This is the DW1000 driver and our self developed distance measurement application based on it. We do this as a semester thesis at ETH Zürich under the Automatic Control Laboratory in the Department of electrical engineering.

Dependencies:   mbed

Committer:
manumaet
Date:
Thu Mar 05 12:18:37 2015 +0000
Revision:
44:2e0045042a59
Parent:
42:83931678c4de
Child:
45:01a33363bc21
Two way distance ranging with several anchors works now (calibration and onboard trilateration still ahead)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
manumaet 0:f50e671ffff7 1 #include "DW1000.h"
manumaet 0:f50e671ffff7 2
manumaet 20:257d56530ae1 3 DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS) {
manumaet 26:a65c6f26c458 4 setCallbacks(NULL, NULL);
manumaet 17:8afa5f9122da 5
manumaet 0:f50e671ffff7 6 deselect(); // Chip must be deselected first
manumaet 0:f50e671ffff7 7 spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
manumaet 0:f50e671ffff7 8 spi.frequency(1000000); // with a 1MHz clock rate (worked up to 49MHz in our Test)
manumaet 7:e634eeafc4d2 9
manumaet 37:40f94c634c3e 10 resetAll(); // we do a soft reset of the DW1000 everytime the driver starts
manumaet 44:2e0045042a59 11
manumaet 18:bbc7ca7d3a95 12 // Configuration TODO: make method for that
manumaet 44:2e0045042a59 13
manumaet 42:83931678c4de 14 // User Manual "2.5.5 Default Configurations that should be modified" p. 22
manumaet 42:83931678c4de 15 writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);
manumaet 42:83931678c4de 16 writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);
manumaet 42:83931678c4de 17 writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D);
manumaet 42:83931678c4de 18 writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);
manumaet 42:83931678c4de 19 writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);
manumaet 42:83931678c4de 20 writeRegister32(DW1000_TX_POWER, 0, 0x0E082848);
manumaet 42:83931678c4de 21 writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);
manumaet 42:83931678c4de 22 writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);
manumaet 42:83931678c4de 23 writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);
manumaet 42:83931678c4de 24 loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned of or there's receiving malfunction see User Manual LDELOAD on p22 & p158
manumaet 42:83931678c4de 25
manumaet 42:83931678c4de 26 // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps
manumaet 40:5ce51b7e3118 27 //writeRegister16(DW1000_TX_FCTRL, 1, 0x2800 | 0x0100 | 0x0080); // use 2048 symbols preable (0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual
manumaet 40:5ce51b7e3118 28 //writeRegister8(DW1000_SYS_CFG, 2, 0x40); // enable special receiving option for 110kbps!! (0x40) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...]
manumaet 44:2e0045042a59 29
manumaet 42:83931678c4de 30 writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards
manumaet 42:83931678c4de 31 writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a qurter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1)
manumaet 44:2e0045042a59 32
manumaet 42:83931678c4de 33 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
manumaet 42:83931678c4de 34
manumaet 39:bb57aa77b015 35 irq.rise(this, &DW1000::ISR); // attach interrupt handler to rising edge of interrupt pin from DW1000
manumaet 0:f50e671ffff7 36 }
manumaet 0:f50e671ffff7 37
manumaet 29:019ff388ed76 38 void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) {
manumaet 29:019ff388ed76 39 bool RX = false;
manumaet 29:019ff388ed76 40 bool TX = false;
manumaet 29:019ff388ed76 41 if (callbackRX) {
manumaet 29:019ff388ed76 42 DW1000::callbackRX.attach(callbackRX);
manumaet 29:019ff388ed76 43 RX = true;
manumaet 29:019ff388ed76 44 }
manumaet 29:019ff388ed76 45 if (callbackTX) {
manumaet 29:019ff388ed76 46 DW1000::callbackTX.attach(callbackTX);
manumaet 29:019ff388ed76 47 TX = true;
manumaet 29:019ff388ed76 48 }
manumaet 29:019ff388ed76 49 setInterrupt(RX,TX);
manumaet 26:a65c6f26c458 50 }
manumaet 26:a65c6f26c458 51
