 1015
<> 144:ef7eb2e8f9f7 1016 if (tx_length > DMA_MAX_TRANSFER) {
<> 144:ef7eb2e8f9f7 1017 tx_length = DMA_MAX_TRANSFER;
<> 144:ef7eb2e8f9f7 1018 }
<> 144:ef7eb2e8f9f7 1019 if (rx_length > DMA_MAX_TRANSFER) {
<> 144:ef7eb2e8f9f7 1020 rx_length = DMA_MAX_TRANSFER;
<> 144:ef7eb2e8f9f7 1021 }
<> 144:ef7eb2e8f9f7 1022
<> 144:ef7eb2e8f9f7 1023 /* Save amount of TX done by DMA */
<> 144:ef7eb2e8f9f7 1024 obj->tx_buff.pos += tx_length;
<> 144:ef7eb2e8f9f7 1025 obj->rx_buff.pos += rx_length;
<> 144:ef7eb2e8f9f7 1026
<> 144:ef7eb2e8f9f7 1027 /* Only activate RX DMA if a receive buffer is specified */
<> 144:ef7eb2e8f9f7 1028 if (rxdata != NULL) {
<> 144:ef7eb2e8f9f7 1029 // Setting up channel descriptor
<> 144:ef7eb2e8f9f7 1030 if (obj->rx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 1031 rxDescrCfg.dstInc = dmaDataInc4;
<> 144:ef7eb2e8f9f7 1032 } else if (obj->rx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 1033 rxDescrCfg.dstInc = dmaDataInc2;
<> 144:ef7eb2e8f9f7 1034 } else {
<> 144:ef7eb2e8f9f7 1035 rxDescrCfg.dstInc = dmaDataInc1;
<> 144:ef7eb2e8f9f7 1036 }
<> 144:ef7eb2e8f9f7 1037 rxDescrCfg.srcInc = dmaDataIncNone;
<> 144:ef7eb2e8f9f7 1038 rxDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size >= 9, use RXDOUBLE
<> 144:ef7eb2e8f9f7 1039 rxDescrCfg.arbRate = dmaArbitrate1;
<> 144:ef7eb2e8f9f7 1040 rxDescrCfg.hprot = 0;
<> 144:ef7eb2e8f9f7 1041 DMA_CfgDescr(obj->spi.dmaOptionsRX.dmaChannel, true, &rxDescrCfg);
<> 144:ef7eb2e8f9f7 1042
<> 144:ef7eb2e8f9f7 1043 void * rx_reg;
<> 144:ef7eb2e8f9f7 1044 if (obj->spi.bits > 9) {
<> 144:ef7eb2e8f9f7 1045 rx_reg = (void *)&obj->spi.spi->RXDOUBLE;
<> 144:ef7eb2e8f9f7 1046 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 1047 rx_reg = (void *)&obj->spi.spi->RXDATAX;
<> 144:ef7eb2e8f9f7 1048 } else {
<> 144:ef7eb2e8f9f7 1049 rx_reg = (void *)&obj->spi.spi->RXDATA;
<> 144:ef7eb2e8f9f7 1050 }
<> 144:ef7eb2e8f9f7 1051
<> 144:ef7eb2e8f9f7 1052 /* Activate RX channel */
<> 144:ef7eb2e8f9f7 1053 DMA_ActivateBasic(obj->spi.dmaOptionsRX.dmaChannel,
<> 144:ef7eb2e8f9f7 1054 true,
<> 144:ef7eb2e8f9f7 1055 false,
<> 144:ef7eb2e8f9f7 1056 rxdata,
<> 144:ef7eb2e8f9f7 1057 rx_reg,
<> 144:ef7eb2e8f9f7 1058 rx_length - 1);
<> 144:ef7eb2e8f9f7 1059 }
<> 144:ef7eb2e8f9f7 1060
<> 144:ef7eb2e8f9f7 1061 // buffer with all FFs.
