Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: SX1272 SPI_MX25R
main.cpp
- Committer:
- cdupaty
- Date:
- 2017-11-05
- Revision:
- 0:9859cc8476f2
- Child:
- 1:9f961d34dd8d
File content as of revision 0:9859cc8476f2:
/*
* temperature sensor on analog 8 to test the LoRa gateway
*
* Copyright (C) 2016 Congduc Pham, University of Pau, France
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the program. If not, see <http://www.gnu.org/licenses/>.
*
*****************************************************************************
* last update: Sep. 29th, 2017 by C. Pham
* last update: oct 30th , 2017 by C.Dupaty
*/
#include "mbed.h"
#include <SPI.h>
// Include the SX1272
#include "SX1272.h"
// IMPORTANT
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// please uncomment only 1 choice
//
#define ETSI_EUROPE_REGULATION
//#define FCC_US_REGULATION
//#define SENEGAL_REGULATION
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// please uncomment only 1 choice
#define BAND868
//#define BAND900
//#define BAND433
///////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ETSI_EUROPE_REGULATION
#define MAX_DBM 14
// previous way for setting output power
// char powerLevel='M';
#elif defined SENEGAL_REGULATION
#define MAX_DBM 10
// previous way for setting output power
// 'H' is actually 6dBm, so better to use the new way to set output power
// char powerLevel='H';
#elif defined FCC_US_REGULATION
#define MAX_DBM 14
#endif
#ifdef BAND868
#ifdef SENEGAL_REGULATION
const uint32_t DEFAULT_CHANNEL=CH_04_868;
#else
const uint32_t DEFAULT_CHANNEL=CH_10_868;
#endif
#elif defined BAND900
const uint32_t DEFAULT_CHANNEL=CH_05_900;
#elif defined BAND433
const uint32_t DEFAULT_CHANNEL=CH_00_433;
#endif
// IMPORTANT
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// uncomment if your radio is an HopeRF RFM92W, HopeRF RFM95W, Modtronix inAir9B, NiceRF1276
// or you known from the circuit diagram that output use the PABOOST line instead of the RFO line
//#define PABOOST
///////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// COMMENT OR UNCOMMENT TO CHANGE FEATURES.
// ONLY IF YOU KNOW WHAT YOU ARE DOING!!! OTHERWISE LEAVE AS IT IS
//#define WITH_EEPROM // tous uncomment a l origine sauf WITH_ACK
#define WITH_APPKEY
#define FLOAT_TEMP
#define NEW_DATA_FIELD
//#define LOW_POWER
//#define LOW_POWER_HIBERNATE
//#define WITH_ACK
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// ADD HERE OTHER PLATFORMS THAT DO NOT SUPPORT EEPROM NOR LOW POWER
#if defined ARDUINO_SAM_DUE || defined __SAMD21G18A__ || defined TARGET_NUCLEO_L073RZ
#undef WITH_EEPROM
#endif
#if defined ARDUINO_SAM_DUE || defined TARGET_NUCLEO_L073RZ
#undef LOW_POWER
#endif
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CHANGE HERE THE LORA MODE, NODE ADDRESS
#define LORAMODE 1
#define node_addr 6
//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CHANGE HERE THE THINGSPEAK FIELD BETWEEN 1 AND 4
#define field_index 1
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CHANGE HERE THE READ PIN AND THE POWER PIN FOR THE TEMP. SENSOR
#define TEMP_PIN_READ PA_0
// use digital 9 to power the temperature sensor if needed
#define TEMP_PIN_POWER PA_1
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CHANGE HERE THE TIME IN MINUTES BETWEEN 2 READING & TRANSMISSION
unsigned int idlePeriodInMin = 2;
///////////////////////////////////////////////////////////////////
#ifdef WITH_APPKEY
///////////////////////////////////////////////////////////////////
// CHANGE HERE THE APPKEY, BUT IF GW CHECKS FOR APPKEY, MUST BE
// IN THE APPKEY LIST MAINTAINED BY GW.
