mbed library sources

Fork of mbed-src by mbed official

targets/cmsis/TARGET_NXP/TARGET_LPC408X/system_LPC407x_8x_177x_8x.c

Committer:
lzbpli
Date:
2016-07-07
Revision:
636:b0d178e9fa10
Parent:
15:4892fe388435

File content as of revision 636:b0d178e9fa10:

/**********************************************************************
* $Id$		system_LPC407x_8x_177x_8x.c			2012-01-16
*//**
* @file		system_LPC407x_8x_177x_8x.c
* @brief	CMSIS Cortex-M3, M4 Device Peripheral Access Layer Source File
*          	for the NXP LPC407x_8x_177x_8x Device Series
*
*			ARM Limited (ARM) is supplying this software for use with
*			Cortex-M processor based microcontrollers.  This file can be
*			freely distributed within development tools that are supporting
*			such ARM based processors.
*
* @version	1.2
* @date		20. June. 2012
* @author	NXP MCU SW Application Team
*
* Copyright(C) 2012, NXP Semiconductor
* All rights reserved.
*
***********************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
**********************************************************************/

#include <stdint.h>
#include "LPC407x_8x_177x_8x.h"
#include "system_LPC407x_8x_177x_8x.h"

#define __CLK_DIV(x,y) (((y) == 0) ? 0: (x)/(y))