<> 144:ef7eb2e8f9f7 1062 /* Setting up channel descriptor */
<> 144:ef7eb2e8f9f7 1063 txDescrCfg.dstInc = dmaDataIncNone;
<> 144:ef7eb2e8f9f7 1064 if (txdata == 0) {
<> 144:ef7eb2e8f9f7 1065 // Don't increment source when there is no transmit buffer
<> 144:ef7eb2e8f9f7 1066 txDescrCfg.srcInc = dmaDataIncNone;
<> 144:ef7eb2e8f9f7 1067 } else {
<> 144:ef7eb2e8f9f7 1068 if (obj->tx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 1069 txDescrCfg.srcInc = dmaDataInc4;
<> 144:ef7eb2e8f9f7 1070 } else if (obj->tx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 1071 txDescrCfg.srcInc = dmaDataInc2;
<> 144:ef7eb2e8f9f7 1072 } else {
<> 144:ef7eb2e8f9f7 1073 txDescrCfg.srcInc = dmaDataInc1;
<> 144:ef7eb2e8f9f7 1074 }
<> 144:ef7eb2e8f9f7 1075 }
<> 144:ef7eb2e8f9f7 1076 txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size >= 9, use TXDOUBLE
<> 144:ef7eb2e8f9f7 1077 txDescrCfg.arbRate = dmaArbitrate1;
<> 144:ef7eb2e8f9f7 1078 txDescrCfg.hprot = 0;
<> 144:ef7eb2e8f9f7 1079 DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
<> 144:ef7eb2e8f9f7 1080
<> 144:ef7eb2e8f9f7 1081 void * tx_reg;
<> 144:ef7eb2e8f9f7 1082 if (obj->spi.bits > 9) {
<> 144:ef7eb2e8f9f7 1083 tx_reg = (void *)&obj->spi.spi->TXDOUBLE;
<> 144:ef7eb2e8f9f7 1084 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 1085 tx_reg = (void *)&obj->spi.spi->TXDATAX;
<> 144:ef7eb2e8f9f7 1086 } else {
<> 144:ef7eb2e8f9f7 1087 tx_reg = (void *)&obj->spi.spi->TXDATA;
<> 144:ef7eb2e8f9f7 1088 }
<> 144:ef7eb2e8f9f7 1089
<> 144:ef7eb2e8f9f7 1090 /* Activate TX channel */
<> 144:ef7eb2e8f9f7 1091 DMA_ActivateBasic(obj->spi.dmaOptionsTX.dmaChannel,
<> 144:ef7eb2e8f9f7 1092 true,
<> 144:ef7eb2e8f9f7 1093 false,
<> 144:ef7eb2e8f9f7 1094 tx_reg,
<> 144:ef7eb2e8f9f7 1095 (txdata == 0 ? &fill_word : (void *)txdata), // When there is nothing to transmit, point to static fill word
<> 144:ef7eb2e8f9f7 1096 (tx_length - 1));
<> 144:ef7eb2e8f9f7 1097 }
<> 144:ef7eb2e8f9f7 1098 #endif //LDMA_PRESENT
<> 144:ef7eb2e8f9f7 1099 /********************************************************************
<> 144:ef7eb2e8f9f7 1100 * spi_master_transfer_dma(spi_t *obj, void *rxdata, void *txdata, int length, DMACallback cb, DMAUsage hint)
<> 144:ef7eb2e8f9f7 1101 *
<> 144:ef7eb2e8f9f7 1102 * Start an SPI transfer by using DMA and the supplied hint for DMA useage
<> 144:ef7eb2e8f9f7 1103 *
<> 144:ef7eb2e8f9f7 1104 * * obj: pointer to specific SPI instance
<> 144:ef7eb2e8f9f7 1105 * * rxdata: pointer to rx buffer. If null, we will assume only TX is relevant, and RX will be ignored.
<> 144:ef7eb2e8f9f7 1106 * * txdata: pointer to TX buffer. If null, we will assume only the read is relevant, and will send FF's for reading back.
<> 144:ef7eb2e8f9f7 1107 * * length: How many bytes should be written/read.
<> 144:ef7eb2e8f9f7 1108 * * cb: thunk pointer into CPP-land to get the spi object
<> 144:ef7eb2e8f9f7 1109 * * hint: hint for the requested DMA useage.
<> 144:ef7eb2e8f9f7 1110 * * NEVER: do not use DMA, but use IRQ instead
<> 144:ef7eb2e8f9f7 1111 * * OPPORTUNISTIC: use DMA if there are channels available, but return them after the transfer.
<> 144:ef7eb2e8f9f7 1112 * * ALWAYS: use DMA if channels are available, and hold on to the channels after the transfer.
<> 144:ef7eb2e8f9f7 1113 * If the previous transfer has kept the channel, that channel will continue to get used.
