Initial commit

Dependencies:   FastPWM

Revision:
0:bb348c97df44
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed-dev-master/targets/TARGET_STM/TARGET_STM32F4/device/stm32f4xx_hal_cryp_ex.c	Wed Sep 16 01:11:49 2020 +0000
@@ -0,0 +1,5988 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_cryp_ex.c
+  * @author  MCD Application Team
+  * @brief   Extended CRYP HAL module driver
+  *          This file provides firmware functions to manage the following 
+  *          functionalities of CRYP extension peripheral:
+  *           + Extended AES processing functions     
+  *  
+  @verbatim
+  ==============================================================================
+                     ##### How to use this driver #####
+  ==============================================================================
+    [..]
+    The CRYP Extension HAL driver can be used as follows:
+    (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
+        (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
+        (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT())
+            (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
+            (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
+            (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
+        (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA())
+            (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
+            (+++) Configure and enable two DMA streams one for managing data transfer from
+                memory to peripheral (input stream) and another stream for managing data
+                transfer from peripheral to memory (output stream)
+            (+++) Associate the initialized DMA handle to the CRYP DMA handle
+                using  __HAL_LINKDMA()
+            (+++) Configure the priority and enable the NVIC for the transfer complete
+                interrupt on the two DMA Streams. The output stream should have higher
+                priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
+    (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
+        (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
+        (##) The key size: 128, 192 and 256. This parameter is relevant only for AES
+        (##) The encryption/decryption key. Its size depends on the algorithm
+                used for encryption/decryption
+        (##) The initialization vector (counter). It is not used ECB mode.
+    (#)Three processing (encryption/decryption) functions are available:
+        (##) Polling mode: encryption and decryption APIs are blocking functions
+             i.e. they process the data and wait till the processing is finished
+             e.g. HAL_CRYPEx_AESGCM_Encrypt()
+        (##) Interrupt mode: encryption and decryption APIs are not blocking functions
+                i.e. they process the data under interrupt
+                e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()
+        (##) DMA mode: encryption and decryption APIs are not blocking functions
+                i.e. the data transfer is ensured by DMA
+                e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA()
+    (#)When the processing function is called at first time after HAL_CRYP_Init()
+       the CRYP peripheral is initialized and processes the buffer in input.
+       At second call, the processing function performs an append of the already
+       processed buffer.
+       When a new data block is to be processed, call HAL_CRYP_Init() then the
+       processing function.
+    (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms
+       which provide authentication messages.
+       HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those
+       authentication messages.
+       Call those functions after the processing ones (polling, interrupt or DMA).
+       e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data
+            then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message
+     -@- For CCM Encrypt/Decrypt API's, only DataType = 8-bit is supported by this version.
+     -@- The HAL_CRYPEx_AESGCM_xxxx() implementation is limited to 32bits inputs data length 
+           (Plain/Cyphertext, Header) compared with GCM standards specifications (800-38D).
+    (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
+
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */ 
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup CRYPEx CRYPEx
+  * @brief CRYP Extension HAL module driver.
+  * @{
+  */
+
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+#if defined(CRYP)
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @addtogroup CRYPEx_Private_define
+  * @{
+  */
+#define CRYPEx_TIMEOUT_VALUE  1U
+/**
+  * @}
+  */ 
+  
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup CRYPEx_Private_Functions_prototypes  CRYP Private Functions Prototypes
+  * @{
+  */
+static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector);
+static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
+static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout);
+static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout);
+static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+/**
+  * @}
+  */ 
+  
+/* Private functions ---------------------------------------------------------*/
+/** @addtogroup CRYPEx_Private_Functions
+  * @{
+  */
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback. 
+  * @param  hdma DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit
+     in the DMACR register */
+  hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback.
+  * @param  hdma DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit
+     in the DMACR register */
+  hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_DISABLE(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback. 
+  * @param  hdma DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  hcryp->State= HAL_CRYP_STATE_READY;
+  HAL_CRYP_ErrorCallback(hcryp);
+}
+
+/**
+  * @brief  Writes the Key in Key registers. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  Key Pointer to Key buffer
+  * @param  KeySize Size of Key
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
+{
+  uint32_t keyaddr = (uint32_t)Key;
+  
+  switch(KeySize)
+  {
+  case CRYP_KEYSIZE_256B:
+    /* Key Initialisation */
+    hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  case CRYP_KEYSIZE_192B:
+    hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  case CRYP_KEYSIZE_128B:       
+    hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  default:
+    break;
+  }
+}
+
+/**
+  * @brief  Writes the InitVector/InitCounter in IV registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  InitVector Pointer to InitVector/InitCounter buffer
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
+{
+  uint32_t ivaddr = (uint32_t)InitVector;
+  
+  hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr));
+}
+
+/**
+  * @brief  Process Data: Writes Input data in polling mode and read the Output data.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  Input Pointer to the Input buffer.
+  * @param  Ilength Length of the Input buffer, must be a multiple of 16
+  * @param  Output Pointer to the returned buffer
+  * @param  Timeout Timeout value 
+  * @retval None
+  */
+static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t i = 0U;
+  uint32_t inputaddr  = (uint32_t)Input;
+  uint32_t outputaddr = (uint32_t)Output;
+  
+  for(i=0U; (i < Ilength); i+=16U)
+  {
+    /* Write the Input block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+ 
+    while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /* Read the Output block from the OUT FIFO */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+  }
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Sets the header phase
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  Input Pointer to the Input buffer.