/*
//-------- <<< Use Configuration Wizard in Context Menu >>> ------------------
*/
/*--------------------- Clock Configuration ----------------------------------
//
//	<e>	Clock Configuration
//		<h>	System Controls and Status Register (SCS - address 0x400F C1A0)
//			<o1.0>	EMC Shift Control Bit
//					<i>		Controls how addresses are output on the EMC address pins for static memories
//					<0=>	Static CS addresses match bus width; AD[1] = 0 for 32 bit, AD[0] = 0 for 16+32 bit (Bit 0 is 0)
//					<1=>	Static CS addresses start at LSB 0 regardless of memory width (Bit 0 is 1)
//
//			<o1.1>	EMC Reset Disable Bit
//					<i>		If 0 (zero), all registers and functions of the EMC are initialized upon any reset condition
//					<i>		If 1, EMC is still retained its state through a warm reset
//					<0=>	Both EMC resets are asserted when any type of chip reset event occurs (Bit 1 is 0)
//					<1=>	Portions of EMC will only be reset by POR or BOR event (Bit 1 is 1)
//
//			<o1.2>	EMC Burst Control
//					<i>		Set to 1 to prevent multiple sequential accesses to memory via EMC static memory chip selects
//					<0=>	Burst enabled (Bit 2 is 0)
//					<1=>	Bust disbled (Bit 2 is 1)
//
//			<o1.3>	MCIPWR Active Level
//					<i>		Selects the active level for the SD card interface signal SD_PWR
//					<0=>	SD_PWR is active low (inverted output of the SD Card interface block) (Bit 3 is 0)
//					<1=>	SD_PWR is active high (follows the output of the SD Card interface block) (Bit 3 is 1)
//
//			<o1.4>	Main Oscillator Range Select
//					<0=>	In Range 1 MHz to 20 MHz (Bit 4 is 0)
//					<1=>	In Range 15 MHz to 25 MHz (Bit 4 is 1)
//
//			<o1.5>	Main Oscillator enable
//					<i>		0 (zero) means disabled, 1 means enable
//
//			<o1.6>	Main Oscillator status (Read-Only)
//		</h>
//
//		<h>	Clock Source Select Register (CLKSRCSEL - address 0x400F C10C)
//			<o2.0>	CLKSRC: Select the clock source for sysclk to PLL0 clock
//					<0=>	Internal RC oscillator (Bit 0 is 0)
//					<1=>	Main oscillator (Bit 0 is 1)
//		</h>
//
//		<e3>PLL0 Configuration (Main PLL PLL0CFG - address 0x400F C084)
//			<i>			F_in  is in the range of 1 MHz to 25 MHz
//			<i>			F_cco = (F_in * M * 2 * P) is in range of 156 MHz to 320 MHz
//			<i>			PLL out clock = (F_cco / (2 * P)) is in rane of 9.75 MHz to 160 MHz
//
//			<o4.0..4>   MSEL: PLL Multiplier Value
//						<i>				M Value
//						<1-32><#-1>
//
//			<o4.5..6>	PSEL: PLL Divider Value
//						<i>				P Value
//						<0=> 			1
//						<1=>			2
//						<2=>			4
//						<3=>			8
//		</e>
//
//		<e5>PLL1 Configuration (Alt PLL PLL1CFG - address 0x400F C0A4)
//			<i>			F_in  is in the range of 1 MHz to 25 MHz
//			<i>			F_cco = (F_in * M * 2 * P) is in range of 156 MHz to 320 MHz
//			<i>			PLL out clock = (F_cco / (2 * P)) is in rane of 9.75 MHz to 160 MHz
//
//			<o6.0..4>   MSEL: PLL Multiplier Value
//						<i>				M Value
//						<1-32><#-1>
//
//			<o6.5..6>	PSEL: PLL Divider Value
//						<i>		P Value
//						<0=>	1
//						<1=>	2
//						<2=>	4
//						<3=>	8
//		</e>
//
//		<h>	CPU Clock Selection Register (CCLKSEL - address 0x400F C104)
//			<o7.0..4>	CCLKDIV: Select the value for divider of CPU clock (CCLK)
//						<i>		0: The divider is turned off. No clock will be provided to the CPU
//						<i>		n: The input clock is divided by n to produce the CPU clock
//						<0-31>
//
//			<o7.8>		CCLKSEL: Select the input to the divider of CPU clock
//						<0=>	sysclk clock is used
//						<1=>	Main PLL0 clock is used
//		</h>
//
//		<h>	USB Clock Selection Register (USBCLKSEL - 0x400F C108)
//			<o8.0..4>	USBDIV: USB clock (source PLL0) divider selection
//						<0=>	Divider is off and no clock provides to USB subsystem
//						<4=>	Divider value is 4 (The source clock is divided by 4)
//						<6=>	Divider value is 6 (The source clock is divided by 6)
//
//			<o8.8..9>	USBSEL: Select the source for USB clock divider