<> 144:ef7eb2e8f9f7 1114 *
<> 144:ef7eb2e8f9f7 1115 ********************************************************************/
<> 144:ef7eb2e8f9f7 1116 void spi_master_transfer_dma(spi_t *obj, const void *txdata, void *rxdata, int tx_length, int rx_length, void* cb, DMAUsage hint)
<> 144:ef7eb2e8f9f7 1117 {
<> 144:ef7eb2e8f9f7 1118 /* Init DMA here to include it in the power figure */
<> 144:ef7eb2e8f9f7 1119 dma_init();
<> 144:ef7eb2e8f9f7 1120 /* Clear TX and RX registers */
<> 144:ef7eb2e8f9f7 1121 obj->spi.spi->CMD = USART_CMD_CLEARTX;
<> 144:ef7eb2e8f9f7 1122 obj->spi.spi->CMD = USART_CMD_CLEARRX;
<> 144:ef7eb2e8f9f7 1123 /* If the DMA channels are already allocated, we can assume they have been setup already */
<> 144:ef7eb2e8f9f7 1124 if (hint != DMA_USAGE_NEVER && obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1125 /* setup has already been done, so just activate the transfer */
<> 144:ef7eb2e8f9f7 1126 spi_activate_dma(obj, rxdata, txdata, tx_length, rx_length);
<> 144:ef7eb2e8f9f7 1127 } else if (hint == DMA_USAGE_NEVER) {
<> 144:ef7eb2e8f9f7 1128 /* use IRQ */
<> 144:ef7eb2e8f9f7 1129 obj->spi.spi->IFC = 0xFFFFFFFF;
<> 144:ef7eb2e8f9f7 1130 spi_master_write_asynch(obj);
<> 144:ef7eb2e8f9f7 1131 spi_enable_interrupt(obj, (uint32_t)cb, true);
<> 144:ef7eb2e8f9f7 1132 } else {
<> 144:ef7eb2e8f9f7 1133 /* try to acquire channels */
<> 144:ef7eb2e8f9f7 1134 dma_init();
<> 144:ef7eb2e8f9f7 1135 spi_enable_dma(obj, hint);
<> 144:ef7eb2e8f9f7 1136
<> 144:ef7eb2e8f9f7 1137 /* decide between DMA and IRQ */
<> 144:ef7eb2e8f9f7 1138 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED || obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1139 /* disable the interrupts that may have been left open previously */
<> 144:ef7eb2e8f9f7 1140 spi_enable_interrupt(obj, (uint32_t)cb, false);
<> 144:ef7eb2e8f9f7 1141
<> 144:ef7eb2e8f9f7 1142 /* DMA channels are allocated, so do their setup */
<> 144:ef7eb2e8f9f7 1143 spi_master_dma_channel_setup(obj, cb);
<> 144:ef7eb2e8f9f7 1144 /* and activate the transfer */
<> 144:ef7eb2e8f9f7 1145 spi_activate_dma(obj, rxdata, txdata, tx_length, rx_length);
<> 144:ef7eb2e8f9f7 1146 } else {
<> 144:ef7eb2e8f9f7 1147 /* DMA is unavailable, so fall back to IRQ */
<> 144:ef7eb2e8f9f7 1148 obj->spi.spi->IFC = 0xFFFFFFFF;
<> 144:ef7eb2e8f9f7 1149 spi_master_write_asynch(obj);
<> 144:ef7eb2e8f9f7 1150 spi_enable_interrupt(obj, (uint32_t)cb, true);
<> 144:ef7eb2e8f9f7 1151 }
<> 144:ef7eb2e8f9f7 1152 }
<> 144:ef7eb2e8f9f7 1153 }
<> 144:ef7eb2e8f9f7 1154
<> 144:ef7eb2e8f9f7 1155 /** Begin the SPI transfer. Buffer pointers and lengths are specified in tx_buff and rx_buff
<> 144:ef7eb2e8f9f7 1156 *
<> 144:ef7eb2e8f9f7 1157 * @param[in] obj The SPI object which holds the transfer information
<> 144:ef7eb2e8f9f7 1158 * @param[in] tx The buffer to send
<> 144:ef7eb2e8f9f7 1159 * @param[in] tx_length The number of words to transmit
<> 144:ef7eb2e8f9f7 1160 * @param[in] rx The buffer to receive
<> 144:ef7eb2e8f9f7 1161 * @param[in] rx_length The number of words to receive
<> 144:ef7eb2e8f9f7 1162 * @param[in] bit_width The bit width of buffer words
<> 144:ef7eb2e8f9f7 1163 * @param[in] event The logical OR of events to be registered