+  * @param  Ilength Length of the Input buffer, must be a multiple of 16
+  * @param  Timeout Timeout value   
+  * @retval None
+  */
+static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t loopcounter = 0U;
+  uint32_t headeraddr = (uint32_t)Input;
+  
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(Ilength);
+
+  /***************************** Header phase *********************************/
+  if(hcryp->Init.HeaderSize != 0U)
+  {
+    /* Select header phase */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    for(loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16U)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+      {
+        /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Write the Input block in the IN FIFO */
+      hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4U;
+    }
+    
+    /* Wait until the complete message has been processed */
+
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+  }
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Sets the DMA configuration and start the DMA transfer.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  inputaddr Address of the Input buffer
+  * @param  Size Size of the Input buffer, must be a multiple of 16
+  * @param  outputaddr Address of the Output buffer
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
+  
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE(hcryp);
+  
+  /* Enable the DMA In DMA Stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4U);
+  
+  /* Enable In DMA request */
+  hcryp->Instance->DMACR = CRYP_DMACR_DIEN;
+  
+  /* Enable the DMA Out DMA Stream */
+  HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4U);
+  
+  /* Enable Out DMA request */
+  hcryp->Instance->DMACR |= CRYP_DMACR_DOEN;
+}
+
+/**
+  * @}
+  */ 
+
+/* Exported functions---------------------------------------------------------*/
+/** @addtogroup CRYPEx_Exported_Functions
+  * @{
+  */
+
+/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+              ##### Extended AES processing functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
+      (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
+      (+) Finish the processing. This function is available only for GCM and CCM
+    [..]  Three processing methods are available:
+      (+) Polling mode
+      (+) Interrupt mode
+      (+) DMA mode
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode then 
+  *         encrypt pPlainData. The cypher data are available in pCypherData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /************************ Formatting the header block *********************/
+    if(headersize != 0U)
+    {
+      /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+      if(headersize < 65280U)
+      {
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+        headersize += 2U;
+      }
+      else
+      {
+        /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+        hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+        hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+        headersize += 6U;
+      }
+      /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+      for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+      {
+        hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+      }
+      /* Check if the header size is modulo 16 */
+      if ((headersize % 16U) != 0U)
+      {
+        /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+        for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+        {
+          hcryp->Init.pScratch[loopcounter] = 0U;
+        }
+        /* Set the header size to modulo 16 */
+        headersize = ((headersize/16U) + 1U) * 16U;
+      }
+      /* Set the pointer headeraddr to hcryp->Init.pScratch */
+      headeraddr = (uint32_t)hcryp->Init.pScratch;
+    }
+    /*********************** Formatting the block B0 **************************/
+    if(headersize != 0U)
+    {
+      blockb0[0U] = 0x40U;
+    }
+    /* Flags byte */
+    /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+    blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
+    blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+ 
+    for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+    {
+      blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+    }
+    for ( ; loopcounter < 13U; loopcounter++)
+    {
+      blockb0[loopcounter+1U] = 0U;
+    }
+    
+    blockb0[14U] = (Size >> 8U);
+    blockb0[15U] = (Size & 0xFFU);
+    
+    /************************* Formatting the initial counter *****************/
+    /* Byte 0:
+       Bits 7 and 6 are reserved and shall be set to 0
+       Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
+       are distinct from B0
+       Bits 0, 1, and 2 contain the same encoding of q as in B0
+    */
+    ctr[0U] = blockb0[0U] & 0x07U;
+    /* byte 1 to NonceSize is the IV (Nonce) */
+    for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+    {
+      ctr[loopcounter] = blockb0[loopcounter];
+    }
+    /* Set the LSB to 1 */
+    ctr[15U] |= 0x01U;
+    
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES CCM mode */
+    __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+    
+    /* Select init phase */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+    
+    b0addr = (uint32_t)blockb0;
+    /* Write the blockb0 block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /***************************** Header phase *******************************/
+    if(headersize != 0U)
+    {
+      /* Select header phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+        {
+          {
+            /* Check for the Timeout */
+            if(Timeout != HAL_MAX_DELAY)
+            {
+              if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+              {
+                /* Change state */
+                hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+                
+                /* Process Unlocked */
+                __HAL_UNLOCK(hcryp);
+                
+                return HAL_TIMEOUT;
+              }
+            }
+          }
+        }
+        /* Write the header block in the IN FIFO */
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+      }
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+      {
+        /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+    }
+    /* Save formatted counter into the scratch buffer pScratch */
+    for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+    {
+      hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+    }
+    /* Reset bit 0 */
+    hcryp->Init.pScratch[15U] &= 0xFEU;
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH(hcryp);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode then 
+  *         encrypt pPlainData. The cypher data are available in pCypherData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES GCM mode */
+    __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH(hcryp);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Set the header phase */
+    if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
+    {
+      return HAL_TIMEOUT;
+    }
+    
+    /* Disable the CRYP peripheral */
+    __HAL_CRYP_DISABLE(hcryp);
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH(hcryp);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode then
+  *         decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @param  Size Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData Pointer to the plaintext buffer 
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES GCM decryption mode */
+    __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH(hcryp);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Set the header phase */
+    if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
+    {
+      return HAL_TIMEOUT;
+    }
+    /* Disable the CRYP peripheral */
+    __HAL_CRYP_DISABLE(hcryp);
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Computes the authentication TAG.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  Size Total length of the plain/cyphertext buffer
+  * @param  AuthTag Pointer to the authentication buffer
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  uint64_t headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
+  uint64_t inputlength = Size * 8U; /* input length in bits */
+  uint32_t tagaddr = (uint32_t)AuthTag;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
+  {
+    /* Change the CRYP phase */
+    hcryp->Phase = HAL_CRYP_PHASE_FINAL;
+    
+    /* Disable CRYP to start the final phase */
+    __HAL_CRYP_DISABLE(hcryp);
+    
+    /* Select final phase */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Write the number of bits in header (64 bits) followed by the number of bits
+       in the payload */
+    if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+    {
+      hcryp->Instance->DR = __RBIT(headerlength >> 32U);
+      hcryp->Instance->DR = __RBIT(headerlength);
+      hcryp->Instance->DR = __RBIT(inputlength >> 32U);
+      hcryp->Instance->DR = __RBIT(inputlength);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+    {
+      hcryp->Instance->DR = __REV(headerlength >> 32U);
+      hcryp->Instance->DR = __REV(headerlength);
+      hcryp->Instance->DR = __REV(inputlength >> 32U);
+      hcryp->Instance->DR = __REV(inputlength);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+    {
+      hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32U), 16U);
+      hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16U);
+      hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32U), 16U);
+      hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16U);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+    {
+      hcryp->Instance->DR = (uint32_t)(headerlength >> 32U);
+      hcryp->Instance->DR = (uint32_t)(headerlength);
+      hcryp->Instance->DR = (uint32_t)(inputlength >> 32U);
+      hcryp->Instance->DR = (uint32_t)(inputlength);
+    }
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Read the Auth TAG in the IN FIFO */
+    *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
+    tagaddr+=4U;
+    *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
+    tagaddr+=4U;
+    *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
+    tagaddr+=4U;
+    *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Computes the authentication TAG for AES CCM mode.
+  * @note   This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()   
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  AuthTag Pointer to the authentication buffer
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t tagaddr = (uint32_t)AuthTag;
+  uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
+  uint32_t temptag[4U] = {0U}; /* Temporary TAG (MAC) */
+  uint32_t loopcounter;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
+  {
+    /* Change the CRYP phase */
+    hcryp->Phase = HAL_CRYP_PHASE_FINAL;
+    
+    /* Disable CRYP to start the final phase */
+    __HAL_CRYP_DISABLE(hcryp);
+    
+    /* Select final phase */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Write the counter block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)ctraddr;
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+
+    while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Read the Auth TAG in the IN FIFO */
+    temptag[0U] = hcryp->Instance->DOUT;
+    temptag[1U] = hcryp->Instance->DOUT;
+    temptag[2U] = hcryp->Instance->DOUT;
+    temptag[3U] = hcryp->Instance->DOUT;
+  }
+  
+  /* Copy temporary authentication TAG in user TAG buffer */
+  for(loopcounter = 0U; loopcounter < hcryp->Init.TagSize ; loopcounter++)
+  {
+    /* Set the authentication TAG buffer */
+    *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode then
+  *         decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @param  Timeout Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /************************ Formatting the header block *********************/
+    if(headersize != 0U)
+    {
+      /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+      if(headersize < 65280U)
+      {
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+        headersize += 2U;
+      }
+      else
+      {
+        /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+        hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+        hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+        headersize += 6U;
+      }
+      /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+      for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+      {
+        hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+      }
+      /* Check if the header size is modulo 16 */
+      if ((headersize % 16U) != 0U)
+      {
+        /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+        for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+        {
+          hcryp->Init.pScratch[loopcounter] = 0U;
+        }
+        /* Set the header size to modulo 16 */
+        headersize = ((headersize/16U) + 1U) * 16U;
+      }
+      /* Set the pointer headeraddr to hcryp->Init.pScratch */
+      headeraddr = (uint32_t)hcryp->Init.pScratch;
+    }
+    /*********************** Formatting the block B0 **************************/
+    if(headersize != 0U)
+    {
+      blockb0[0U] = 0x40U;
+    }
+    /* Flags byte */
+    /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+    blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2U))) >> 1U) & (uint8_t)0x07U) << 3U);
+    blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15U) - hcryp->Init.IVSize) - (uint8_t)1U) & (uint8_t)0x07U);
+    
+    for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+    {
+      blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+    }
+    for ( ; loopcounter < 13U; loopcounter++)
+    {
+      blockb0[loopcounter+1U] = 0U;
+    }
+    
+    blockb0[14U] = (Size >> 8U);
+    blockb0[15U] = (Size & 0xFFU);
+    