//						<i>		When CPU clock is selected, the USB can be accessed
//						<i>		by software but cannot perform USB functions
//						<0=>	sysclk clock (the clock input to PLL0)
//						<1=>	The clock output from PLL0
//						<2=>	The clock output from PLL1
//		</h>
//
//		<h>	EMC Clock Selection Register (EMCCLKSEL - address 0x400F C100)
//			<o9.0>	EMCDIV: Set the divider for EMC clock
//					<0=> Divider value is 1
//					<1=> Divider value is 2 (EMC clock is equal a half of input clock)
//		</h>
//
//		<h>	Peripheral Clock Selection Register (PCLKSEL - address 0x400F C1A8)
//			<o10.0..4>	PCLKDIV: APB Peripheral clock divider
//						<i>	0: The divider is turned off. No clock will be provided to APB peripherals
//						<i>	n: The input clock is divided by n to produce the APB peripheral clock
//						<0-31>
//		</h>
//
//		<h>	SPIFI Clock Selection Register (SPIFICLKSEL - address 0x400F C1B4)
//			<o11.0..4>	SPIFIDIV: Set the divider for SPIFI clock
//						<i>	0: The divider is turned off. No clock will be provided to the SPIFI
//						<i>	n: The input clock is divided by n to produce the SPIFI clock
//						<0-31>
//
//			<o11.8..9>	SPIFISEL: Select the input clock for SPIFI clock divider
//						<0=>	sysclk clock (the clock input to PLL0)
//						<1=>	The clock output from PLL0
//						<2=>	The clock output from PLL1
//		</h>
//
//		<h>	Power Control for Peripherals Register (PCONP - address 0x400F C1C8)
//			<o12.0>		PCLCD: LCD controller power/clock enable (bit 0)
//			<o12.1>		PCTIM0: Timer/Counter 0 power/clock enable (bit 1)
//			<o12.2>		PCTIM1: Timer/Counter 1 power/clock enable (bit 2)
//			<o12.3>		PCUART0: UART 0 power/clock enable (bit 3)
//			<o12.4>		PCUART1: UART 1 power/clock enable (bit 4)
//			<o12.5>		PCPWM0: PWM0 power/clock enable (bit 5)
//			<o12.6>		PCPWM1: PWM1 power/clock enable (bit 6)
//			<o12.7>		PCI2C0: I2C 0 interface power/clock enable (bit 7)
//			<o12.8>		PCUART4: UART 4 power/clock enable (bit 8)
//			<o12.9>		PCRTC: RTC and Event Recorder power/clock enable (bit 9)
//			<o12.10>	PCSSP1: SSP 1 interface power/clock enable (bit 10)
//			<o12.11>	PCEMC: External Memory Controller power/clock enable (bit 11)
//			<o12.12>	PCADC: A/D converter power/clock enable (bit 12)
//			<o12.13>	PCCAN1: CAN controller 1 power/clock enable (bit 13)
//			<o12.14>	PCCAN2: CAN controller 2 power/clock enable (bit 14)
//			<o12.15>	PCGPIO: IOCON, GPIO, and GPIO interrupts power/clock enable (bit 15)
//			<o12.17>	PCMCPWM: Motor Control PWM power/clock enable (bit 17)
//			<o12.18>	PCQEI: Quadrature encoder interface power/clock enable (bit 18)
//			<o12.19>	PCI2C1: I2C 1 interface power/clock enable (bit 19)
//			<o12.20>	PCSSP2: SSP 2 interface power/clock enable (bit 20)
//			<o12.21>	PCSSP0: SSP 0 interface power/clock enable (bit 21)
//			<o12.22>	PCTIM2: Timer 2 power/clock enable (bit 22)
//			<o12.23>	PCTIM3: Timer 3 power/clock enable (bit 23)
//			<o12.24>	PCUART2: UART 2 power/clock enable (bit 24)
//			<o12.25>	PCUART3: UART 3 power/clock enable (bit 25)
//			<o12.26>	PCI2C2: I2C 2 interface power/clock enable (bit 26)
//			<o12.27>	PCI2S: I2S interface power/clock enable (bit 27)
//			<o12.28>	PCSDC: SD Card interface power/clock enable (bit 28)
//			<o12.29>	PCGPDMA: GPDMA function power/clock enable (bit 29)
//			<o12.30>	PCENET: Ethernet block power/clock enable (bit 30)
//			<o12.31>	PCUSB: USB interface power/clock enable (bit 31)
//		</h>
//
//		<h>	Clock Output Configuration Register (CLKOUTCFG)
//			<o13.0..3>	CLKOUTSEL: Clock Source for CLKOUT Selection
//						<0=>	CPU clock
//						<1=>	Main Oscillator
//						<2=>	Internal RC Oscillator
//						<3=>	USB clock
//						<4=>	RTC Oscillator
//						<5=>	unused
//						<6=>	Watchdog Oscillator
//
//			<o13.4..7>	CLKOUTDIV: Output Clock Divider
//						<1-16><#-1>
//
//			<o13.8>		CLKOUT_EN: CLKOUT enable
//		</h>
//
//	</e>
*/