<> 144:ef7eb2e8f9f7 1164 * @param[in] handler SPI interrupt handler
<> 144:ef7eb2e8f9f7 1165 * @param[in] hint A suggestion for how to use DMA with this transfer
<> 144:ef7eb2e8f9f7 1166 */
<> 144:ef7eb2e8f9f7 1167 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
<> 144:ef7eb2e8f9f7 1168 {
<> 144:ef7eb2e8f9f7 1169 if( spi_active(obj) ) return;
<> 144:ef7eb2e8f9f7 1170
<> 144:ef7eb2e8f9f7 1171 /* update fill word if on 9-bit frame size */
<> 144:ef7eb2e8f9f7 1172 if(obj->spi.bits == 9) fill_word = SPI_FILL_WORD & 0x1FF;
<> 144:ef7eb2e8f9f7 1173 else fill_word = SPI_FILL_WORD;
<> 144:ef7eb2e8f9f7 1174
<> 144:ef7eb2e8f9f7 1175 /* check corner case */
<> 144:ef7eb2e8f9f7 1176 if(tx_length == 0) {
<> 144:ef7eb2e8f9f7 1177 tx_length = rx_length;
<> 144:ef7eb2e8f9f7 1178 tx = (void*) 0;
<> 144:ef7eb2e8f9f7 1179 }
<> 144:ef7eb2e8f9f7 1180
<> 144:ef7eb2e8f9f7 1181 /* First, set the buffer */
<> 144:ef7eb2e8f9f7 1182 spi_buffer_set(obj, tx, tx_length, rx, rx_length, bit_width);
<> 144:ef7eb2e8f9f7 1183
<> 144:ef7eb2e8f9f7 1184 /* Then, enable the events */
<> 144:ef7eb2e8f9f7 1185 spi_enable_event(obj, SPI_EVENT_ALL, false);
<> 144:ef7eb2e8f9f7 1186 spi_enable_event(obj, event, true);
<> 144:ef7eb2e8f9f7 1187
<> 144:ef7eb2e8f9f7 1188 // Set the sleep mode
Anna Bridge 180:96ed750bd169 1189 sleep_manager_lock_deep_sleep();
<> 144:ef7eb2e8f9f7 1190
<> 144:ef7eb2e8f9f7 1191 /* And kick off the transfer */
<> 144:ef7eb2e8f9f7 1192 spi_master_transfer_dma(obj, tx, rx, tx_length, rx_length, (void*)handler, hint);
<> 144:ef7eb2e8f9f7 1193 }
<> 144:ef7eb2e8f9f7 1194
<> 144:ef7eb2e8f9f7 1195
<> 144:ef7eb2e8f9f7 1196 /********************************************************************
<> 144:ef7eb2e8f9f7 1197 * uint32_t spi_irq_handler_generic(spi_t* obj)
<> 144:ef7eb2e8f9f7 1198 *
<> 144:ef7eb2e8f9f7 1199 * handler which should get called by CPP-land when either a DMA or SPI IRQ gets fired for a SPI transaction.
<> 144:ef7eb2e8f9f7 1200 *
<> 144:ef7eb2e8f9f7 1201 * * obj: pointer to the specific SPI instance
<> 144:ef7eb2e8f9f7 1202 *
<> 144:ef7eb2e8f9f7 1203 * return: event mask. Currently only 0 or SPI_EVENT_COMPLETE upon transfer completion.
<> 144:ef7eb2e8f9f7 1204 *
<> 144:ef7eb2e8f9f7 1205 ********************************************************************/
<> 144:ef7eb2e8f9f7 1206 #ifdef LDMA_PRESENT
<> 144:ef7eb2e8f9f7 1207 uint32_t spi_irq_handler_asynch(spi_t* obj)
<> 144:ef7eb2e8f9f7 1208 {
<> 144:ef7eb2e8f9f7 1209 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED || obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1210 /* DMA implementation */
<> 144:ef7eb2e8f9f7 1211 /* If there is still data in the TX buffer, setup a new transfer. */
<> 144:ef7eb2e8f9f7 1212 if (obj->tx_buff.pos < obj->tx_buff.length) {
<> 144:ef7eb2e8f9f7 1213 /* Find position and remaining length without modifying tx_buff. */
<> 144:ef7eb2e8f9f7 1214 void* tx_pointer = (char*)obj->tx_buff.buffer + obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1215 uint32_t tx_length = obj->tx_buff.length - obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1216
<> 144:ef7eb2e8f9f7 1217 /* Begin transfer. Rely on spi_activate_dma to split up the transfer further. */