+    /************************* Formatting the initial counter *****************/
+    /* Byte 0:
+       Bits 7 and 6 are reserved and shall be set to 0
+       Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+       blocks are distinct from B0
+       Bits 0, 1, and 2 contain the same encoding of q as in B0
+    */
+    ctr[0U] = blockb0[0U] & 0x07U;
+    /* byte 1 to NonceSize is the IV (Nonce) */
+    for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+    {
+      ctr[loopcounter] = blockb0[loopcounter];
+    }
+    /* Set the LSB to 1 */
+    ctr[15U] |= 0x01U;
+    
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES CCM mode */
+    __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+    
+    /* Select init phase */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+    
+    b0addr = (uint32_t)blockb0;
+    /* Write the blockb0 block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    b0addr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(b0addr);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+ 
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /***************************** Header phase *******************************/
+    if(headersize != 0U)
+    {
+      /* Select header phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+      
+      /* Enable Crypto processor */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+        {
+          /* Check for the Timeout */
+          if(Timeout != HAL_MAX_DELAY)
+          {
+            if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+        }
+        /* Write the header block in the IN FIFO */
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+        hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4U;
+      }
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+      {
+      /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+    }
+    /* Save formatted counter into the scratch buffer pScratch */
+    for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+    {
+      hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+    }
+    /* Reset bit 0 */
+    hcryp->Init.pScratch[15U] &= 0xFEU;
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH(hcryp);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode using IT.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Get the buffer addresses and sizes */    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+     /* Get tick */
+     tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+          
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE(hcryp);
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0U)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+    }
+    else
+    {
+      /* Process Locked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16U;
+    hcryp->CrypInCount -= 16U;
+    if(hcryp->CrypInCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    hcryp->pCrypOutBuffPtr += 16U;
+    hcryp->CrypOutCount -= 16U;
+    if(hcryp->CrypOutCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {    
+      /************************ Formatting the header block *******************/
+      if(headersize != 0U)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280U)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2U;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+          hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+          headersize += 6U;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16U) != 0U)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0U;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16U) + 1U) * 16U;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0U)
+      {
+        blockb0[0U] = 0x40U;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13U; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = 0U;
+      }
+      
+      blockb0[14U] = (Size >> 8U);
+      blockb0[15U] = (Size & 0xFFU);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0U] = blockb0[0U] & 0x07U;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15U] |= 0x01U;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+     /* Get tick */
+     tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0U)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE(hcryp);
+        
+        for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+        {
+         /* Get tick */
+         tickstart = HAL_GetTick();
+
+          while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+        }
+
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15U] &= 0xFEU;
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0U)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+    }
+    else
+    {
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16U;
+    hcryp->CrypInCount -= 16U;
+    if(hcryp->CrypInCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+      /* Call Input transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    hcryp->pCrypOutBuffPtr += 16U;
+    hcryp->CrypOutCount -= 16U;
+    if(hcryp->CrypOutCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode using IT.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @param  Size Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Get the buffer addresses and sizes */    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM decryption mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE(hcryp);
+
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE(hcryp);
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0U)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+    }
+    else
+    {
+      /* Process Locked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16U;
+    hcryp->CrypInCount -= 16U;
+    if(hcryp->CrypInCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    hcryp->pCrypOutBuffPtr += 16U;
+    hcryp->CrypOutCount -= 16U;
+    if(hcryp->CrypOutCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
+  *         then decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pCypherData Pointer to the cyphertext buffer 
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pPlainData Pointer to the plaintext buffer  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t tickstart = 0U;
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0U)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280U)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2U;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+          hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+          headersize += 6U;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16U) != 0U)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0U;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16U) + 1U) * 16U;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0U)
+      {
+        blockb0[0U] = 0x40U;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1U) & (uint8_t)0x07) << 3U);
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13U; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = 0U;
+      }
+      
+      blockb0[14U] = (Size >> 8U);
+      blockb0[15U] = (Size & 0xFFU);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0U] = blockb0[0U] & 0x07U;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15U] |= 0x01U;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0U)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE(hcryp);
+        
+        for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+        {
+         /* Get tick */
+         tickstart = HAL_GetTick();
+
+          while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+        }
+
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15U] &= 0xFEU;
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Enable Interrupts */
+    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16U;
+    hcryp->CrypInCount -= 16U;
+    if(hcryp->CrypInCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT;
+    hcryp->pCrypOutBuffPtr += 16U;
+    hcryp->CrypOutCount -= 16U;
+    if(hcryp->CrypOutCount == 0U)
+    {
+      __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t tickstart = 0U;
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pPlainData;
+    outputaddr = (uint32_t)pCypherData;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE(hcryp);
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t headersize;
+  uint32_t headeraddr;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pPlainData;
+    outputaddr = (uint32_t)pCypherData;
+    
+    headersize = hcryp->Init.HeaderSize;
+    headeraddr = (uint32_t)hcryp->Init.Header;
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0U)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280U)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2U;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+          hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+          headersize += 6U;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16U) != 0U)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0U;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16U) + 1U) * 16U;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0U)
+      {
+        blockb0[0U] = 0x40U;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07) << 3);
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13U; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = 0U;
+      }
+      
+      blockb0[14U] = (Size >> 8U);
+      blockb0[15U] = (Size & 0xFFU);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0U] = blockb0[0U] & 0x07U;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15U] |= 0x01U;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+ 
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0U)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE(hcryp);
+        
+        for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+        {
+         /* Get tick */
+         tickstart = HAL_GetTick();
+
+          while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+        }
+        
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15U] &= 0xFEU;
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pCypherData Pointer to the cyphertext buffer.
+  * @param  Size Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData Pointer to the plaintext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pCypherData;
+    outputaddr = (uint32_t)pPlainData;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM decryption mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect);
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1U) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE(hcryp);
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode using DMA
+  *         then decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pCypherData Pointer to the cyphertext buffer  
+  * @param  Size Length of the plaintext buffer, must be a multiple of 16
+  * @param  pPlainData Pointer to the plaintext buffer  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t tickstart = 0U;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t headersize;
+  uint32_t headeraddr;
+  uint32_t loopcounter = 0U;
+  uint32_t bufferidx = 0U;
+  uint8_t blockb0[16U] = {0};/* Block B0 */
+  uint8_t ctr[16U] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pCypherData;
+    outputaddr = (uint32_t)pPlainData;
+    
+    headersize = hcryp->Init.HeaderSize;
+    headeraddr = (uint32_t)hcryp->Init.Header;
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0U)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280U)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2U;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFFU;
+          hcryp->Init.pScratch[bufferidx++] = 0xFEU;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00U;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ffU;
+          headersize += 6U;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0U; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16U) != 0U)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16U) + 1U) * 16U; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0U;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16U) + 1U) * 16U;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0U)
+      {
+        blockb0[0U] = 0x40U;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07U) */
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07) << 3);
+      blockb0[0U] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0U; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13U; loopcounter++)
+      {
+        blockb0[loopcounter+1U] = 0U;
+      }
+      
+      blockb0[14U] = (Size >> 8U);
+      blockb0[15U] = (Size & 0xFFU);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0U] = blockb0[0U] & 0x07U;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1U; loopcounter < hcryp->Init.IVSize + 1U; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15U] |= 0x01U;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      b0addr+=4U;
+      hcryp->Instance->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE(hcryp);
+      
+      /* Get tick */
+      tickstart = HAL_GetTick();
+ 
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        
+        if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+          
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0U)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE(hcryp);
+        
+        for(loopcounter = 0U; (loopcounter < headersize); loopcounter+=16U)
+        {
+         /* Get tick */
+         tickstart = HAL_GetTick();
+ 
+          while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+          hcryp->Instance->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4U;
+        }
+        
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0U; (loopcounter < 16U); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15U] &= 0xFEU;
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH(hcryp);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @}
+  */
+  
+/** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management  
+ *  @brief   CRYPEx IRQ handler.