manumaet 0:f50e671ffff7 52 uint32_t DW1000::getDeviceID() {
manumaet 0:f50e671ffff7 53 uint32_t result;
manumaet 0:f50e671ffff7 54 readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
manumaet 0:f50e671ffff7 55 return result;
manumaet 0:f50e671ffff7 56 }
manumaet 0:f50e671ffff7 57
manumaet 0:f50e671ffff7 58 uint64_t DW1000::getEUI() {
manumaet 0:f50e671ffff7 59 uint64_t result;
manumaet 0:f50e671ffff7 60 readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
manumaet 0:f50e671ffff7 61 return result;
manumaet 0:f50e671ffff7 62 }
manumaet 0:f50e671ffff7 63
manumaet 0:f50e671ffff7 64 void DW1000::setEUI(uint64_t EUI) {
manumaet 0:f50e671ffff7 65 writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
manumaet 0:f50e671ffff7 66 }
manumaet 0:f50e671ffff7 67
manumaet 0:f50e671ffff7 68 float DW1000::getVoltage() {
manumaet 12:985aa9843c3c 69 uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57
manumaet 0:f50e671ffff7 70 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
manumaet 0:f50e671ffff7 71 writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
manumaet 0:f50e671ffff7 72 writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
manumaet 0:f50e671ffff7 73 writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
manumaet 8:7a9c61242e2f 74 readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature
manumaet 0:f50e671ffff7 75 float Voltage = buffer[5] * 0.0057 + 2.3;
manumaet 20:257d56530ae1 76 //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration see instance_common.c row 391
manumaet 0:f50e671ffff7 77 return Voltage;
manumaet 0:f50e671ffff7 78 }
manumaet 0:f50e671ffff7 79
manumaet 18:bbc7ca7d3a95 80 uint64_t DW1000::getStatus() {
manumaet 18:bbc7ca7d3a95 81 return readRegister40(DW1000_SYS_STATUS, 0);
manumaet 18:bbc7ca7d3a95 82 }
manumaet 18:bbc7ca7d3a95 83
manumaet 26:a65c6f26c458 84 uint64_t DW1000::getRXTimestamp() {
manumaet 26:a65c6f26c458 85 return readRegister40(DW1000_RX_TIME, 0);
manumaet 26:a65c6f26c458 86 }
manumaet 26:a65c6f26c458 87
manumaet 26:a65c6f26c458 88 uint64_t DW1000::getTXTimestamp() {
manumaet 26:a65c6f26c458 89 return readRegister40(DW1000_TX_TIME, 0);
manumaet 26:a65c6f26c458 90 }
manumaet 26:a65c6f26c458 91
manumaet 10:d077bb12d259 92 void DW1000::sendString(char* message) {
manumaet 10:d077bb12d259 93 sendFrame((uint8_t*)message, strlen(message)+1);
manumaet 10:d077bb12d259 94 }
manumaet 10:d077bb12d259 95
manumaet 24:6f25ba679490 96 void DW1000::receiveString(char* message) {
manumaet 31:6f76f3d518ac 97 readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer
manumaet 10:d077bb12d259 98 }
manumaet 10:d077bb12d259 99
manumaet 11:c87d37db2c6f 100 void DW1000::sendFrame(uint8_t* message, uint16_t length) {
manumaet 38:8ef3b8d8b908 101 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
manumaet 38:8ef3b8d8b908 102 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
manumaet 13:b4d27bf7062a 103 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
manumaet 7:e634eeafc4d2 104
manumaet 39:bb57aa77b015 105 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
manumaet 39:bb57aa77b015 106 length += 2; // including 2 CRC Bytes
manumaet 39:bb57aa77b015 107 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
manumaet 39:bb57aa77b015 108 writeRegister16(DW1000_TX_FCTRL, 0, length);
manumaet 11:c87d37db2c6f 109
manumaet 25:d58b0595b300 110 stopTRX(); // stop receiving
manumaet 23:661a79e56208 111 writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit
manumaet 25:d58b0595b300 112 startRX(); // enable receiver again
manumaet 8:7a9c61242e2f 113 }
manumaet 8:7a9c61242e2f 114
manumaet 44:2e0045042a59 115 void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) {
manumaet 44:2e0045042a59 116 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
manumaet 44:2e0045042a59 117 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
manumaet 44:2e0045042a59 118 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
manumaet 44:2e0045042a59 119
manumaet 44:2e0045042a59 120 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