<> 144:ef7eb2e8f9f7 1218 spi_activate_dma(obj, obj->rx_buff.buffer, tx_pointer, tx_length, obj->rx_buff.length);
<> 144:ef7eb2e8f9f7 1219
<> 144:ef7eb2e8f9f7 1220 return 0;
<> 144:ef7eb2e8f9f7 1221 }
<> 144:ef7eb2e8f9f7 1222 /* If there is an RX transfer ongoing, wait for it to finish */
<> 144:ef7eb2e8f9f7 1223 if (LDMAx_ChannelEnabled(obj->spi.dmaOptionsRX.dmaChannel)) {
<> 144:ef7eb2e8f9f7 1224 /* Check if we need to kick off TX transfer again to force more incoming data. */
<> 144:ef7eb2e8f9f7 1225 if (LDMA_TransferDone(obj->spi.dmaOptionsTX.dmaChannel) && (obj->tx_buff.pos < obj->rx_buff.length)) {
<> 144:ef7eb2e8f9f7 1226 void* tx_pointer = (char*)obj->tx_buff.buffer + obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1227 uint32_t tx_length = obj->tx_buff.length - obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1228 /* Begin transfer. Rely on spi_activate_dma to split up the transfer further. */
<> 144:ef7eb2e8f9f7 1229 spi_activate_dma(obj, obj->rx_buff.buffer, tx_pointer, tx_length, obj->rx_buff.length);
<> 144:ef7eb2e8f9f7 1230 } else return 0;
<> 144:ef7eb2e8f9f7 1231 }
<> 144:ef7eb2e8f9f7 1232 /* If there is still a TX transfer ongoing (tx_length > rx_length), wait for it to finish */
<> 144:ef7eb2e8f9f7 1233 if (!LDMA_TransferDone(obj->spi.dmaOptionsTX.dmaChannel)) {
<> 144:ef7eb2e8f9f7 1234 return 0;
<> 144:ef7eb2e8f9f7 1235 }
<> 144:ef7eb2e8f9f7 1236 /* Release the dma channels if they were opportunistically allocated */
<> 144:ef7eb2e8f9f7 1237 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1238 dma_channel_free(obj->spi.dmaOptionsTX.dmaChannel);
<> 144:ef7eb2e8f9f7 1239 dma_channel_free(obj->spi.dmaOptionsRX.dmaChannel);
<> 144:ef7eb2e8f9f7 1240 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
<> 144:ef7eb2e8f9f7 1241 }
<> 144:ef7eb2e8f9f7 1242
<> 144:ef7eb2e8f9f7 1243 /* Wait transmit to complete, before user code is indicated*/
<> 144:ef7eb2e8f9f7 1244 while(!(obj->spi.spi->STATUS & USART_STATUS_TXC));
Anna Bridge 180:96ed750bd169 1245 sleep_manager_unlock_deep_sleep();
<> 144:ef7eb2e8f9f7 1246 /* return to CPP land to say we're finished */
<> 144:ef7eb2e8f9f7 1247 return SPI_EVENT_COMPLETE;
<> 144:ef7eb2e8f9f7 1248 } else {
<> 144:ef7eb2e8f9f7 1249 /* IRQ implementation */
<> 144:ef7eb2e8f9f7 1250 if (spi_master_rx_int_flag(obj)) {
<> 144:ef7eb2e8f9f7 1251 spi_master_read_asynch(obj);
<> 144:ef7eb2e8f9f7 1252 }
<> 144:ef7eb2e8f9f7 1253
<> 144:ef7eb2e8f9f7 1254 if (spi_master_tx_int_flag(obj)) {
<> 144:ef7eb2e8f9f7 1255 spi_master_write_asynch(obj);
<> 144:ef7eb2e8f9f7 1256 }
<> 144:ef7eb2e8f9f7 1257
<> 144:ef7eb2e8f9f7 1258 uint32_t event = spi_event_check(obj);
<> 144:ef7eb2e8f9f7 1259 if (event & SPI_EVENT_INTERNAL_TRANSFER_COMPLETE) {
<> 144:ef7eb2e8f9f7 1260 /* disable interrupts */
<> 144:ef7eb2e8f9f7 1261 spi_enable_interrupt(obj, (uint32_t)NULL, false);
<> 144:ef7eb2e8f9f7 1262
Anna Bridge 180:96ed750bd169 1263 sleep_manager_unlock_deep_sleep();
<> 144:ef7eb2e8f9f7 1264 /* Return the event back to userland */
<> 144:ef7eb2e8f9f7 1265 return event;
<> 144:ef7eb2e8f9f7 1266 }
<> 144:ef7eb2e8f9f7 1267
<> 144:ef7eb2e8f9f7 1268 return 0;
<> 144:ef7eb2e8f9f7 1269 }
<> 144:ef7eb2e8f9f7 1270 }
<> 144:ef7eb2e8f9f7 1271 #else