+ *
+@verbatim   
+  ==============================================================================
+                ##### CRYPEx IRQ handler management #####
+  ==============================================================================  
+[..]  This section provides CRYPEx IRQ handler function.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  This function handles CRYPEx interrupt request.
+  * @param  hcryp pointer to a CRYPEx_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @retval None
+  */
+
+void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
+{
+  switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
+  {    
+  case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
+    HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0U, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
+    HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0U, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
+    HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0U, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
+    HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0U, NULL);
+    break;
+    
+  default:
+    break;
+  }
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+#endif /* CRYP */
+
+#if defined (AES)
+
+/** @defgroup CRYPEx_Private_Constants CRYPEx Private Constants
+  * @{
+  */
+#define CRYP_CCF_TIMEOUTVALUE                      22000U  /*!< CCF flag raising time-out value */
+#define CRYP_BUSY_TIMEOUTVALUE                     22000U  /*!< BUSY flag reset time-out value  */
+
+#define CRYP_POLLING_OFF                           0x0U    /*!< No polling when padding */
+#define CRYP_POLLING_ON                            0x1U    /*!< Polling when padding    */
+/**
+  * @}
+  */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup CRYPEx_Private_Functions CRYPEx Private Functions
+ * @{
+ */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout);
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_Padding(CRYP_HandleTypeDef *hcryp, uint32_t difflength, uint32_t polling);
+/**
+  * @}
+  */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup CRYPEx_Exported_Functions CRYPEx Exported Functions
+  * @{
+  */
+
+
+/** @defgroup CRYPEx_Exported_Functions_Group1 Extended callback function 
+ *  @brief    Extended callback functions. 
+ *
+@verbatim   
+ ===============================================================================
+                 ##### Extended callback functions #####
+ =============================================================================== 
+    [..]  This section provides callback function:
+      (+) Computation completed.
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Computation completed callbacks.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @retval None
+  */
+__weak void HAL_CRYPEx_ComputationCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hcryp);
+
+  /* NOTE : This function should not be modified; when the callback is needed,
+            the HAL_CRYPEx_ComputationCpltCallback can be implemented in the user file
+   */ 
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRYPEx_Exported_Functions_Group2 AES extended processing functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+                      ##### AES extended processing functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Encrypt plaintext or decrypt cipher text using AES algorithm in different chaining modes.
+          Functions are generic (handles ECB, CBC and CTR and all modes) and are only differentiated
+          based on the processing type. Three processing types are available:
+          (++) Polling mode
+          (++) Interrupt mode
+          (++) DMA mode
+      (+) Generate and authentication tag in addition to encrypt/decrypt a plain/cipher text using AES 
+          algorithm in different chaining modes.
+          Functions are generic (handles GCM, GMAC, CMAC and CCM when applicable) and process only one phase 
+          so that steps can be skipped if so required. Functions are only differentiated based on the processing type. 
+          Three processing types are available:
+          (++) Polling mode
+          (++) Interrupt mode
+          (++) DMA mode          
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Carry out in polling mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and 
+  *         chaining modes ECB, CBC and CTR are managed by this function in polling mode.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.
+  *                     Parameter is meaningless in case of key derivation.      
+  * @param  Size Length of the input data buffer in bytes, must be a multiple of 16.
+  *               Parameter is meaningless in case of key derivation.  
+  * @param  pOutputData Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption, or pointer to the derivative keys in
+  *                     case of key derivation only.   
+  * @param  Timeout Specify Timeout value 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if (pOutputData == NULL) 
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /* Call CRYP_ReadKey() API if the operating mode is set to
+       key derivation, CRYP_ProcessData() otherwise  */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if(CRYP_ReadKey(hcryp, pOutputData, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }    
+    }
+    else
+    {
+      if(CRYP_ProcessData(hcryp, pInputData, Size, pOutputData, Timeout) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+    }
+  
+    /* If the state has not been set to SUSPENDED, set it to
+       READY, otherwise keep it as it is */
+    if (hcryp->State != HAL_CRYP_STATE_SUSPENDED)
+    {
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @brief  Carry out in interrupt mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and 
+  *         chaining modes ECB, CBC and CTR are managed by this function in interrupt mode.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.
+  *                     Parameter is meaningless in case of key derivation.      
+  * @param  Size Length of the input data buffer in bytes, must be a multiple of 16.
+  *               Parameter is meaningless in case of key derivation.  
+  * @param  pOutputData Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption, or pointer to the derivative keys in 
+  *                     case of key derivation only.    
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_IT(CRYP_HandleTypeDef *hcryp,  uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr = 0U;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      if (pOutputData == NULL) 
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* If operating mode is not limited to key derivation only,
+       get the buffers addresses and sizes */
+    if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+    {
+
+      hcryp->CrypInCount = Size;
+      hcryp->pCrypInBuffPtr = pInputData;
+      hcryp->pCrypOutBuffPtr = pOutputData;
+      hcryp->CrypOutCount = Size;
+    }
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+      /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Enable Computation Complete Flag and Error Interrupts */
+    __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+    /* If operating mode is key derivation only, the input data have 
+       already been entered during the initialization process. For
+       the other operating modes, they are fed to the CRYP hardware 
+       block at this point. */
+    if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      /* Initiate the processing under interrupt in entering 
+         the first input data */
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      /* Increment/decrement instance pointer/counter */
+      hcryp->pCrypInBuffPtr += 16U;
+      hcryp->CrypInCount -= 16U;
+      /* Write the first input block in the Data Input register */
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4U;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      inputaddr+=4U;
+      hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+      inputaddr+=4U;
+      hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;   
+  }
+}
+
+/**
+  * @brief  Carry out in DMA mode the ciphering or deciphering operation according to
+  *         hcryp->Init structure fields.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData Pointer to the plain text in case of encryption or cipher text in case of decryption
+  *                     or key derivation+decryption.    
+  * @param  Size Length of the input data buffer in bytes, must be a multiple of 16.
+  * @param  pOutputData Pointer to the cipher text in case of encryption or plain text in case of 
+  *                     decryption/key derivation+decryption.
+  * @note   Chaining modes ECB, CBC and CTR are managed by this function in DMA mode.   
+  * @note   Supported operating modes are encryption, decryption and key derivation with decryption. 
+  * @note   No DMA channel is provided for key derivation only and therefore, access to AES_KEYRx 
+  *         registers must be done by software.   
+  * @note   This API is not applicable to key derivation only; for such a mode, access to AES_KEYRx 
+  *         registers must be done by software thru HAL_CRYPEx_AES() or HAL_CRYPEx_AES_IT() APIs.
+  * @note   pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.   
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_DMA(CRYP_HandleTypeDef *hcryp,  uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr = 0U;
+  uint32_t outputaddr = 0U;
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Check parameters setting */
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+    {
+      /* no DMA channel is provided for key derivation operating mode, 
+         access to AES_KEYRx registers must be done by software */
+      return  HAL_ERROR;
+    }
+    else
+    {
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pInputData;
+    outputaddr = (uint32_t)pOutputData;
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;   
+  }
+}
+
+/**
+  * @brief  Carry out in polling mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData 
+  *         - pointer to payload data in GCM payload phase, 
+  *         - pointer to B0 block in CMAC header phase,
+  *         - pointer to C block in CMAC final phase. 