#define CLOCK_SETUP           1
#define SCS_Val               0x00000020
#define CLKSRCSEL_Val         0x00000001
#define PLL0_SETUP            1
#define PLL0CFG_Val           0x00000009
#define PLL1_SETUP            1
#define PLL1CFG_Val           0x00000023
#define CCLKSEL_Val           0x00000101
#define USBCLKSEL_Val         0x00000201
#define EMCCLKSEL_Val         0x00000001
#define PCLKSEL_Val           0x00000002
#define SPIFICLKSEL_Val       0x00000002
#define PCONP_Val             0x042887DE
#define CLKOUTCFG_Val         0x00000100

#ifdef CORE_M4
#define	LPC_CPACR	        0xE000ED88

#define SCB_MVFR0           0xE000EF40
#define SCB_MVFR0_RESET     0x10110021

#define SCB_MVFR1           0xE000EF44
#define SCB_MVFR1_RESET     0x11000011
#endif


/*--------------------- Flash Accelerator Configuration ----------------------
//
//	<e>	Flash Accelerator Configuration register (FLASHCFG - address 0x400F C000)
//		<o1.12..15>	FLASHTIM: Flash Access Time
//					<0=>	1 CPU clock (for CPU clock up to 20 MHz)
//					<1=>	2 CPU clocks (for CPU clock up to 40 MHz)
//					<2=>	3 CPU clocks (for CPU clock up to 60 MHz)
//					<3=>	4 CPU clocks (for CPU clock up to 80 MHz)
//					<4=>	5 CPU clocks (for CPU clock up to 100 MHz)
//					<5=>	6 CPU clocks (for any CPU clock)
//	</e>
*/

#define FLASH_SETUP           1
#define FLASHCFG_Val          0x00005000

/*----------------------------------------------------------------------------
  Check the register settings
 *----------------------------------------------------------------------------*/
#define CHECK_RANGE(val, min, max)                ((val < min) || (val > max))
#define CHECK_RSVD(val, mask)                     (val & mask)

/* Clock Configuration -------------------------------------------------------*/
#if (CHECK_RSVD((SCS_Val),       ~0x0000003F))
   #error "SCS: Invalid values of reserved bits!"
#endif

#if (CHECK_RANGE((CLKSRCSEL_Val), 0, 1))
   #error "CLKSRCSEL: Value out of range!"
#endif

#if (CHECK_RSVD((PLL0CFG_Val),   ~0x0000007F))
   #error "PLL0CFG: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((PLL1CFG_Val),   ~0x0000007F))
   #error "PLL1CFG: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((CCLKSEL_Val),   ~0x0000011F))
   #error "CCLKSEL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((USBCLKSEL_Val), ~0x0000031F))
   #error "USBCLKSEL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((EMCCLKSEL_Val), ~0x00000001))
   #error "EMCCLKSEL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((PCLKSEL_Val), ~0x0000001F))
   #error "PCLKSEL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((PCONP_Val), ~0xFFFEFFFF))
   #error "PCONP: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((CLKOUTCFG_Val), ~0x000001FF))
   #error "CLKOUTCFG: Invalid values of reserved bits!"
#endif

/* Flash Accelerator Configuration -------------------------------------------*/
#if (CHECK_RSVD((FLASHCFG_Val), ~0x0000F000))
   #warning "FLASHCFG: Invalid values of reserved bits!"
#endif


/*----------------------------------------------------------------------------
  DEFINES
 *----------------------------------------------------------------------------*/
/* pll_out_clk = F_cco / (2 � P)
   F_cco = pll_in_clk � M � 2 � P */
#define __M                   ((PLL0CFG_Val & 0x1F) + 1)
#define __PLL0_CLK(__F_IN)    (__F_IN * __M)
#define __CCLK_DIV            (CCLKSEL_Val & 0x1F)
#define __PCLK_DIV			  (PCLKSEL_Val & 0x1F)
#define __ECLK_DIV			  ((EMCCLKSEL_Val & 0x01) + 1)

/* Determine core clock frequency according to settings */
#if (CLOCK_SETUP)                       /* Clock Setup                        */

  #if ((CLKSRCSEL_Val & 0x01) == 1) && ((SCS_Val & 0x20)== 0)
   #error "Main Oscillator is selected as clock source but is not enabled!"
  #endif