manumaet 44:2e0045042a59 121 length += 2; // including 2 CRC Bytes
manumaet 44:2e0045042a59 122 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
manumaet 44:2e0045042a59 123 writeRegister16(DW1000_TX_FCTRL, 0, length);
manumaet 44:2e0045042a59 124
manumaet 44:2e0045042a59 125 writeRegister40(DW1000_DX_TIME, 0, TxTimestamp);
manumaet 44:2e0045042a59 126
manumaet 44:2e0045042a59 127 stopTRX(); // stop receiving
manumaet 44:2e0045042a59 128 writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit
manumaet 44:2e0045042a59 129 startRX(); // enable receiver again
manumaet 44:2e0045042a59 130 }
manumaet 44:2e0045042a59 131
manumaet 17:8afa5f9122da 132 void DW1000::startRX() {
manumaet 20:257d56530ae1 133 writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
manumaet 7:e634eeafc4d2 134 }
manumaet 7:e634eeafc4d2 135
manumaet 25:d58b0595b300 136 void DW1000::stopTRX() {
manumaet 25:d58b0595b300 137 writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode
manumaet 17:8afa5f9122da 138 }
manumaet 17:8afa5f9122da 139
manumaet 20:257d56530ae1 140 // PRIVATE Methods ------------------------------------------------------------------------------------
manumaet 18:bbc7ca7d3a95 141 void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22
manumaet 18:bbc7ca7d3a95 142 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable
manumaet 20:257d56530ae1 143 writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP
manumaet 12:985aa9843c3c 144 wait_us(150);
manumaet 18:bbc7ca7d3a95 145 writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock
manumaet 12:985aa9843c3c 146 }
manumaet 12:985aa9843c3c 147
manumaet 12:985aa9843c3c 148 void DW1000::resetRX() {
manumaet 12:985aa9843c3c 149 writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
manumaet 12:985aa9843c3c 150 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
manumaet 12:985aa9843c3c 151 }
manumaet 12:985aa9843c3c 152
manumaet 12:985aa9843c3c 153 void DW1000::resetAll() {
manumaet 12:985aa9843c3c 154 writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
manumaet 12:985aa9843c3c 155 writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
manumaet 12:985aa9843c3c 156 wait_us(10); // wait for PLL to lock
manumaet 12:985aa9843c3c 157 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
manumaet 7:e634eeafc4d2 158 }
manumaet 0:f50e671ffff7 159
manumaet 29:019ff388ed76 160
manumaet 29:019ff388ed76 161 void DW1000::setInterrupt(bool RX, bool TX) {
manumaet 29:019ff388ed76 162 writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080
manumaet 29:019ff388ed76 163 }
manumaet 29:019ff388ed76 164
manumaet 20:257d56530ae1 165 void DW1000::ISR() {
manumaet 20:257d56530ae1 166 uint64_t status = getStatus();
manumaet 22:576ee999b004 167 if (status & 0x4000) { // a frame was received
manumaet 29:019ff388ed76 168 callbackRX.call();
manumaet 22:576ee999b004 169 writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
manumaet 20:257d56530ae1 170 }
manumaet 22:576ee999b004 171 if (status & 0x80) { // sending complete
manumaet 29:019ff388ed76 172 callbackTX.call();
manumaet 22:576ee999b004 173 writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
manumaet 20:257d56530ae1 174 }
manumaet 20:257d56530ae1 175 }
manumaet 20:257d56530ae1 176
manumaet 20:257d56530ae1 177 uint16_t DW1000::getFramelength() {
manumaet 20:257d56530ae1 178 uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength
manumaet 20:257d56530ae1 179 framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
manumaet 20:257d56530ae1 180 return framelength;
manumaet 20:257d56530ae1 181 }
manumaet 20:257d56530ae1 182
manumaet 0:f50e671ffff7 183 // SPI Interface ------------------------------------------------------------------------------------
manumaet 10:d077bb12d259 184 uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
manumaet 10:d077bb12d259 185 uint8_t result;
manumaet 10:d077bb12d259 186 readRegister(reg, subaddress, &result, 1);
manumaet 10:d077bb12d259 187 return result;
manumaet 10:d077bb12d259 188 }
manumaet 10:d077bb12d259 189