+  *         - Parameter is meaningless in case of GCM/GMAC init, header and final phases.                                       
+  * @param  Size 
+  *         - length of the input payload data buffer in bytes,
+  *         - length of B0 block (in bytes) in CMAC header phase,
+  *         - length of C block (in bytes) in CMAC final phase.
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases.                                
+  * @param  pOutputData 
+  *         - pointer to plain or cipher text in GCM payload phase, 
+  *         - pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases
+  *           and in case of CMAC header phase.  
+  * @param  Timeout Specify Timeout value 
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC, CMAC and CCM when the latter is applicable.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.          
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+  uint32_t index          = 0U;
+  uint32_t inputaddr      = 0U;
+  uint32_t outputaddr     = 0U;
+  uint32_t tagaddr        = 0U;
+  uint64_t headerlength   = 0U; 
+  uint64_t inputlength    = 0U;
+  uint64_t payloadlength  = 0U; 
+  uint32_t difflength     = 0U;
+  uint32_t addhoc_process = 0U;  
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB)
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif      
+      {
+        /* In case of CMAC (or CCM) header phase resumption, we can have pInputData = NULL and  Size = 0 */
+        if (((pInputData != NULL) && (Size == 0U)) || ((pInputData == NULL) && (Size != 0U)))
+        {
+          return  HAL_ERROR;
+        }
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB)  
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
+#else    
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+#endif      
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /*==============================================*/
+    /* GCM/GMAC (or CCM when applicable) init phase */
+    /*==============================================*/
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. Therefore, the
+       API just waits for the CCF flag to be set. */
+    if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
+    {
+      /* just wait for hash computation */
+      if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+      { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+        return HAL_TIMEOUT;
+      }
+      
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+    }
+    /*=====================================*/
+    /* GCM/GMAC or (CCM/)CMAC header phase */
+    /*=====================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {      
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_HEADER_PHASE);
+      }
+         
+      /* Enable the Peripheral */
+      __HAL_CRYP_ENABLE();
+      
+#if !defined(AES_CR_NPBLB)       
+      /* in case of CMAC, enter B0 block in header phase, before the header itself. */
+      /* If Size = 0 (possible case of resumption after CMAC header phase suspension),
+         skip these steps and go directly to header buffer feeding to the HW */
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (Size != 0U))
+      {
+        inputaddr = (uint32_t)pInputData; 
+        
+        for(index=0U; (index < Size); index += 16U)
+        {
+          /* Write the Input block in the Data Input register */
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          
+          if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+          { 
+            hcryp->State = HAL_CRYP_STATE_READY;        
+            __HAL_UNLOCK(hcryp);
+            return HAL_TIMEOUT;
+          }
+          /* Clear CCF Flag */
+          __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);           
+
+          /* If the suspension flag has been raised and if the processing is not about
+           to end, suspend processing */  
+          if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < Size))        
+          {
+            /* reset SuspendRequest */
+            hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+            /* Change the CRYP state */
+            hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+            /* Mark that the header phase is over */
+            hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+            
+           /* Save current reading and writing locations of Input and Output buffers */
+           hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+           /* Save the total number of bytes (B blocks + header) that remain to be 
+              processed at this point */
+           hcryp->CrypInCount     =  hcryp->Init.HeaderSize + Size - (index+16U);
+        
+           /* Process Unlocked */
+            __HAL_UNLOCK(hcryp);
+        
+            return HAL_OK;
+          } 
+        } /* for(index=0; (index < Size); index += 16) */             
+      }
+#endif /* !defined(AES_CR_NPBLB) */      
+      
+      /* Enter header */  
+      inputaddr = (uint32_t)hcryp->Init.Header; 
+      /* Local variable headerlength is a number of bytes multiple of 128 bits,
+         remaining header data (if any) are handled after this loop */
+      headerlength =  (((hcryp->Init.HeaderSize)/16U)*16U) ; 
+      if ((hcryp->Init.HeaderSize % 16U) != 0U)
+      {
+        difflength = (uint32_t) (hcryp->Init.HeaderSize - headerlength);   
+      }
+      for(index=0U; index < headerlength; index += 16U)
+      {
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        
+        if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR); 
+        
+        /* If the suspension flag has been raised and if the processing is not about
+         to end, suspend processing */  
+        if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < headerlength))        
+        {
+          /* reset SuspendRequest */
+          hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+          /* Mark that the header phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+          
+         /* Save current reading and writing locations of Input and Output buffers */
+         hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+         /* Save the total number of bytes that remain to be processed at this point */
+          hcryp->CrypInCount =  hcryp->Init.HeaderSize - (index+16U);
+      
+         /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+      
+          return HAL_OK;
+        }       
+      }
+      
+      /* Case header length is not a multiple of 16 bytes */
+      if (difflength != 0U)
+      {
+        hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+        CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON);   
+      }       
+      
+      /* Mark that the header phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+    }
+    /*============================================*/
+    /* GCM (or CCM when applicable) payload phase */
+    /*============================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PAYLOAD_PHASE);
+      
+      /* if the header phase has been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      inputaddr  = (uint32_t)pInputData;
+      outputaddr = (uint32_t)pOutputData;
+      
+      /* Enter payload */
+      /* Specific handling to manage payload last block size less than 128 bits */
+      if ((Size % 16U) != 0U)
+      {
+        payloadlength = (Size/16U) * 16U;
+        difflength = (uint32_t) (Size - payloadlength);
+        addhoc_process = 1U;
+      }
+      else
+      {
+        payloadlength = Size;
+        addhoc_process = 0U;      
+      }
+            
+      /* Feed payload */  
+      for(index=0U; index < payloadlength; index += 16U)
+      {
+        /* Write the Input block in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        
+        if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+          
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        
+        /* Retrieve output data: read the output block 
+           from the Data Output Register */
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4U;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4U;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4U;
+        *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+        outputaddr+=4U;
+       
+        /* If the suspension flag has been raised and if the processing is not about
+         to end, suspend processing */  
+        if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < payloadlength))
+        {
+          /* no flag waiting under IRQ handling */
+          if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+          {
+            /* Ensure that Busy flag is reset */
+            if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)  
+            {   
+              hcryp->State = HAL_CRYP_STATE_READY;        
+              __HAL_UNLOCK(hcryp);
+              return HAL_TIMEOUT;
+            }
+          }               
+          /* reset SuspendRequest */
+          hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+          /* Mark that the header phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+          
+          /* Save current reading and writing locations of Input and Output buffers */
+          hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;
+          hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+          /* Save the number of bytes that remain to be processed at this point */
+          hcryp->CrypInCount     =  Size - (index+16U);          
+        
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_OK;
+        }            
+        
+      }
+      
+      /* Additional processing to manage GCM(/CCM) encryption and decryption cases when 
+         payload last block size less than 128 bits */
+      if (addhoc_process == 1U)
+      {
+        hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+        hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;        
+        CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON); 
+      } /* (addhoc_process == 1) */
+         
+      /* Mark that the payload phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;         
+    }
+    /*====================================*/
+    /* GCM/GMAC or (CCM/)CMAC final phase */
+    /*====================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {    
+      tagaddr = (uint32_t)pOutputData;
+      
+#if defined(AES_CR_NPBLB)   
+     /* By default, clear NPBLB field */
+      CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB);
+#endif        
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
+      
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
+        inputlength = Size * 8U;                    /* input length in bits */ 
+        
+           
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32U);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32U);
+          hcryp->Instance->DINR = __REV(inputlength);
+        } 
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(headerlength, 16U);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(inputlength, 16U);          
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+#if !defined(AES_CR_NPBLB)             
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)     
+      {
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      }
+#endif       
+      
+      
+      if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+      { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+      }
+
+      /* Read the Auth TAG in the Data Out register */
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR; 
+         
+
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the final phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR;
+    }
+ 
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_READY;
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+
+
+/**
+  * @brief  Carry out in interrupt mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData 
+  *         - pointer to payload data in GCM payload phase,
+  *         - pointer to B0 block in CMAC header phase,
+  *         - pointer to C block in CMAC final phase.