uint8_t my_appKey[4]={5, 6, 7, 8};
///////////////////////////////////////////////////////////////////
#endif
// we wrapped Serial.println to support the Arduino Zero or M0
#if defined __SAMD21G18A__ && not defined ARDUINO_SAMD_FEATHER_M0
#define PRINTLN SerialUSB.println("")
#define PRINT_CSTSTR(fmt,param) SerialUSB.print(F(param))
#define PRINT_STR(fmt,param) SerialUSB.print(param)
#define PRINT_VALUE(fmt,param) SerialUSB.print(param)
#define FLUSHOUTPUT SerialUSB.flush();
#else
#define PRINTLN Serial.println("")
#define PRINT_CSTSTR(fmt,param) Serial.print(F(param))
#define PRINT_STR(fmt,param) Serial.print(param)
#define PRINT_VALUE(fmt,param) Serial.print(param)
#define FLUSHOUTPUT Serial.flush();
#endif
#ifdef WITH_EEPROM
#include <EEPROM.h>
#endif
#define DEFAULT_DEST_ADDR 1
#ifdef WITH_ACK
#define NB_RETRIES 2
#endif
#if defined ARDUINO_AVR_PRO || defined ARDUINO_AVR_MINI || defined ARDUINO_SAM_DUE || defined __MK20DX256__ || defined __MKL26Z64__ || defined __MK64FX512__ || defined __MK66FX1M0__ || defined __SAMD21G18A__
// if you have a Pro Mini running at 5V, then change here
// these boards work in 3.3V
// Nexus board from Ideetron is a Mini
// __MK66FX1M0__ is for Teensy36
// __MK64FX512__ is for Teensy35
// __MK20DX256__ is for Teensy31/32
// __MKL26Z64__ is for TeensyLC
// __SAMD21G18A__ is for Zero/M0 and FeatherM0 (Cortex-M0)
#define TEMP_SCALE 3300.0
#else // ARDUINO_AVR_NANO || defined ARDUINO_AVR_UNO || defined ARDUINO_AVR_MEGA2560
// also for all other boards, so change here if required.
#define TEMP_SCALE 5000.0
#endif
#ifdef LOW_POWER
// this is for the Teensy36, Teensy35, Teensy31/32 & TeensyLC
// need v6 of Snooze library
#if defined __MK20DX256__ || defined __MKL26Z64__ || defined __MK64FX512__ || defined __MK66FX1M0__
#define LOW_POWER_PERIOD 60
#include <Snooze.h>
SnoozeTimer timer;
SnoozeBlock sleep_config(timer);
//#elif defined ARDUINO_AVR_FEATHER32U4
//#define LOW_POWER_PERIOD 8
//#include "Adafruit_SleepyDog.h"
#else // for all other boards based on ATMega168, ATMega328P, ATMega32U4, ATMega2560, ATMega256RFR2, ATSAMD21G18A
#define LOW_POWER_PERIOD 8
// you need the LowPower library from RocketScream
// https://github.com/rocketscream/Low-Power
#include "LowPower.h"
#ifdef __SAMD21G18A__
// use the RTC library
#include "RTCZero.h"
/* Create an rtc object */
RTCZero rtc;
#endif
#endif
unsigned int nCycle = idlePeriodInMin*60/LOW_POWER_PERIOD;
#endif
double temp;
unsigned long nextTransmissionTime=0L;
char float_str[20];
uint8_t message[100];
int loraMode=LORAMODE;
#ifdef WITH_EEPROM
struct sx1272config {
uint8_t flag1;
uint8_t flag2;
uint8_t seq;
// can add other fields such as LoRa mode,...
