Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Water_Monitor_clone_v1 Cloud_IBM_MbedOS ble-star-mbed
Fork of MQTT by
MQTTClient.h
- Committer:
- Ian Craggs
- Date:
- 2014-04-14
- Revision:
- 19:57f6f976e878
- Parent:
- 16:91c2f9a144d4
- Child:
- 20:cad3d54d7ecf
File content as of revision 19:57f6f976e878:
/*******************************************************************************
* Copyright (c) 2014 IBM Corp.
*
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* and Eclipse Distribution License v1.0 which accompany this distribution.
*
* The Eclipse Public License is available at
* http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
*
* Contributors:
* Ian Craggs - initial API and implementation and/or initial documentation
*******************************************************************************/
#if !defined(MQTTCLIENT_H)
#define MQTTCLIENT_H
#include "FP.h"
#include "MQTTPacket.h"
#include "stdio.h"
namespace MQTT
{
enum QoS { QOS0, QOS1, QOS2 };
struct Message
{
enum QoS qos;
bool retained;
bool dup;
unsigned short id;
void *payload;
size_t payloadlen;
};
class PacketId
{
public:
PacketId();
int getNext();
private:
static const int MAX_PACKET_ID = 65535;
int next;
};
typedef void (*messageHandler)(Message*);
typedef struct limits
{
int MAX_MQTT_PACKET_SIZE; //
int MAX_MESSAGE_HANDLERS; // each subscription requires a message handler
int MAX_CONCURRENT_OPERATIONS; // each command which runs concurrently can have a result handler, when we are in multi-threaded mode
int command_timeout;
limits()
{
MAX_MQTT_PACKET_SIZE = 100;
MAX_MESSAGE_HANDLERS = 5;
MAX_CONCURRENT_OPERATIONS = 1; // 1 indicates single-threaded mode - set to >1 for multithreaded mode
command_timeout = 30;
}
} Limits;
template<class Network, class Timer, class Thread, class Mutex> class Client
{
public:
struct Result
{
/* success or failure result data */
Client<Network, Timer, Thread, Mutex>* client;
int connack_rc;
};
typedef void (*resultHandler)(Result*);
Client(Network* network, const Limits limits = Limits());
int connect(MQTTPacket_connectData* options = 0, resultHandler fn = 0);
template<class T>
int connect(MQTTPacket_connectData* options = 0, T *item = 0, void(T::*method)(Result *) = 0); // alternative to pass in pointer to member function
int publish(const char* topic, Message* message, resultHandler rh = 0);
int subscribe(const char* topicFilter, enum QoS qos, messageHandler mh, resultHandler rh = 0);
int unsubscribe(const char* topicFilter, resultHandler rh = 0);
int disconnect(int timeout, resultHandler rh = 0);
void yield(int timeout);
private:
void run(void const *argument);
int cycle(int timeout);
int waitfor(int packet_type, Timer& atimer);
int keepalive();
int findFreeOperation();
int decodePacket(int* value, int timeout);
int readPacket(int timeout);
int sendPacket(int length, int timeout);
int deliverMessage(MQTTString* topic, Message* message);
Thread* thread;
Network* ipstack;
Limits limits;
char* buf;
char* readbuf;
Timer ping_timer, connect_timer;
unsigned int keepAliveInterval;
bool ping_outstanding;
PacketId packetid;
typedef FP<void, Result*> resultHandlerFP;
resultHandlerFP connectHandler;
typedef FP<void, Message*> messageHandlerFP;
struct MessageHandlers
{
const char* topic;
messageHandlerFP fp;
} *messageHandlers; // Message handlers are indexed by subscription topic
// how many concurrent operations should we allow? Each one will require a function pointer
struct Operations
{
unsigned short id;
resultHandlerFP fp;
const char* topic; // if this is a publish, store topic name in case republishing is required
Message* message; // for publish,
Timer timer; // to check if the command has timed out
} *operations; // result handlers are indexed by packet ids
static void threadfn(void* arg);
};
}
template<class Network, class Timer, class Thread, class Mutex> void MQTT::Client<Network, Timer, Thread, Mutex>::threadfn(void* arg)
{
((Client<Network, Timer, Thread, Mutex>*) arg)->run(NULL);
}
template<class Network, class Timer, class Thread, class Mutex> MQTT::Client<Network, Timer, Thread, Mutex>::Client(Network* network, Limits limits) : limits(limits), packetid()
{
this->thread = 0;
this->ipstack = network;
this->ping_timer = Timer();
this->ping_outstanding = 0;
// How to make these memory allocations portable? I was hoping to avoid the heap
buf = new char[limits.MAX_MQTT_PACKET_SIZE];
readbuf = new char[limits.MAX_MQTT_PACKET_SIZE];
this->operations = new struct Operations[limits.MAX_CONCURRENT_OPERATIONS];
for (int i = 0; i < limits.MAX_CONCURRENT_OPERATIONS; ++i)
operations[i].id = 0;
this->messageHandlers = new struct MessageHandlers[limits.MAX_MESSAGE_HANDLERS];
for (int i = 0; i < limits.MAX_MESSAGE_HANDLERS; ++i)
messageHandlers[i].topic = 0;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::sendPacket(int length, int timeout)
{
int sent = 0;
while (sent < length)
sent += ipstack->write(&buf[sent], length, timeout);
if (sent == length)
ping_timer.countdown(this->keepAliveInterval); // record the fact that we have successfully sent the packet
return sent;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::decodePacket(int* value, int timeout)
{
char c;
int multiplier = 1;
int len = 0;
const int MAX_NO_OF_REMAINING_LENGTH_BYTES = 4;
*value = 0;
do
{
int rc = MQTTPACKET_READ_ERROR;
if (++len > MAX_NO_OF_REMAINING_LENGTH_BYTES)
{
rc = MQTTPACKET_READ_ERROR; /* bad data */
goto exit;
}
rc = ipstack->read(&c, 1, timeout);
if (rc != 1)
goto exit;
*value += (c & 127) * multiplier;
multiplier *= 128;
} while ((c & 128) != 0);
exit:
return len;
}
/**
* If any read fails in this method, then we should disconnect from the network, as on reconnect
* the packets can be retried.