+  *         Parameter is meaningless in case of GCM/GMAC init, header and final phases.         
+  * @param  Size 
+  *         - length of the input payload data buffer in bytes,
+  *         - length of B0 block (in bytes) in CMAC header phase,
+  *         - length of C block (in bytes) in CMAC final phase.
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases.             
+  * @param  pOutputData 
+  *         - pointer to plain or cipher text in GCM payload phase, 
+  *         - pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases
+  *           and in case of CMAC header phase.
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.                                 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+
+  uint32_t inputaddr      = 0U;
+  uint64_t headerlength   = 0U;
+  uint64_t inputlength    = 0U;
+  uint32_t index          = 0U;
+  uint32_t addhoc_process = 0U; 
+  uint32_t difflength     = 0U;
+  uint32_t difflengthmod4 = 0U;
+  uint32_t mask[3U]       = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};     
+ 
+
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB) 
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else       
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif         
+      {
+        /* In case of CMAC header phase resumption, we can have pInputData = NULL and  Size = 0 */
+        if (((pInputData != NULL) && (Size == 0U)) || ((pInputData == NULL) && (Size != 0U)))
+        {
+          return  HAL_ERROR;
+        }
+      }      
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB)  
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
+#else    
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+#endif 
+      {
+        return  HAL_ERROR;
+      }
+    }
+    
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+                           
+    /* Enable Computation Complete Flag and Error Interrupts */
+    __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+    /*==============================================*/
+    /* GCM/GMAC (or CCM when applicable) init phase */
+    /*==============================================*/
+    if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
+    {    
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. Therefore, the
+       software just waits for the CCF interrupt to be raised and which will
+       be handled by CRYP_AES_Auth_IT() API. */
+    }
+    /*=====================================*/
+    /* GCM/GMAC or (CCM/)CMAC header phase */
+    /*=====================================*/   
+    else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {
+    
+#if defined(AES_CR_NPBLB)   
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else    
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif      
+      {
+        /* In case of CMAC, B blocks are first entered, before the header.
+           Therefore, B blocks and the header are entered back-to-back
+           as if it was only one single block. 
+           However, in case of resumption after suspension, if all the
+           B blocks have been entered (in that case, Size = 0), only the
+           remainder of the non-processed header bytes are entered. */
+          if (Size != 0U)
+          {
+            hcryp->CrypInCount = Size + hcryp->Init.HeaderSize;
+            hcryp->pCrypInBuffPtr = pInputData;
+          }
+          else
+          {
+            hcryp->CrypInCount = hcryp->Init.HeaderSize;
+            hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+          }
+      }
+      else
+      {
+        /* Get the header addresses and sizes */
+        hcryp->CrypInCount = hcryp->Init.HeaderSize;
+        hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+      }    
+    
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_HEADER_PHASE);
+      }
+       
+      /* Enable the Peripheral */
+      __HAL_CRYP_ENABLE();
+    
+      /* Increment/decrement instance pointer/counter */
+      if (hcryp->CrypInCount == 0U)
+      {
+        /* Case of no header */
+        hcryp->State = HAL_CRYP_STATE_READY; 
+        return HAL_OK;        
+      }
+      else if (hcryp->CrypInCount < 16U)
+      {
+        hcryp->CrypInCount = 0U;
+        addhoc_process = 1U;  
+        difflength = (uint32_t) (hcryp->Init.HeaderSize);
+        difflengthmod4 = difflength%4U;              
+      }
+      else
+      {
+        hcryp->pCrypInBuffPtr += 16U;
+        hcryp->CrypInCount -= 16U;
+      }
+
+#if defined(AES_CR_NPBLB)    
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else     
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif      
+      { 
+        if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+        {
+          /* All B blocks will have been entered after the next
+             four DINR writing, so point at header buffer for
+             the next iteration */
+          hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+        }
+      }       
+    
+      /* Enter header first block to initiate the process
+         in the Data Input register */
+      if (addhoc_process == 0U)
+      { 
+        /* Header has size equal or larger than 128 bits */        
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      }
+      else
+      {
+        /* Header has size less than 128 bits */ 
+        /* Enter complete words when possible */
+        for(index=0U; index < (difflength/4U); index ++)
+        {
+          /* Write the Input block in the Data Input register */
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+        }
+        /* Enter incomplete word padded with zeroes if applicable 
+          (case of header length not a multiple of 32-bits) */
+        if (difflengthmod4 != 0U)
+        {         
+          hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
+        }         
+        /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
+        for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)         
+        {
+          hcryp->Instance->DINR = 0U;
+        }                 
+      
+      }
+    }
+    /*============================================*/
+    /* GCM (or CCM when applicable) payload phase */
+    /*============================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {
+      /* Get the buffer addresses and sizes */
+      hcryp->CrypInCount = Size;
+      hcryp->pCrypInBuffPtr = pInputData;
+      hcryp->pCrypOutBuffPtr = pOutputData;
+      hcryp->CrypOutCount = Size; 
+    
+      inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+       
+      /* if the header phase has been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+    
+     /* Specific handling to manage payload size less than 128 bits */
+      if (Size < 16U)
+      {
+#if defined(AES_CR_NPBLB)  
+        /* In case of GCM encryption or CCM decryption, specify the number of padding
+           bytes in last block of payload */
+        if (READ_BIT(hcryp->Instance->CR, AES_CR_GCMPH) == CRYP_PAYLOAD_PHASE)
+        {
+          if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
+               &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))   
+           ||  ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
+               &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
+          {
+            /* Set NPBLB field in writing the number of padding bytes 
+               for the last block of payload */
+            MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
+          }
+        }
+#else
+        /* Software workaround applied to GCM encryption only */ 
+        if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+        {
+          /* Change the mode configured in CHMOD bits of CR register to select CTR mode */   
+          __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
+        } 
+#endif        
+
+        /* Set hcryp->CrypInCount to 0 (no more data to enter) */ 
+        hcryp->CrypInCount = 0U;  
+
+        /*  Insert the last block (which size is inferior to 128 bits) padded with zeroes, 
+            to have a complete block of 128 bits */              
+        difflength = (uint32_t) (Size);
+        difflengthmod4 = difflength%4U;                 
+        /*  Insert the last block (which size is inferior to 128 bits) padded with zeroes 
+            to have a complete block of 128 bits */
+        for(index=0U; index < (difflength/4U); index ++)
+        {
+          /* Write the Input block in the Data Input register */
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+        }
+        /* If required, manage input data size not multiple of 32 bits */
+        if (difflengthmod4 != 0U)
+        {         
+          hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
+        }         
+        /* Wrap-up in padding with zero-words if applicable */
+        for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)        
+        {
+          hcryp->Instance->DINR = 0U;
+        }               
+      }
+      else
+      {        
+        /* Increment/decrement instance pointer/counter */
+        hcryp->pCrypInBuffPtr += 16U;
+        hcryp->CrypInCount -= 16U;
+        
+        /* Enter payload first block to initiate the process
+           in the Data Input register */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      }
+    }
+    /*====================================*/
+    /* GCM/GMAC or (CCM/)CMAC final phase */
+    /*====================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+       hcryp->pCrypOutBuffPtr = pOutputData;
+       
+#if defined(AES_CR_NPBLB)   
+     /* By default, clear NPBLB field */
+      CLEAR_BIT(hcryp->Instance->CR, AES_CR_NPBLB);
+#endif         
+       
+       MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
+       
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {             
+        headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
+        inputlength = Size * 8U;                    /* Input length in bits */ 
+        /* Write the number of bits in the header on 64 bits followed by the number
+           of bits in the payload on 64 bits as well */
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32U);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32U);
+          hcryp->Instance->DINR = __REV(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(headerlength, 16U);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(inputlength, 16U);             
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+#if !defined(AES_CR_NPBLB)         
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+      }
+#endif      
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      return HAL_ERROR;
+    }
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+
+
+
+/**
+  * @brief  Carry out in DMA mode the authentication tag generation as well as the ciphering or deciphering 
+  *         operation according to hcryp->Init structure fields. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @param  pInputData 
+  *         - pointer to payload data in GCM payload phase,
+  *         - pointer to B0 block in CMAC header phase,
+  *         - pointer to C block in CMAC final phase.