<> 144:ef7eb2e8f9f7 1272 uint32_t spi_irq_handler_asynch(spi_t* obj)
<> 144:ef7eb2e8f9f7 1273 {
<> 144:ef7eb2e8f9f7 1274
<> 144:ef7eb2e8f9f7 1275 /* Determine whether the current scenario is DMA or IRQ, and act accordingly */
<> 144:ef7eb2e8f9f7 1276
<> 144:ef7eb2e8f9f7 1277 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED || obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1278 /* DMA implementation */
<> 144:ef7eb2e8f9f7 1279
<> 144:ef7eb2e8f9f7 1280 /* If there is still data in the TX buffer, setup a new transfer. */
<> 144:ef7eb2e8f9f7 1281 if (obj->tx_buff.pos < obj->tx_buff.length) {
<> 144:ef7eb2e8f9f7 1282 /* If there is still a TX transfer ongoing, let it finish
<> 144:ef7eb2e8f9f7 1283 * before (if necessary) kicking off a new transfer */
<> 144:ef7eb2e8f9f7 1284 if (DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel)) {
<> 144:ef7eb2e8f9f7 1285 return 0;
<> 144:ef7eb2e8f9f7 1286 }
<> 144:ef7eb2e8f9f7 1287 /* Find position and remaining length without modifying tx_buff. */
<> 144:ef7eb2e8f9f7 1288 void * tx_pointer;
<> 144:ef7eb2e8f9f7 1289 if (obj->tx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 1290 tx_pointer = ((uint32_t *)obj->tx_buff.buffer) + obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1291 } else if (obj->tx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 1292 tx_pointer = ((uint16_t *)obj->tx_buff.buffer) + obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1293 } else {
<> 144:ef7eb2e8f9f7 1294 tx_pointer = ((uint8_t *)obj->tx_buff.buffer) + obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1295 }
<> 144:ef7eb2e8f9f7 1296 uint32_t tx_length = obj->tx_buff.length - obj->tx_buff.pos;
<> 144:ef7eb2e8f9f7 1297
<> 144:ef7eb2e8f9f7 1298 /* Refresh RX transfer too if it exists */
<> 144:ef7eb2e8f9f7 1299 void * rx_pointer = NULL;
<> 144:ef7eb2e8f9f7 1300 if (obj->rx_buff.pos < obj->rx_buff.length) {
<> 144:ef7eb2e8f9f7 1301 if (obj->rx_buff.width == 32) {
<> 144:ef7eb2e8f9f7 1302 rx_pointer = ((uint32_t *)obj->rx_buff.buffer) + obj->rx_buff.pos;
<> 144:ef7eb2e8f9f7 1303 } else if (obj->rx_buff.width == 16) {
<> 144:ef7eb2e8f9f7 1304 rx_pointer = ((uint16_t *)obj->rx_buff.buffer) + obj->rx_buff.pos;
<> 144:ef7eb2e8f9f7 1305 } else {
<> 144:ef7eb2e8f9f7 1306 rx_pointer = ((uint8_t *)obj->rx_buff.buffer) + obj->rx_buff.pos;
AnnaBridge 179:b0033dcd6934 1307 }
<> 144:ef7eb2e8f9f7 1308 }
<> 144:ef7eb2e8f9f7 1309 uint32_t rx_length = obj->rx_buff.length - obj->rx_buff.pos;
<> 144:ef7eb2e8f9f7 1310
<> 144:ef7eb2e8f9f7 1311 /* Wait for the previous transfer to complete. */
<> 144:ef7eb2e8f9f7 1312 while(!(obj->spi.spi->STATUS & USART_STATUS_TXC));
<> 144:ef7eb2e8f9f7 1313
<> 144:ef7eb2e8f9f7 1314 /* Begin transfer. Rely on spi_activate_dma to split up the transfer further. */
<> 144:ef7eb2e8f9f7 1315 spi_activate_dma(obj, rx_pointer, tx_pointer, tx_length, rx_length);
<> 144:ef7eb2e8f9f7 1316
<> 144:ef7eb2e8f9f7 1317 return 0;
<> 144:ef7eb2e8f9f7 1318 }
<> 144:ef7eb2e8f9f7 1319
<> 144:ef7eb2e8f9f7 1320 /* If an RX transfer is ongoing, continue processing RX data */
<> 144:ef7eb2e8f9f7 1321 if (DMA_ChannelEnabled(obj->spi.dmaOptionsRX.dmaChannel)) {