  #if ((CCLKSEL_Val & 0x100) == 0x100) && (PLL0_SETUP == 0)
   #error "Main PLL is selected as clock source but is not enabled!"
  #endif

  #if ((CCLKSEL_Val & 0x100) == 0)      /* cclk = sysclk */
    #if ((CLKSRCSEL_Val & 0x01) == 0)   /* sysclk = irc_clk */
        #define __CORE_CLK (IRC_OSC / __CCLK_DIV)
		#define __PER_CLK  (IRC_OSC/  __PCLK_DIV)
        #define __EMC_CLK  (__CORE_CLK/  __ECLK_DIV)
    #else                               /* sysclk = osc_clk */
        #define __CORE_CLK (OSC_CLK / __CCLK_DIV)
        #define __PER_CLK  (OSC_CLK/  __PCLK_DIV)
        #define __EMC_CLK  (__CORE_CLK/  __ECLK_DIV)
    #endif
  #else                                 /* cclk = pll_clk */
    #if ((CLKSRCSEL_Val & 0x01) == 0)   /* sysclk = irc_clk */
        #define __CORE_CLK (__PLL0_CLK(IRC_OSC) / __CCLK_DIV)
        #define __PER_CLK  (__PLL0_CLK(IRC_OSC) / __PCLK_DIV)
        #define __EMC_CLK  (__CORE_CLK / __ECLK_DIV)
    #else                               /* sysclk = osc_clk */
        #define __CORE_CLK (__PLL0_CLK(OSC_CLK) / __CCLK_DIV)
        #define __PER_CLK  (__PLL0_CLK(OSC_CLK) / __PCLK_DIV)
		#define __EMC_CLK  (__CORE_CLK / __ECLK_DIV)
    #endif
  #endif

#else
        #define __CORE_CLK (IRC_OSC)
        #define __PER_CLK  (IRC_OSC)
        #define __EMC_CLK  (__CORE_CLK)
#endif

/*----------------------------------------------------------------------------
  Clock Variable definitions
 *----------------------------------------------------------------------------*/
uint32_t SystemCoreClock = __CORE_CLK;/*!< System Clock Frequency (Core Clock)*/
uint32_t PeripheralClock = __PER_CLK; /*!< Peripheral Clock Frequency (Pclk)  */
uint32_t EMCClock		 = __EMC_CLK; /*!< EMC Clock Frequency 				  */
uint32_t USBClock 		 = (48000000UL);		  /*!< USB Clock Frequency - this value will
									be updated after call SystemCoreClockUpdate, should be 48MHz*/