+  *         - Parameter is meaningless in case of GCM/GMAC init, header and final phases.        
+  * @param  Size 
+  *         - length of the input payload data buffer in bytes,
+  *         - length of B block (in bytes) in CMAC header phase,
+  *         - length of C block (in bytes) in CMAC final phase.   
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases.         
+  * @param  pOutputData 
+  *         - pointer to plain or cipher text in GCM payload phase,   
+  *         - pointer to authentication tag in GCM/GMAC and CMAC final phases.
+  *         - Parameter is meaningless in case of GCM/GMAC init and header phases
+  *           and in case of CMAC header phase.
+  * @note   Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+  * @note   Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes 
+  *         can be skipped by the user if so required.
+  * @note   pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.            
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+  uint32_t inputaddr      = 0U;
+  uint32_t outputaddr     = 0U;
+  uint32_t tagaddr        = 0U;
+  uint64_t headerlength   = 0U;
+  uint64_t inputlength    = 0U;
+  uint64_t payloadlength  = 0U;
+       
+  
+  if (hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* input/output parameters check */
+    if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {
+      if ((hcryp->Init.Header != NULL) && (hcryp->Init.HeaderSize == 0U))
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB) 
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else       
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif  
+      {
+        if ((pInputData == NULL) || (Size == 0U))
+        {
+          return  HAL_ERROR;
+        }
+      }      
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {   
+      if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0U))
+      {
+        return  HAL_ERROR;
+      }
+    }
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+      if (pOutputData == NULL)
+      {
+        return  HAL_ERROR;
+      }
+#if defined(AES_CR_NPBLB)  
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC) && (pInputData == NULL))
+#else    
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+#endif 
+      {
+        return  HAL_ERROR;
+      }
+    }
+
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+  
+    /* Change the CRYP state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+    /*==============================================*/
+    /* GCM/GMAC (or CCM when applicable) init phase */
+    /*==============================================*/
+    /* In case of init phase, the input data (Key and Initialization Vector) have 
+       already been entered during the initialization process. No DMA transfer is
+       required at that point therefore, the software just waits for the CCF flag 
+       to be raised. */
+    if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
+    {
+      /* just wait for hash computation */
+      if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+      { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+        return HAL_TIMEOUT;
+      }
+      
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    /*===============================*/
+    /* GCM/GMAC or CMAC header phase */
+    /*===============================*/     
+    else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+    {
+      /* Set header phase; for GCM or GMAC, set data-byte at this point */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+      }
+      else
+      {
+        MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+      }
+      
+#if !defined(AES_CR_NPBLB)         
+      /* enter first B0 block in polling mode (no DMA transfer for B0) */
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+         /* Enable the CRYP peripheral */
+        __HAL_CRYP_ENABLE();
+  
+        inputaddr  = (uint32_t)pInputData;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+      
+        if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      }
+#endif      
+      
+      /* No header case */
+      if (hcryp->Init.Header == NULL)
+      {
+        hcryp->State = HAL_CRYP_STATE_READY;   
+        /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER; 
+        /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+  
+        return HAL_OK;             
+      }
+      
+      inputaddr = (uint32_t)hcryp->Init.Header;
+      if ((hcryp->Init.HeaderSize % 16U) != 0U)
+      {
+
+        if (hcryp->Init.HeaderSize < 16U)        
+        {          
+          CRYP_Padding(hcryp, (uint32_t) (hcryp->Init.HeaderSize), CRYP_POLLING_OFF);     
+          
+          hcryp->State = HAL_CRYP_STATE_READY;   
+          /* Mark that the header phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;  
+          
+          /* CCF flag indicating header phase AES processing completion 
+             will be checked at the start of the next phase:
+            - payload phase (GCM / CCM when applicable)
+            - final phase (GMAC or CMAC).  */                     
+        }
+        else
+        {
+          /* Local variable headerlength is a number of bytes multiple of 128 bits,
+            remaining header data (if any) are handled after this loop */
+          headerlength =  (((hcryp->Init.HeaderSize)/16U)*16U) ;         
+          /* Store the ending transfer point */
+          hcryp->pCrypInBuffPtr = hcryp->Init.Header + headerlength;
+          hcryp->CrypInCount = (uint32_t)(hcryp->Init.HeaderSize - headerlength); /* remainder */
+        
+          /* Set the input and output addresses and start DMA transfer */ 
+          /* (incomplete DMA transfer, will be wrapped up after completion of
+             the first one (initiated here) with data padding */
+          CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, headerlength, 0U);
+        }                          
+      }
+      else
+      {
+        hcryp->CrypInCount = 0U;
+        /* Set the input address and start DMA transfer */ 
+        CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, hcryp->Init.HeaderSize, 0U);            
+      }
+
+    }
+    /*============================================*/
+    /* GCM (or CCM when applicable) payload phase */
+    /*============================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {
+      /* Coming from header phase, wait for CCF flag to be raised 
+          if header present and fed to the IP in the previous phase */
+      if (hcryp->Init.Header != NULL)
+      {
+        if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+      }
+      else
+      {
+        /* Enable the Peripheral since wasn't in header phase (no header case) */
+        __HAL_CRYP_ENABLE();
+      }
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);     
+    
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PAYLOAD_PHASE);
+      
+      /* Specific handling to manage payload size less than 128 bits */ 
+      if ((Size % 16U) != 0U)
+      {
+        inputaddr  = (uint32_t)pInputData;
+        outputaddr = (uint32_t)pOutputData;      
+        if (Size < 16U)
+        {
+          /* Block is now entered in polling mode, no actual gain in resorting to DMA */
+          hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+          hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;
+            
+          CRYP_Padding(hcryp, (uint32_t)Size, CRYP_POLLING_ON); 
+          
+          /* Change the CRYP state to ready */
+          hcryp->State = HAL_CRYP_STATE_READY;
+          /* Mark that the payload phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER; 
+  
+          /* Call output data transfer complete callback */
+          HAL_CRYP_OutCpltCallback(hcryp);
+        }
+        else
+        {
+          payloadlength = (Size/16U) * 16U;          
+          
+          /* Store the ending transfer points */
+          hcryp->pCrypInBuffPtr = pInputData + payloadlength;
+          hcryp->pCrypOutBuffPtr = pOutputData + payloadlength;
+          hcryp->CrypInCount = (uint32_t)(Size - payloadlength); /* remainder */
+        
+          /* Set the input and output addresses and start DMA transfer */ 
+          /* (incomplete DMA transfer, will be wrapped up with data padding  
+             after completion of the one initiated here) */
+          CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, payloadlength, outputaddr);                      
+        }
+      }
+      else
+      { 
+        hcryp->CrypInCount = 0U;                          
+        inputaddr  = (uint32_t)pInputData;
+        outputaddr = (uint32_t)pOutputData;
+        
+        /* Set the input and output addresses and start DMA transfer */ 
+        CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);         
+      }  
+    }
+    /*====================================*/
+    /* GCM/GMAC or (CCM/)CMAC final phase */
+    /*====================================*/
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+      /* If coming from header phase (GMAC or CMAC case), 
+         wait for CCF flag to be raised */
+      if (READ_BIT(hcryp->Instance->CR, AES_CR_GCMPH) == CRYP_HEADER_PHASE)
+      {   
+        if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+        { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+        }
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      }        
+      
+      tagaddr = (uint32_t)pOutputData;
+      
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_FINAL_PHASE);
+      