};
sx1272config my_sx1272config;
#endif
// ajoute par C.Dupaty
//Serial pcmain(USBTX, USBRX); // tx, rx
DigitalOut temp_pin_power(TEMP_PIN_POWER);
AnalogIn temp_pin_read(TEMP_PIN_READ);
void setup()
{
int e;
// for the temperature sensor
//pinMode(TEMP_PIN_READ, INPUT);
// and to power the temperature sensor
//pinMode(TEMP_PIN_POWER,OUTPUT);
#ifdef LOW_POWER
#ifdef __SAMD21G18A__
rtc.begin();
#endif
#else
// digitalWrite(TEMP_PIN_POWER,HIGH);
temp_pin_power=1;
#endif
wait_ms(3000);
/*
// Open serial communications and wait for port to open:
#if defined __SAMD21G18A__ && not defined ARDUINO_SAMD_FEATHER_M0
SerialUSB.begin(38400);
#else
Serial.begin(38400);
#endif
*/
// Print a start message
printf("%s","Simple LoRa temperature sensor\n");
printf("%s","--------------------------------\n");
printf("%s","---- VERSION NUCLEO STM32-------\n");
printf("%s","--------------------------------\n");
#ifdef ARDUINO_AVR_PRO
printf("%s","Arduino Pro Mini detected\n");
#endif
#ifdef ARDUINO_AVR_NANO
printf("%s","Arduino Nano detected\n");
#endif
#ifdef ARDUINO_AVR_MINI
printf("%s","Arduino Mini/Nexus detected\n");
#endif
#ifdef ARDUINO_AVR_MEGA2560
printf("%s","Arduino Mega2560 detected\n");
#endif
#ifdef ARDUINO_SAM_DUE
printf("%s","Arduino Due detected\n");
#endif
#ifdef __MK66FX1M0__
printf("%s","Teensy36 MK66FX1M0 detected\n");
#endif
#ifdef __MK64FX512__
printf("%s","Teensy35 MK64FX512 detected\n");
#endif
#ifdef __MK20DX256__
printf("%s","Teensy31/32 MK20DX256 detected\n");
#endif
#ifdef __MKL26Z64__
printf("%s","TeensyLC MKL26Z64 detected\n");
#endif
#ifdef ARDUINO_SAMD_ZERO
printf("%s","Arduino M0/Zero detected\n");
#endif
#ifdef ARDUINO_AVR_FEATHER32U4
printf("%s","Adafruit Feather32U4 detected\n");
#endif
#ifdef ARDUINO_SAMD_FEATHER_M0
printf("%s","Adafruit FeatherM0 detected\n");
#endif
// See http://www.nongnu.org/avr-libc/user-manual/using_tools.html
// for the list of define from the AVR compiler
#ifdef __AVR_ATmega328P__
printf("%s","ATmega328P detected\n");
#endif
#ifdef __AVR_ATmega32U4__
printf("%s","ATmega32U4 detected\n");
#endif
#ifdef __AVR_ATmega2560__
printf("%s","ATmega2560 detected\n");
#endif
#ifdef __SAMD21G18A__
printf("%s","SAMD21G18A ARM Cortex-M0 detected\n");
#endif
#ifdef __SAM3X8E__
printf("%s","SAM3X8E ARM Cortex-M3 detected\n");
#endif
#ifdef TARGET_NUCLEO_L073RZ
printf("%s","NUCLEO L073RZ detected\n");
#endif
// Power ON the module
sx1272.ON();
#ifdef WITH_EEPROM
// get config from EEPROM
EEPROM.get(0, my_sx1272config);
// found a valid config?
if (my_sx1272config.flag1==0x12 && my_sx1272config.flag2==0x34) {
printf("%s","Get back previous sx1272 config\n");
// set sequence number for SX1272 library
sx1272._packetNumber=my_sx1272config.seq;
printf("%s","Using packet sequence number of ");
printf("%d", sx1272._packetNumber);
printf("\n");
}
else {
// otherwise, write config and start over
my_sx1272config.flag1=0x12;
my_sx1272config.flag2=0x34;
my_sx1272config.seq=sx1272._packetNumber;
}
#endif
int error_config_sx1272=0;
// Set transmission mode and print the result
printf("%s","\n-------------------------DEBUT Setting mode -----------> \n");
e = sx1272.setMode(loraMode);
printf("%s","\n-------------------------FIN Setting mode -----------> \n");
if (e) error_config_sx1272=1;
printf("%s","Setting Mode: state ");
printf("%d", e);
printf("\n");
// enable carrier sense
sx1272._enableCarrierSense=true;
#ifdef LOW_POWER
// TODO: with low power, when setting the radio module in sleep mode
// there seem to be some issue with RSSI reading
sx1272._RSSIonSend=false;
#endif
// Select frequency channel