/*----------------------------------------------------------------------------
  Clock functions
 *----------------------------------------------------------------------------*/
void SystemCoreClockUpdate (void)            /* Get Core Clock Frequency      */
{
  /* Determine clock frequency according to clock register values             */
  if ((LPC_SC->CCLKSEL &0x100) == 0) {            /* cclk = sysclk    */
    if ((LPC_SC->CLKSRCSEL & 0x01) == 0) {    /* sysclk = irc_clk */
		  SystemCoreClock = __CLK_DIV(IRC_OSC , (LPC_SC->CCLKSEL & 0x1F));
          PeripheralClock = __CLK_DIV(IRC_OSC , (LPC_SC->PCLKSEL & 0x1F));
          EMCClock        = (SystemCoreClock / ((LPC_SC->EMCCLKSEL & 0x01)+1));
    }
    else {                                        /* sysclk = osc_clk */
      if ((LPC_SC->SCS & 0x40) == 0) {
          SystemCoreClock = 0;                      /* this should never happen! */
          PeripheralClock = 0;
          EMCClock        = 0;
      }
      else {
          SystemCoreClock = __CLK_DIV(OSC_CLK , (LPC_SC->CCLKSEL & 0x1F));
          PeripheralClock = __CLK_DIV(OSC_CLK , (LPC_SC->PCLKSEL & 0x1F));
          EMCClock        = (SystemCoreClock / ((LPC_SC->EMCCLKSEL & 0x01)+1));
      }
    }
  }
  else {                                          /* cclk = pll_clk */
    if ((LPC_SC->PLL0STAT & 0x100) == 0) {        /* PLL0 not enabled */
          SystemCoreClock = 0;                      /* this should never happen! */
          PeripheralClock = 0;
          EMCClock 		  = 0;
    }
    else {
      if ((LPC_SC->CLKSRCSEL & 0x01) == 0) {    /* sysclk = irc_clk */
          uint8_t mul = ((LPC_SC->PLL0STAT & 0x1F) + 1);
          uint8_t cpu_div = (LPC_SC->CCLKSEL & 0x1F);
          uint8_t per_div = (LPC_SC->PCLKSEL & 0x1F);
          uint8_t emc_div = (LPC_SC->EMCCLKSEL & 0x01)+1;
          SystemCoreClock = __CLK_DIV(IRC_OSC * mul , cpu_div);
          PeripheralClock = __CLK_DIV(IRC_OSC * mul , per_div);
          EMCClock        = SystemCoreClock / emc_div;
      }
      else {                                        /* sysclk = osc_clk */
        if ((LPC_SC->SCS & 0x40) == 0) {
          SystemCoreClock = 0;                      /* this should never happen! */
          PeripheralClock = 0;
          EMCClock 		  = 0;
        }
        else {
          uint8_t mul = ((LPC_SC->PLL0STAT & 0x1F) + 1);
          uint8_t cpu_div = (LPC_SC->CCLKSEL & 0x1F);
          uint8_t per_div = (LPC_SC->PCLKSEL & 0x1F);
		  uint8_t emc_div = (LPC_SC->EMCCLKSEL & 0x01)+1;
          SystemCoreClock = __CLK_DIV(OSC_CLK * mul , cpu_div);
          PeripheralClock = __CLK_DIV(OSC_CLK * mul , per_div);
          EMCClock        = SystemCoreClock / emc_div;
        }
      }
    }
  }
  /* ---update USBClock------------------*/
  if(LPC_SC->USBCLKSEL & (0x01<<8))//Use PLL0 as the input to the USB clock divider
  {
	  switch (LPC_SC->USBCLKSEL & 0x1F)
	  {
	  case 0:
		  USBClock = 0; //no clock will be provided to the USB subsystem
		  break;
	  case 4:
	  case 6:
            {
                 uint8_t mul = ((LPC_SC->PLL0STAT & 0x1F) + 1);
                 uint8_t usb_div = (LPC_SC->USBCLKSEL & 0x1F);
		  if(LPC_SC->CLKSRCSEL & 0x01)	//pll_clk_in = main_osc
			  USBClock = OSC_CLK * mul / usb_div;
		  else //pll_clk_in = irc_clk
			  USBClock = IRC_OSC * mul / usb_div;
            }
            break;
	  default:
		  USBClock = 0;  /* this should never happen! */
	  }
  }
  else if(LPC_SC->USBCLKSEL & (0x02<<8))//usb_input_clk = alt_pll (pll1)
  {
	  if(LPC_SC->CLKSRCSEL & 0x01)	//pll1_clk_in = main_osc
	  		USBClock = (OSC_CLK * ((LPC_SC->PLL1STAT & 0x1F) + 1));
	  else //pll1_clk_in = irc_clk
	  		USBClock = (IRC_OSC * ((LPC_SC->PLL0STAT & 0x1F) + 1));
  }
  else
	  USBClock = 0; /* this should never happen! */
}

