Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
targets/hal/TARGET_Maxim/TARGET_MAX32610/analogout_api.c
- Committer:
- mbed_official
- Date:
- 2015-04-17
- Revision:
- 515:7467ef1f4ad8
- Parent:
- 507:d4fc7603a669
File content as of revision 515:7467ef1f4ad8:
/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "analogout_api.h"
#include "clkman_regs.h"
#include "pwrman_regs.h"
#include "afe_regs.h"
#include "PeripheralPins.h"
//******************************************************************************
void analogout_init(dac_t *obj, PinName pin)
{
// Make sure pin is an analog pin we can use for ADC
DACName dac = (DACName)pinmap_peripheral(pin, PinMap_DAC);
MBED_ASSERT((DACName)dac != (DACName)NC);
// Set the object pointer
obj->dac = ((mxc_dac_regs_t*)MXC_DAC_GET_DAC((pin & 0x3)));
obj->dac_fifo = ((mxc_dac_fifo_t*)MXC_DAC_GET_FIFO((pin & 0x3)));
obj->index = (pin & 0x3);
// Set the ADC clock to the system clock frequency
MXC_SET_FIELD(&MXC_CLKMAN->clk_ctrl, MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT,
(MXC_F_CLKMAN_CLK_CTRL_ADC_GATE_N | (MXC_E_CLKMAN_ADC_SOURCE_SELECT_SYSTEM <<
MXC_F_CLKMAN_CLK_CTRL_ADC_SOURCE_SELECT_POS)));
// Setup the OPAMP in follower mode
switch(obj->index) {
case 0:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_14_dac0 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP0;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_A |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP0_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP0_POS) |
(0x0 << MXC_F_AFE_CTRL4_DAC_SEL_A_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP0 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP0);
break;
case 1:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_15_dac1 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP1;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_B |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP1_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP1_POS) |
(0x1 << MXC_F_AFE_CTRL4_DAC_SEL_B_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP1 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP1);
break;
case 2:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_16_dac2 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP2;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_C |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP2_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP2_POS) |
(0x2 << MXC_F_AFE_CTRL4_DAC_SEL_C_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP2 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP2);
break;
case 3:
// Enable DAC clock
MXC_CLKMAN->clk_ctrl_17_dac3 = MXC_E_CLKMAN_CLK_SCALE_ENABLED;
// Enable OPAMP
MXC_AFE->ctrl5 &= ~MXC_F_AFE_CTRL5_OP_CMP3;
// Set the positive and negative inputs
MXC_SET_FIELD(&MXC_AFE->ctrl4, (MXC_F_AFE_CTRL4_DAC_SEL_D |
MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3 | MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3),
((0x1 << MXC_F_AFE_CTRL4_P_IN_SEL_OPAMP3_POS) |
(0x1 << MXC_F_AFE_CTRL4_N_IN_SEL_OPAMP3_POS) |
(0x3 << MXC_F_AFE_CTRL4_DAC_SEL_D_POS)));
// Enable N and P channel inputs
MXC_AFE->ctrl3 |= (MXC_F_AFE_CTRL3_EN_PCH_OPAMP3 |
MXC_F_AFE_CTRL3_EN_NCH_OPAMP3);
break;
}
// Enable AFE power
MXC_PWRMAN->pwr_rst_ctrl |= MXC_F_PWRMAN_PWR_RST_CTRL_AFE_POWERED;
// Setup internal voltage references
MXC_SET_FIELD(&MXC_AFE->ctrl1, (MXC_F_AFE_CTRL1_REF_DAC_VOLT_SEL | MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL),
(MXC_F_AFE_CTRL1_REF_ADC_POWERUP | MXC_F_AFE_CTRL1_REF_BLK_POWERUP |
(MXC_E_AFE_REF_VOLT_SEL_1500 << MXC_F_AFE_CTRL1_REF_ADC_VOLT_SEL_POS)));
// Disable interpolation
obj->dac->ctrl0 &= MXC_F_DAC_CTRL0_INTERP_MODE;
}
//******************************************************************************
void analogout_write(dac_t *obj, float value)
{
analogout_write_u16(obj, (uint16_t)((value/1.0) * 0xFFFF));
}
//******************************************************************************
void analogout_write_u16(dac_t *obj, uint16_t value)
{
// Enable the OPAMP
// Setup the OPAMP in follower mode
switch(obj->index) {
case 0:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP0;
break;
case 1:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP1;
break;
case 2:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP2;
break;
case 3:
MXC_AFE->ctrl3 |= MXC_F_AFE_CTRL3_POWERUP_OPAMP3;
break;
}
// Output 1 sample with minimal delay
obj->dac->rate |= 0x1;
// Set the start mode to output once data is in the FIFO
obj->dac->ctrl0 &= ~(MXC_F_DAC_CTRL0_START_MODE | MXC_F_DAC_CTRL0_OP_MODE);
// Enable the DAC
obj->dac->ctrl0 |= (MXC_F_DAC_CTRL0_POWER_MODE_2 |
MXC_F_DAC_CTRL0_POWER_MODE_1_0 | MXC_F_DAC_CTRL0_POWER_ON |
MXC_F_DAC_CTRL0_CLOCK_GATE_EN | MXC_F_DAC_CTRL0_CPU_START);
if(obj->index < 2) {
obj->out = (value);
obj->dac_fifo->output_16 = (obj->out);
} else {
// Convert 16 bits to 8 bits
obj->out = (value >> 8);
obj->dac_fifo->output_8 = (obj->out);
}
}
//******************************************************************************
float analogout_read(dac_t *obj)
{
return (((float)analogout_read_u16(obj) / (float)0xFFFF) * 1.5);
}
//******************************************************************************
uint16_t analogout_read_u16(dac_t *obj)
{
if(obj->index < 2) {
// Convert 12 bits to 16 bits
return (obj->out << 4);
} else {
// Convert 8 bits to 16 bits
return (obj->out << 8);
}
}
