Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: MatrixMath/MatrixMath.cpp
- Revision:
- 0:a0285293f6a6
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MatrixMath/MatrixMath.cpp Tue Mar 20 12:43:16 2012 +0000
@@ -0,0 +1,175 @@
+/**
+ * @brief Still under work version 0.2
+ * @file MatrixMath.cpp
+ * @author Erneseto Palacios
+ *
+ * Develop Under GPL v3.0 License
+ * http://www.gnu.org/licenses/gpl-3.0.html
+ */
+
+#include "mbed.h"
+#include "MatrixMath.h"
+
+///Transpose matrix
+Matrix MatrixMath::Transpose(const Matrix& Mat)
+{
+ Matrix result( Mat._nCols, Mat._nRows ); //Transpose Matrix
+
+ for( int i = 0; i < result._nRows; i++ )
+ for( int j = 0; j < result._nCols; j++ )
+ result._matrix[i][j] = Mat._matrix[j][i];
+
+ return result;
+}
+
+Matrix MatrixMath::Inv(const Matrix& Mat)
+{
+ if( Mat._nRows == Mat._nCols )
+ {
+ if( Mat._nRows == 2 ) // 2x2 Matrices
+ {
+ float det = MatrixMath::det( Mat );
+ if( det != 0 )
+ {
+ Matrix Inv(2,2);
+ Inv._matrix[0][0] = Mat._matrix[1][1];
+ Inv._matrix[1][0] = -Mat._matrix[1][0];
+ Inv._matrix[0][1] = -Mat._matrix[0][1];
+ Inv._matrix[1][1] = Mat._matrix[0][0] ;
+
+ Inv *= 1/det;
+
+ return Inv;
+
+ }else{
+ printf( "\n\nWANRING: same matrix returned");
+ printf( "\nSingular Matrix, cannot perform Invert @matrix " );
+// Mat.print();
+ printf( "\n _____________\n" );
+
+ return Mat;
+ }
+
+ }else{ // nxn Matrices
+
+ float det = MatrixMath::det( Mat );
+ if( det!= 0 )
+ {
+ Matrix Inv( Mat ); //
+ Matrix SubMat;
+
+ // Matrix of Co-factors
+ for( int i = 0; i < Mat._nRows; i++ )
+ for( int j = 0; j < Mat._nCols; j++ )
+ {
+ SubMat = Mat ;
+
+ Matrix::DeleteRow( SubMat, i+1 );
+ Matrix::DeleteCol( SubMat, j+1 );
+
+ if( (i+j)%2 == 0 )
+ Inv._matrix[i][j] = MatrixMath::det( SubMat );
+ else
+ Inv._matrix[i][j] = -MatrixMath::det( SubMat );
+ }
+
+ // Adjugate Matrix
+ Inv = MatrixMath::Transpose( Inv );
+
+ // Inverse Matrix
+ Inv = 1/det * Inv;
+
+ return Inv;
+
+ }else{
+ printf( "\n\nWANRING: same matrix returned");
+ printf( "\nSingular Matrix, cannot perform Invert @matrix " );
+ // Mat.print();
+ printf( "\n _____________\n" );
+
+ return Mat;
+ }
+
+ }
+
+ }else{
+ printf( "\n\nERROR:\nMust be square Matrix @ MatrixMath::Determinant " );
+ }
+}
+
+float MatrixMath::det(const Matrix& Mat)
+{
+ if( Mat._nRows == Mat._nCols )
+ {
+
+ if( Mat._nRows == 2 ) // 2x2 Matrix
+ {
+ float det;
+ det = Mat._matrix[0][0] * Mat._matrix[1][1] -
+ Mat._matrix[1][0] * Mat._matrix[0][1];
+ return det;
+ }
+ else if( Mat._nRows == 3 ) // 3x3 Matrix
+ {
+ float det;
+ MatrixMath dummy;
+
+ det = dummy.Det3x3( Mat );
+ return det;
+
+ } else {
+
+ float part1= 0;
+ float part2= 0;
+
+ //Find +/- on First Row
+ for( int i = 0; i < Mat._nCols; i++)
+ {
+ Matrix reduced( Mat ); // Copy Original Matrix
+ Matrix::DeleteRow( reduced, 1); // Delete First Row
+
+ if( i%2 == 0 ) //Odd Rows
+ {
+
+ Matrix::DeleteCol( reduced, i+1);
+ part1 += Mat._matrix[0][i] * MatrixMath::det(reduced);
+ }
+ else // Even Rows
+ {
+ Matrix::DeleteCol( reduced, i+1);
+ part2 += Mat._matrix[0][i] * MatrixMath::det(reduced);
+ }
+ }
+ return part1 - part2; //
+ }
+
+ }else{
+ printf("\n\nERROR:\nMatrix must be square Matrix @ MatrixMath::Det");
+ }
+}
+
+
+/************************************/
+
+//Private Functions
+
+/**@brief
+ * Expands the Matrix adding first and second column to the Matrix then
+ * performs the Algorithm.
+ * @param Mat
+ * @return Determinant
+ */
+float MatrixMath::Det3x3(const Matrix& Mat)
+{
+ Matrix D( Mat ); //Copy Initial matrix
+
+ Matrix::AddCol(D, Matrix::ExportCol(Mat, 1), 4); //Repeat First Column
+ Matrix::AddCol(D, Matrix::ExportCol(Mat, 2), 5); //Repeat Second Column
+
+ float det = 0;
+ for( int i = 0; i < 3; i++ )
+ det += D._matrix[0][i] * D._matrix[1][1+i] * D._matrix[2][2+i]
+ - D._matrix[0][2+i] * D._matrix[1][1+i] * D._matrix[2][i];
+
+ return det;
+}
\ No newline at end of file