<> 144:ef7eb2e8f9f7 1322 /* Check if we need to kick off TX transfer again to force more incoming data. */
<> 144:ef7eb2e8f9f7 1323 if (!DMA_ChannelEnabled(obj->spi.dmaOptionsTX.dmaChannel) && (obj->rx_buff.pos < obj->rx_buff.length)) {
<> 144:ef7eb2e8f9f7 1324 //Save state of TX transfer amount
<> 144:ef7eb2e8f9f7 1325 int length_diff = obj->rx_buff.length - obj->rx_buff.pos;
<> 144:ef7eb2e8f9f7 1326 obj->tx_buff.pos = obj->rx_buff.length;
<> 144:ef7eb2e8f9f7 1327
<> 144:ef7eb2e8f9f7 1328 //Kick off a new DMA transfer
<> 144:ef7eb2e8f9f7 1329 DMA_CfgDescr_TypeDef txDescrCfg;
<> 144:ef7eb2e8f9f7 1330
<> 144:ef7eb2e8f9f7 1331 fill_word = SPI_FILL_WORD;
<> 144:ef7eb2e8f9f7 1332 /* Setting up channel descriptor */
<> 144:ef7eb2e8f9f7 1333 txDescrCfg.dstInc = dmaDataIncNone;
<> 144:ef7eb2e8f9f7 1334 txDescrCfg.srcInc = dmaDataIncNone; //Do not increment source pointer when there is no transmit buffer
<> 144:ef7eb2e8f9f7 1335 txDescrCfg.size = (obj->spi.bits <= 8 ? dmaDataSize1 : dmaDataSize2); //When frame size > 9, we can use TXDOUBLE to save bandwidth
<> 144:ef7eb2e8f9f7 1336 txDescrCfg.arbRate = dmaArbitrate1;
<> 144:ef7eb2e8f9f7 1337 txDescrCfg.hprot = 0;
<> 144:ef7eb2e8f9f7 1338 DMA_CfgDescr(obj->spi.dmaOptionsTX.dmaChannel, true, &txDescrCfg);
<> 144:ef7eb2e8f9f7 1339
<> 144:ef7eb2e8f9f7 1340 void * tx_reg;
<> 144:ef7eb2e8f9f7 1341 if (obj->spi.bits > 9) {
<> 144:ef7eb2e8f9f7 1342 tx_reg = (void *)&obj->spi.spi->TXDOUBLE;
<> 144:ef7eb2e8f9f7 1343 } else if (obj->spi.bits == 9) {
<> 144:ef7eb2e8f9f7 1344 tx_reg = (void *)&obj->spi.spi->TXDATAX;
<> 144:ef7eb2e8f9f7 1345 } else {
<> 144:ef7eb2e8f9f7 1346 tx_reg = (void *)&obj->spi.spi->TXDATA;
<> 144:ef7eb2e8f9f7 1347 }
<> 144:ef7eb2e8f9f7 1348
<> 144:ef7eb2e8f9f7 1349 /* Activate TX channel */
<> 144:ef7eb2e8f9f7 1350 DMA_ActivateBasic(obj->spi.dmaOptionsTX.dmaChannel,
<> 144:ef7eb2e8f9f7 1351 true,
<> 144:ef7eb2e8f9f7 1352 false,
<> 144:ef7eb2e8f9f7 1353 tx_reg, //When frame size > 9, point to TXDOUBLE
<> 144:ef7eb2e8f9f7 1354 &fill_word, // When there is nothing to transmit, point to static fill word
<> 144:ef7eb2e8f9f7 1355 length_diff - 1);
<> 144:ef7eb2e8f9f7 1356 } else {
<> 144:ef7eb2e8f9f7 1357 /* Nothing to do */
<> 144:ef7eb2e8f9f7 1358 return 0;
<> 144:ef7eb2e8f9f7 1359 }
<> 144:ef7eb2e8f9f7 1360 }
<> 144:ef7eb2e8f9f7 1361
<> 144:ef7eb2e8f9f7 1362 /* Release the dma channels if they were opportunistically allocated */
<> 144:ef7eb2e8f9f7 1363 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1364 dma_channel_free(obj->spi.dmaOptionsTX.dmaChannel);
<> 144:ef7eb2e8f9f7 1365 dma_channel_free(obj->spi.dmaOptionsRX.dmaChannel);
<> 144:ef7eb2e8f9f7 1366 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
<> 144:ef7eb2e8f9f7 1367 }
<> 144:ef7eb2e8f9f7 1368
<> 144:ef7eb2e8f9f7 1369 /* Wait for transmit to complete, before user code is indicated */
<> 144:ef7eb2e8f9f7 1370 while(!(obj->spi.spi->STATUS & USART_STATUS_TXC));
Anna Bridge 180:96ed750bd169 1371 sleep_manager_unlock_deep_sleep();
<> 144:ef7eb2e8f9f7 1372
<> 144:ef7eb2e8f9f7 1373 /* return to CPP land to say we're finished */
<> 144:ef7eb2e8f9f7 1374 return SPI_EVENT_COMPLETE;
<> 144:ef7eb2e8f9f7 1375 } else {
<> 144:ef7eb2e8f9f7 1376 /* IRQ implementation */