  /* Determine clock frequency according to clock register values             */

#ifdef CORE_M4

void fpu_init(void)
{
 // from arm trm manual:
//                ; CPACR is located at address 0xE000ED88
//                LDR.W R0, =0xE000ED88
//                ; Read CPACR
//                LDR R1, [R0]
//                ; Set bits 20-23 to enable CP10 and CP11 coprocessors
//                ORR R1, R1, #(0xF << 20)
//                ; Write back the modified value to the CPACR
//                STR R1, [R0]


    volatile uint32_t* regCpacr = (uint32_t*) LPC_CPACR;
    volatile uint32_t* regMvfr0 = (uint32_t*) SCB_MVFR0;
    volatile uint32_t* regMvfr1 = (uint32_t*) SCB_MVFR1;
    volatile uint32_t Cpacr;
    volatile uint32_t Mvfr0;
    volatile uint32_t Mvfr1;
    char vfpPresent = 0;

    Mvfr0 = *regMvfr0;
    Mvfr1 = *regMvfr1;

    vfpPresent = ((SCB_MVFR0_RESET == Mvfr0) && (SCB_MVFR1_RESET == Mvfr1));

    if(vfpPresent)
    {
        Cpacr = *regCpacr;
        Cpacr |= (0xF << 20);
        *regCpacr = Cpacr;   // enable CP10 and CP11 for full access
    }

}
#endif

/**
 * Initialize the system
 *
 * @param  none
 * @return none
 *
 * @brief  Setup the microcontroller system.
 *         Initialize the System.
 */
void SystemInit (void)
{
#ifndef __CODE_RED
#ifdef CORE_M4
fpu_init();
#endif
#endif

#if (CLOCK_SETUP)                       /* Clock Setup                        */
  LPC_SC->SCS       = SCS_Val;
  if (SCS_Val & (1 << 5)) {             /* If Main Oscillator is enabled      */
    while ((LPC_SC->SCS & (1<<6)) == 0);/* Wait for Oscillator to be ready    */
  }

  LPC_SC->CLKSRCSEL = CLKSRCSEL_Val;    /* Select Clock Source for sysclk/PLL0*/

#if (PLL0_SETUP)
  LPC_SC->PLL0CFG   = PLL0CFG_Val;
  LPC_SC->PLL0CON   = 0x01;             /* PLL0 Enable                        */
  LPC_SC->PLL0FEED  = 0xAA;
  LPC_SC->PLL0FEED  = 0x55;
  while (!(LPC_SC->PLL0STAT & (1<<10)));/* Wait for PLOCK0                    */
#endif

#if (PLL1_SETUP)
  LPC_SC->PLL1CFG   = PLL1CFG_Val;
  LPC_SC->PLL1CON   = 0x01;             /* PLL1 Enable                        */
  LPC_SC->PLL1FEED  = 0xAA;
  LPC_SC->PLL1FEED  = 0x55;
  while (!(LPC_SC->PLL1STAT & (1<<10)));/* Wait for PLOCK1                    */
#endif

  LPC_SC->CCLKSEL   = CCLKSEL_Val;      /* Setup Clock Divider                */
  LPC_SC->USBCLKSEL = USBCLKSEL_Val;    /* Setup USB Clock Divider            */
  LPC_SC->EMCCLKSEL = EMCCLKSEL_Val;    /* EMC Clock Selection                */
  LPC_SC->SPIFICLKSEL  = SPIFICLKSEL_Val;  /* SPIFI Clock Selection              */
  LPC_SC->PCLKSEL   = PCLKSEL_Val;      /* Peripheral Clock Selection         */
  LPC_SC->PCONP     = PCONP_Val;        /* Power Control for Peripherals      */
  LPC_SC->CLKOUTCFG = CLKOUTCFG_Val;    /* Clock Output Configuration         */
#endif

  LPC_SC->PBOOST 	|= 0x03;			/* Power Boost control				*/

#if (FLASH_SETUP == 1)                  /* Flash Accelerator Setup            */
  LPC_SC->FLASHCFG  = FLASHCFG_Val|0x03A;
#endif
#ifndef __CODE_RED
#ifdef  __RAM_MODE__
  SCB->VTOR  = 0x10000000 & 0x3FFFFF80;
#else
  SCB->VTOR  = 0x00000000 & 0x3FFFFF80;
#endif
#endif
  SystemCoreClockUpdate();
}