e = sx1272.setChannel(DEFAULT_CHANNEL);
if (e) error_config_sx1272=1;
printf("%s","Setting Channel: state ");
printf("%d", e);
printf("\n");
// Select amplifier line; PABOOST or RFO
#ifdef PABOOST
sx1272._needPABOOST=true;
// previous way for setting output power
// powerLevel='x';
#else
// previous way for setting output power
// powerLevel='M';
#endif
// previous way for setting output power
// e = sx1272.setPower(powerLevel);
e = sx1272.setPowerDBM((uint8_t)MAX_DBM);
if (e) error_config_sx1272=1;
printf("%s","Setting Power: state ");
printf("%d", e);
printf("\n");
// Set the node address and print the result
e = sx1272.setNodeAddress(node_addr);
if (e) error_config_sx1272=1;
printf("%s","Setting node addr: state ");
printf("%d", e);
printf("\n");
// Print a success message
if (!error_config_sx1272) printf("%s","SX1272 successfully configured\n");
else printf("%s","ERREUR DE CONFIGURATION DU SX1272\n");
wait_ms(500);
}
char *ftoa(char *a, double f, int precision)
{
long p[] = {0,10,100,1000,10000,100000,1000000,10000000,100000000};
char *ret = a;
long heiltal = (long)f;
//modifie pa C.Dupaty
// itoa(heiltal, a, 10);
sprintf(a,"%d",heiltal);
while (*a != '\0') a++;
*a++ = '.';
long desimal = abs((long)((f - heiltal) * p[precision]));
if (desimal < p[precision-1]) {
*a++ = '0';
}
//modifie pa C.Dupaty
// itoa(desimal, a, 10);
sprintf(a,"%d",desimal);
return ret;
}
//////////////////////////////////////////////////////////////
// programme principal , loop sur Arduino
//////////////////////////////////////////////////////////////
int main(void)
{
long startSend;
long endSend;
uint8_t app_key_offset=0;
int e;
setup();
while(1) { /////////////// debut boucle
//printf("%s","\n-------------------------BOUCLE SANS FIN -----------> \n");
//while(1);
#ifndef LOW_POWER
// 600000+random(15,60)*1000
if (millis() > nextTransmissionTime) {
#endif
#ifdef LOW_POWER
// digitalWrite(TEMP_PIN_POWER,HIGH);
temp_pin_power=1;
// security?
wait_ms(200);
#endif
temp = 0;
int value;
for (int i=0; i<10; i++) {
// change here how the temperature should be computed depending on your sensor type
//
value = temp_pin_read;
temp += (value*TEMP_SCALE/1024.0)/10;
printf("%s","Reading ");
printf("%d", value);
printf("\n");
wait_ms(100);
}
#ifdef LOW_POWER
//digitalWrite(TEMP_PIN_POWER,LOW);
temp_pin_ower=0;
#endif
printf("%s","Mean temp is ");
temp = temp/10;
printf("%f", temp);
printf("\n");
#ifdef WITH_APPKEY
app_key_offset = sizeof(my_appKey);
// set the app key in the payload
memcpy(message,my_appKey,app_key_offset);
#endif
uint8_t r_size;
#ifdef FLOAT_TEMP
ftoa(float_str,temp,2);
#ifdef NEW_DATA_FIELD
// this is for testing, uncomment if you just want to test, without a real temp sensor plugged
//strcpy(float_str, "21.55567");
r_size=sprintf((char*)message+app_key_offset,"\\!#%d#TC/%s",field_index,float_str);
#else
// this is for testing, uncomment if you just want to test, without a real temp sensor plugged
//strcpy(float_str, "21.55567");
r_size=sprintf((char*)message+app_key_offset,"\\!#%d#%s",field_index,float_str);
#endif
#else
#ifdef NEW_DATA_FIELD
r_size=sprintf((char*)message+app_key_offset, "\\!#%d#TC/%d", field_index, (int)temp);
#else
r_size=sprintf((char*)message+app_key_offset, "\\!#%d#%d", field_index, (int)temp);
#endif
#endif
printf("%s","Sending ");
printf("%s",(char*)(message+app_key_offset));
printf("\n");
printf("%s","Real payload size is ");
printf("%d", r_size);
printf("\n");
int pl=r_size+app_key_offset;
sx1272.CarrierSense();
startSend=millis();
#ifdef WITH_APPKEY
// indicate that we have an appkey