<> 144:ef7eb2e8f9f7 1377 if (spi_master_rx_int_flag(obj)) {
<> 144:ef7eb2e8f9f7 1378 spi_master_read_asynch(obj);
<> 144:ef7eb2e8f9f7 1379 }
<> 144:ef7eb2e8f9f7 1380
<> 144:ef7eb2e8f9f7 1381 if (spi_master_tx_int_flag(obj)) {
<> 144:ef7eb2e8f9f7 1382 spi_master_write_asynch(obj);
<> 144:ef7eb2e8f9f7 1383 }
<> 144:ef7eb2e8f9f7 1384
<> 144:ef7eb2e8f9f7 1385 uint32_t event = spi_event_check(obj);
<> 144:ef7eb2e8f9f7 1386 if (event & SPI_EVENT_INTERNAL_TRANSFER_COMPLETE) {
<> 144:ef7eb2e8f9f7 1387 /* disable interrupts */
<> 144:ef7eb2e8f9f7 1388 spi_enable_interrupt(obj, (uint32_t)NULL, false);
<> 144:ef7eb2e8f9f7 1389
<> 144:ef7eb2e8f9f7 1390 /* Wait for transmit to complete, before user code is indicated */
<> 144:ef7eb2e8f9f7 1391 while(!(obj->spi.spi->STATUS & USART_STATUS_TXC));
Anna Bridge 180:96ed750bd169 1392 sleep_manager_unlock_deep_sleep();
<> 144:ef7eb2e8f9f7 1393
<> 144:ef7eb2e8f9f7 1394 /* Return the event back to userland */
<> 144:ef7eb2e8f9f7 1395 return event;
<> 144:ef7eb2e8f9f7 1396 }
<> 144:ef7eb2e8f9f7 1397
<> 144:ef7eb2e8f9f7 1398 return 0;
<> 144:ef7eb2e8f9f7 1399 }
<> 144:ef7eb2e8f9f7 1400 }
<> 144:ef7eb2e8f9f7 1401 #endif // LDMA_PRESENT
<> 144:ef7eb2e8f9f7 1402 /** Abort an SPI transfer
<> 144:ef7eb2e8f9f7 1403 *
<> 144:ef7eb2e8f9f7 1404 * @param obj The SPI peripheral to stop
<> 144:ef7eb2e8f9f7 1405 */
<> 144:ef7eb2e8f9f7 1406 void spi_abort_asynch(spi_t *obj)
<> 144:ef7eb2e8f9f7 1407 {
<> 144:ef7eb2e8f9f7 1408 // If we're not currently transferring, then there's nothing to do here
<> 144:ef7eb2e8f9f7 1409 if(spi_active(obj) != 0) return;
<> 144:ef7eb2e8f9f7 1410
<> 144:ef7eb2e8f9f7 1411 // Determine whether we're running DMA or interrupt
<> 144:ef7eb2e8f9f7 1412 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_ALLOCATED || obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1413 // Cancel the DMA transfers
<> 144:ef7eb2e8f9f7 1414 #ifdef LDMA_PRESENT
<> 144:ef7eb2e8f9f7 1415 LDMA_StopTransfer(obj->spi.dmaOptionsTX.dmaChannel);
<> 144:ef7eb2e8f9f7 1416 LDMA_StopTransfer(obj->spi.dmaOptionsRX.dmaChannel);
<> 144:ef7eb2e8f9f7 1417 #else
<> 144:ef7eb2e8f9f7 1418 DMA_ChannelEnable(obj->spi.dmaOptionsTX.dmaChannel, false);
<> 144:ef7eb2e8f9f7 1419 DMA_ChannelEnable(obj->spi.dmaOptionsRX.dmaChannel, false);
<> 144:ef7eb2e8f9f7 1420 #endif
<> 144:ef7eb2e8f9f7 1421 /* Release the dma channels if they were opportunistically allocated */
<> 144:ef7eb2e8f9f7 1422 if (obj->spi.dmaOptionsTX.dmaUsageState == DMA_USAGE_TEMPORARY_ALLOCATED) {
<> 144:ef7eb2e8f9f7 1423 dma_channel_free(obj->spi.dmaOptionsTX.dmaChannel);
<> 144:ef7eb2e8f9f7 1424 dma_channel_free(obj->spi.dmaOptionsRX.dmaChannel);
<> 144:ef7eb2e8f9f7 1425 obj->spi.dmaOptionsTX.dmaUsageState = DMA_USAGE_OPPORTUNISTIC;
<> 144:ef7eb2e8f9f7 1426 }
<> 144:ef7eb2e8f9f7 1427
<> 144:ef7eb2e8f9f7 1428 } else {
<> 144:ef7eb2e8f9f7 1429 // Interrupt implementation: switch off interrupts
<> 144:ef7eb2e8f9f7 1430 spi_enable_interrupt(obj, (uint32_t)NULL, false);
<> 144:ef7eb2e8f9f7 1431 }
<> 144:ef7eb2e8f9f7 1432
<> 144:ef7eb2e8f9f7 1433 // Release sleep mode block
Anna Bridge 180:96ed750bd169 1434 sleep_manager_unlock_deep_sleep();
<> 144:ef7eb2e8f9f7 1435 }
<> 144:ef7eb2e8f9f7 1436
<> 144:ef7eb2e8f9f7 1437 #endif