* @param timeout the max time to wait for the packet read to complete, in milliseconds
* @return the MQTT packet type, or -1 if none
*/
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::readPacket(int timeout)
{
int rc = -1;
MQTTHeader header = {0};
int len = 0;
int rem_len = 0;
/* 1. read the header byte. This has the packet type in it */
if (ipstack->read(readbuf, 1, timeout) != 1)
goto exit;
len = 1;
/* 2. read the remaining length. This is variable in itself */
decodePacket(&rem_len, timeout);
len += MQTTPacket_encode(readbuf + 1, rem_len); /* put the original remaining length back into the buffer */
/* 3. read the rest of the buffer using a callback to supply the rest of the data */
if (ipstack->read(readbuf + len, rem_len, timeout) != rem_len)
goto exit;
header.byte = readbuf[0];
rc = header.bits.type;
exit:
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::deliverMessage(MQTTString* topic, Message* message)
{
int rc = -1;
;
// we have to find the right message handler - indexed by topic
for (int i = 0; i < limits.MAX_MESSAGE_HANDLERS; ++i)
{
if (messageHandlers[i].topic && MQTTPacket_equals(topic, (char*)messageHandlers[i].topic))
{
messageHandlers[i].fp(message);
rc = 0;
break;
}
}
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> void MQTT::Client<Network, Timer, Thread, Mutex>::yield(int timeout)
{
Timer atimer = Timer();
atimer.countdown_ms(timeout);
while (!atimer.expired())
cycle(atimer.left_ms());
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::cycle(int timeout)
{
/* get one piece of work off the wire and one pass through */
printf("timeout %d\n", timeout);
// read the socket, see what work is due
int packet_type = readPacket(timeout);
int len, rc;
switch (packet_type)
{
case CONNACK:
if (this->thread)
{
Result res = {this, 0};
if (MQTTDeserialize_connack(&res.connack_rc, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
;
connectHandler(&res);
connectHandler.detach(); // only invoke the callback once
}
break;
case PUBACK:
if (this->thread)
; //call resultHandler
case SUBACK:
break;
case PUBLISH:
MQTTString topicName;
Message msg;
rc = MQTTDeserialize_publish((int*)&msg.dup, (int*)&msg.qos, (int*)&msg.retained, (int*)&msg.id, &topicName,
(char**)&msg.payload, (int*)&msg.payloadlen, readbuf, limits.MAX_MQTT_PACKET_SIZE);;
if (msg.qos == QOS0)
deliverMessage(&topicName, &msg);
break;
case PUBREC:
int type, dup, mypacketid;
if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
;
// must lock this access against the application thread, if we are multi-threaded
len = MQTTSerialize_ack(buf, limits.MAX_MQTT_PACKET_SIZE, PUBREL, 0, mypacketid);
rc = sendPacket(len, timeout); // send the PUBREL packet
if (rc != len)
goto exit; // there was a problem
break;
case PUBCOMP:
break;
case PINGRESP:
ping_outstanding = false;
break;
}
keepalive();
exit:
return packet_type;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::keepalive()
{
int rc = 0;
if (keepAliveInterval == 0)
goto exit;
if (ping_timer.expired())
{
if (ping_outstanding)
rc = -1;
else
{
int len = MQTTSerialize_pingreq(buf, limits.MAX_MQTT_PACKET_SIZE);
rc = sendPacket(len, 1000); // send the ping packet
if (rc != len)
rc = -1; // indicate there's a problem
else
ping_outstanding = true;
}
}
exit:
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> void MQTT::Client<Network, Timer, Thread, Mutex>::run(void const *argument)
{
while (true)
cycle(ping_timer.left_ms());
}
// only used in single-threaded mode where one command at a time is in process
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::waitfor(int packet_type, Timer& atimer)
{
int rc = -1;
do
{
if (atimer.expired())
break; // we timed out
}
while ((rc = cycle(atimer.left_ms())) != packet_type);
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::connect(MQTTPacket_connectData* options, resultHandler resultHandler)
{
connect_timer.countdown(limits.command_timeout);
MQTTPacket_connectData default_options = MQTTPacket_connectData_initializer;
if (options == 0)
options = &default_options; // set default options if none were supplied
this->keepAliveInterval = options->keepAliveInterval;
ping_timer.countdown(this->keepAliveInterval);