manumaet 18:bbc7ca7d3a95 190 uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) {
manumaet 18:bbc7ca7d3a95 191 uint16_t result;
manumaet 18:bbc7ca7d3a95 192 readRegister(reg, subaddress, (uint8_t*)&result, 2);
manumaet 18:bbc7ca7d3a95 193 return result;
manumaet 18:bbc7ca7d3a95 194 }
manumaet 18:bbc7ca7d3a95 195
manumaet 18:bbc7ca7d3a95 196 uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) {
manumaet 18:bbc7ca7d3a95 197 uint64_t result;
manumaet 18:bbc7ca7d3a95 198 readRegister(reg, subaddress, (uint8_t*)&result, 5);
manumaet 18:bbc7ca7d3a95 199 result &= 0xFFFFFFFFFF; // only 40-Bit
manumaet 18:bbc7ca7d3a95 200 return result;
manumaet 18:bbc7ca7d3a95 201 }
manumaet 18:bbc7ca7d3a95 202
manumaet 8:7a9c61242e2f 203 void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
manumaet 8:7a9c61242e2f 204 writeRegister(reg, subaddress, &buffer, 1);
manumaet 8:7a9c61242e2f 205 }
manumaet 8:7a9c61242e2f 206
manumaet 18:bbc7ca7d3a95 207 void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) {
manumaet 18:bbc7ca7d3a95 208 writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
manumaet 18:bbc7ca7d3a95 209 }
manumaet 18:bbc7ca7d3a95 210
manumaet 42:83931678c4de 211 void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) {
manumaet 42:83931678c4de 212 writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
manumaet 42:83931678c4de 213 }
manumaet 42:83931678c4de 214
manumaet 44:2e0045042a59 215 void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) {
manumaet 44:2e0045042a59 216 writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
manumaet 44:2e0045042a59 217 }
manumaet 44:2e0045042a59 218
manumaet 8:7a9c61242e2f 219 void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
manumaet 0:f50e671ffff7 220 setupTransaction(reg, subaddress, false);
manumaet 18:bbc7ca7d3a95 221 for(int i=0; i<length; i++) // get data
manumaet 0:f50e671ffff7 222 buffer[i] = spi.write(0x00);
manumaet 0:f50e671ffff7 223 deselect();
manumaet 0:f50e671ffff7 224 }
manumaet 0:f50e671ffff7 225
manumaet 8:7a9c61242e2f 226 void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
manumaet 0:f50e671ffff7 227 setupTransaction(reg, subaddress, true);
manumaet 18:bbc7ca7d3a95 228 for(int i=0; i<length; i++) // put data
manumaet 0:f50e671ffff7 229 spi.write(buffer[i]);
manumaet 0:f50e671ffff7 230 deselect();
manumaet 0:f50e671ffff7 231 }
manumaet 0:f50e671ffff7 232
manumaet 8:7a9c61242e2f 233 void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
manumaet 18:bbc7ca7d3a95 234 reg |= (write * DW1000_WRITE_FLAG); // set read/write flag
manumaet 0:f50e671ffff7 235 select();
manumaet 0:f50e671ffff7 236 if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
manumaet 0:f50e671ffff7 237 spi.write(reg | DW1000_SUBADDRESS_FLAG);
manumaet 18:bbc7ca7d3a95 238 if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte
manumaet 18:bbc7ca7d3a95 239 spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and
manumaet 0:f50e671ffff7 240 spi.write((uint8_t)(subaddress >> 7));
manumaet 0:f50e671ffff7 241 } else {
manumaet 0:f50e671ffff7 242 spi.write((uint8_t)subaddress);
manumaet 0:f50e671ffff7 243 }
manumaet 0:f50e671ffff7 244 } else {
manumaet 18:bbc7ca7d3a95 245 spi.write(reg); // say which register address we want to access
manumaet 0:f50e671ffff7 246 }
manumaet 0:f50e671ffff7 247 }
manumaet 0:f50e671ffff7 248
manumaet 39:bb57aa77b015 249 void DW1000::select() { // always called to start an SPI transmission
manumaet 39:bb57aa77b015 250 irq.disable_irq(); // disable interrupts from DW1000 during SPI becaus this leads to crashes! TODO: if you have other interrupt handlers attached on the micro controller, they could also interfere.
manumaet 39:bb57aa77b015 251 cs = 0; // set Cable Select pin low to start transmission
manumaet 39:bb57aa77b015 252 }
manumaet 39:bb57aa77b015 253 void DW1000::deselect() { // always called to end an SPI transmission
manumaet 39:bb57aa77b015 254 cs = 1; // set Cable Select pin high to stop transmission
manumaet 39:bb57aa77b015 255 irq.enable_irq(); // reenable the interrupt handler
manumaet 39:bb57aa77b015 256 }