sx1272.setPacketType(PKT_TYPE_DATA | PKT_FLAG_DATA_WAPPKEY);
#else
// just a simple data packet
sx1272.setPacketType(PKT_TYPE_DATA);
#endif
// Send message to the gateway and print the result
// with the app key if this feature is enabled
#ifdef WITH_ACK
int n_retry=NB_RETRIES;
do {
e = sx1272.sendPacketTimeoutACK(DEFAULT_DEST_ADDR, message, pl);
if (e==3)
printf("%s","No ACK");
n_retry--;
if (n_retry)
printf("%s","Retry");
else
printf("%s","Abort");
} while (e && n_retry);
#else
e = sx1272.sendPacketTimeout(DEFAULT_DEST_ADDR, message, pl);
#endif
endSend=millis();
#ifdef WITH_EEPROM
// save packet number for next packet in case of reboot
my_sx1272config.seq=sx1272._packetNumber;
EEPROM.put(0, my_sx1272config);
#endif
printf("%s","LoRa pkt size ");
printf("%d", pl);
printf("\n");
printf("%s","LoRa pkt seq ");
printf("%d", sx1272.packet_sent.packnum);
printf("\n");
printf("%s","LoRa Sent in ");
printf("%ld", endSend-startSend);
printf("\n");
printf("%s","LoRa Sent w/CAD in ");
printf("%ld", endSend-sx1272._startDoCad);
printf("\n");
printf("%s","Packet sent, state ");
printf("%d", e);
printf("\n");
printf("%s","Remaining ToA is ");
printf("%d", sx1272.getRemainingToA());
printf("\n");
#if defined LOW_POWER && not defined ARDUINO_SAM_DUE
printf("%s","Switch to power saving mode\n");
e = sx1272.setSleepMode();
if (!e)
printf("%s","Successfully switch LoRa module in sleep mode\n");
else
printf("%s","Could not switch LoRa module in sleep mode\n");
FLUSHOUTPUT
wait_ms(50);
#ifdef __SAMD21G18A__
// For Arduino M0 or Zero we use the built-in RTC
//LowPower.standby();
rtc.setTime(17, 0, 0);
rtc.setDate(1, 1, 2000);
rtc.setAlarmTime(17, idlePeriodInMin, 0);
// for testing with 20s
//rtc.setAlarmTime(17, 0, 20);
rtc.enableAlarm(rtc.MATCH_HHMMSS);
//rtc.attachInterrupt(alarmMatch);
rtc.standbyMode();
printf("%s","SAMD21G18A wakes up from standby\n");
FLUSHOUTPUT
#else
nCycle = idlePeriodInMin*60/LOW_POWER_PERIOD + random(2,4);
#if defined __MK20DX256__ || defined __MKL26Z64__ || defined __MK64FX512__ || defined __MK66FX1M0__
// warning, setTimer accepts value from 1ms to 65535ms max
timer.setTimer(LOW_POWER_PERIOD*1000 + random(1,5)*1000);// milliseconds
nCycle = idlePeriodInMin*60/LOW_POWER_PERIOD;
#endif
for (int i=0; i<nCycle; i++) {
#if defined ARDUINO_AVR_PRO || defined ARDUINO_AVR_NANO || defined ARDUINO_AVR_UNO || defined ARDUINO_AVR_MINI || defined __AVR_ATmega32U4__
// ATmega328P, ATmega168, ATmega32U4
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);
//LowPower.idle(SLEEP_8S, ADC_OFF, TIMER2_OFF, TIMER1_OFF, TIMER0_OFF,
// SPI_OFF, USART0_OFF, TWI_OFF);
#elif defined ARDUINO_AVR_MEGA2560
// ATmega2560
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);
//LowPower.idle(SLEEP_8S, ADC_OFF, TIMER5_OFF, TIMER4_OFF, TIMER3_OFF,
// TIMER2_OFF, TIMER1_OFF, TIMER0_OFF, SPI_OFF, USART3_OFF,
// USART2_OFF, USART1_OFF, USART0_OFF, TWI_OFF);
#elif defined __MK20DX256__ || defined __MKL26Z64__ || defined __MK64FX512__ || defined __MK66FX1M0__
// Teensy31/32 & TeensyLC
#ifdef LOW_POWER_HIBERNATE
Snooze.hibernate(sleep_config);
#else
Snooze.deepSleep(sleep_config);
#endif
#else
// use the wait_ms function
wait_ms(LOW_POWER_PERIOD*1000);
#endif
printf("%s",".");
FLUSHOUTPUT
wait_ms(10);
}
wait_ms(50);
#endif
#else
printf("%ld ", nextTransmissionTime);
printf("%s","Will send next value at ");
// use a random part also to avoid collision
nextTransmissionTime=millis()+(unsigned long)idlePeriodInMin*60*1000+(unsigned long)(rand()%60+15)*1000;
printf("%ld", nextTransmissionTime);
printf("\n");
}
#endif
}// fin boucle
//return (0);
}