int len = MQTTSerialize_connect(buf, limits.MAX_MQTT_PACKET_SIZE, options);
int rc = sendPacket(len, connect_timer.left_ms()); // send the connect packet
if (rc != len)
goto exit; // there was a problem
if (resultHandler == 0) // wait until the connack is received
{
// this will be a blocking call, wait for the connack
if (waitfor(CONNACK, connect_timer) == CONNACK)
{
int connack_rc = -1;
if (MQTTDeserialize_connack(&connack_rc, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
rc = connack_rc;
}
}
else
{
// set connect response callback function
connectHandler.attach(resultHandler);
// start background thread
this->thread = new Thread((void (*)(void const *argument))&MQTT::Client<Network, Timer, Thread, Mutex>::threadfn, (void*)this);
}
exit:
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::findFreeOperation()
{
int found = -1;
for (int i = 0; i < limits.MAX_CONCURRENT_OPERATIONS; ++i)
{
if (operations[i].id == 0)
{
found = i;
break;
}
}
return found;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::subscribe(const char* topicFilter, enum QoS qos, messageHandler messageHandler, resultHandler resultHandler)
{
int index = 0;
if (this->thread)
index = findFreeOperation();
Timer& atimer = operations[index].timer;
atimer.countdown(limits.command_timeout);
MQTTString topic = {(char*)topicFilter, 0, 0};
int len = MQTTSerialize_subscribe(buf, limits.MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic, (int*)&qos);
int rc = sendPacket(len, atimer.left_ms()); // send the subscribe packet
if (rc != len)
goto exit; // there was a problem
/* wait for suback */
if (resultHandler == 0)
{
// this will block
if (waitfor(SUBACK, atimer) == SUBACK)
{
int count = 0, grantedQoS = -1, mypacketid;
if (MQTTDeserialize_suback(&mypacketid, 1, &count, &grantedQoS, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
rc = grantedQoS; // 0, 1, 2 or 0x80
if (rc != 0x80)
{
for (int i = 0; i < limits.MAX_MESSAGE_HANDLERS; ++i)
{
if (messageHandlers[i].topic == 0)
{
messageHandlers[i].topic = topicFilter;
messageHandlers[i].fp.attach(messageHandler);
rc = 0;
break;
}
}
}
}
}
else
{
// set subscribe response callback function
}
exit:
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::unsubscribe(const char* topicFilter, resultHandler resultHandler)
{
int index = 0;
if (this->thread)
index = findFreeOperation();
Timer& atimer = operations[index].timer;
atimer.countdown(limits.command_timeout);
MQTTString topic = {(char*)topicFilter, 0, 0};
int len = MQTTSerialize_unsubscribe(buf, limits.MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic);
int rc = sendPacket(len, atimer.left_ms()); // send the subscribe packet
if (rc != len)
goto exit; // there was a problem
/* wait for unsuback */
if (resultHandler == 0)
{
// this will block
if (waitfor(UNSUBACK) == UNSUBACK)
{
int mypacketid;
if (MQTTDeserialize_unsuback(&mypacketid, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
rc = 0;
}
}
else
{
// set unsubscribe response callback function
}
exit:
return rc;
}
template<class Network, class Timer, class Thread, class Mutex> int MQTT::Client<Network, Timer, Thread, Mutex>::publish(const char* topicName, Message* message, resultHandler resultHandler)
{
int index = 0;
if (this->thread)
index = findFreeOperation();
Timer& atimer = operations[index].timer;
atimer.countdown(limits.command_timeout);
MQTTString topic = {(char*)topicName, 0, 0};
message->id = packetid.getNext();
int len = MQTTSerialize_publish(buf, limits.MAX_MQTT_PACKET_SIZE, 0, message->qos, message->retained, message->id, topic, (char*)message->payload, message->payloadlen);
int rc = sendPacket(len, atimer.left_ms()); // send the subscribe packet
if (rc != len)
goto exit; // there was a problem
/* wait for acks */
if (resultHandler == 0)
{
if (message->qos == QOS1)
{
if (waitfor(PUBACK, atimer) == PUBACK)
{
int type, dup, mypacketid;
if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
rc = 0;
}
}
else if (message->qos == QOS2)
{
if (waitfor(PUBCOMP, atimer) == PUBCOMP)
{
int type, dup, mypacketid;
if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, limits.MAX_MQTT_PACKET_SIZE) == 1)
rc = 0;
}
}
}
else
{
// set publish response callback function
}
exit:
return rc;
}
#endif