+      /* if the header and payload phases have been bypassed, AES must be enabled again */
+      if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+      {
+        __HAL_CRYP_ENABLE();  
+      }
+      
+      if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+      {
+        headerlength = hcryp->Init.HeaderSize * 8U; /* Header length in bits */
+        inputlength = Size * 8U;  /* input length in bits */ 
+        /* Write the number of bits in the header on 64 bits followed by the number
+           of bits in the payload on 64 bits as well */
+        if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+        {
+          hcryp->Instance->DINR = __RBIT((headerlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(headerlength);
+          hcryp->Instance->DINR = __RBIT((inputlength)>>32U);
+          hcryp->Instance->DINR = __RBIT(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+        {
+          hcryp->Instance->DINR = __REV((headerlength)>>32U);
+          hcryp->Instance->DINR = __REV(headerlength);
+          hcryp->Instance->DINR = __REV((inputlength)>>32U);
+          hcryp->Instance->DINR = __REV(inputlength);
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+        {
+          hcryp->Instance->DINR = __ROR((headerlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(headerlength, 16U);
+          hcryp->Instance->DINR = __ROR((inputlength)>>32U, 16U);
+          hcryp->Instance->DINR = __ROR(inputlength, 16U);            
+        }
+        else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+        {
+          hcryp->Instance->DINR = (uint32_t)(headerlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(headerlength);
+          hcryp->Instance->DINR = (uint32_t)(inputlength>>32U);
+          hcryp->Instance->DINR = (uint32_t)(inputlength);
+        }
+      }
+#if !defined(AES_CR_NPBLB)           
+      else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+      {
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        
+        inputaddr  = (uint32_t)pInputData;
+        /* Enter the last block made of a 128-bit value formatted
+           from the original B0 packet. */
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+        hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        inputaddr+=4U;
+      }
+#endif      
+      
+      /* No DMA transfer is required at that point therefore, the software 
+         just waits for the CCF flag to be raised. */
+      if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+      { 
+          hcryp->State = HAL_CRYP_STATE_READY;        
+          __HAL_UNLOCK(hcryp);
+          return HAL_TIMEOUT;
+      }
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Read the Auth TAG in the IN FIFO */
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+      tagaddr+=4U;
+      *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+  
+      /* Mark that the final phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+    }
+    /*=================================================*/
+    /* case incorrect hcryp->Init.GCMCMACPhase setting */
+    /*=================================================*/
+    else
+    {
+      hcryp->State = HAL_CRYP_STATE_ERROR;
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR;
+    }    
+  
+    /* Process Unlocked */
+    __HAL_UNLOCK(hcryp);
+  
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_BUSY;
+  }
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRYPEx_Exported_Functions_Group3 AES suspension/resumption functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+                    ##### AES extended suspension and resumption functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) save in memory the Initialization Vector, the Key registers, the Control register or
+          the Suspend registers when a process is suspended by a higher priority message
+      (+) write back in CRYP hardware block the saved values listed above when the suspended
+          lower priority message processing is resumed.     
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  In case of message processing suspension, read the Initialization Vector. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.    
+  * @param  Output Pointer to the buffer containing the saved Initialization Vector.
+  * @note   This value has to be stored for reuse by writing the AES_IVRx registers
+  *         as soon as the interrupted processing has to be resumed.
+  *         Applicable to all chaining modes.    
+  * @note   AES must be disabled when reading or resetting the IV values.   
+  * @retval None
+  */
+void HAL_CRYPEx_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+    
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR3);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR2);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR1);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR0);
+}
+
+/**
+  * @brief  In case of message processing resumption, rewrite the Initialization
+  *         Vector in the AES_IVRx registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.      
+  * @param  Input Pointer to the buffer containing the saved Initialization Vector to
+  *         write back in the CRYP hardware block. 
+  * @note   Applicable to all chaining modes.       
+  * @note   AES must be disabled when reading or resetting the IV values.     
+  * @retval None
+  */
+void HAL_CRYPEx_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+  uint32_t ivaddr = (uint32_t)Input;
+  
+  hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Suspend Registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.  
+  * @param  Output Pointer to the buffer containing the saved Suspend Registers.
+  * @note   These values have to be stored for reuse by writing back the AES_SUSPxR registers
+  *         as soon as the interrupted processing has to be resumed.       
+  * @retval None
+  */
+void HAL_CRYPEx_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+  
+  /* In case of GCM payload phase encryption, check that suspension can be carried out */
+  if (READ_BIT(hcryp->Instance->CR, (AES_CR_GCMPH|AES_CR_MODE)) == (CRYP_GCM_PAYLOAD_PHASE|CRYP_ALGOMODE_ENCRYPT))
+  {
+    /* Ensure that Busy flag is reset */
+    if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)  
+    { 
+      hcryp->ErrorCode |= HAL_CRYP_BUSY_ERROR;
+      hcryp->State = HAL_CRYP_STATE_ERROR;
+              
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);  
+    
+      HAL_CRYP_ErrorCallback(hcryp);
+      return ;
+    }
+  } 
+    
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP7R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP6R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP5R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP4R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP3R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP2R);
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP1R); 
+  outputaddr+=4U;
+  *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP0R);   
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Suspend
+  *         Registers in the AES_SUSPxR registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.    
+  * @param  Input Pointer to the buffer containing the saved suspend registers to
+  *         write back in the CRYP hardware block. 
+  * @retval None
+  */
+void HAL_CRYPEx_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+  uint32_t ivaddr = (uint32_t)Input;
+  
+  hcryp->Instance->SUSP7R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP6R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP5R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP4R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP3R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP2R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP1R = __REV(*(uint32_t*)(ivaddr));
+  ivaddr+=4U;
+  hcryp->Instance->SUSP0R = __REV(*(uint32_t*)(ivaddr));  
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Key Registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Output Pointer to the buffer containing the saved Key Registers. 
+  * @param  KeySize Indicates the key size (128 or 256 bits).
+  * @note   These values have to be stored for reuse by writing back the AES_KEYRx registers
+  *         as soon as the interrupted processing has to be resumed.           
+  * @retval None
+  */
+void HAL_CRYPEx_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t KeySize)
+{
+  uint32_t keyaddr = (uint32_t)Output;
+  
+  if (KeySize == CRYP_KEYSIZE_256B)
+  {
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR7);
+    keyaddr+=4U;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR6);
+    keyaddr+=4U;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR5);
+    keyaddr+=4U;
+    *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR4);
+    keyaddr+=4U;                 
+  }  
+  
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR3);
+  keyaddr+=4U;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR2);
+  keyaddr+=4U;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR1);
+  keyaddr+=4U;
+  *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR0); 
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Key
+  *         Registers in the AES_KEYRx registers.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Input Pointer to the buffer containing the saved key registers to
+  *         write back in the CRYP hardware block. 
+  * @param  KeySize Indicates the key size (128 or 256 bits)     
+  * @retval None
+  */
+void HAL_CRYPEx_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint32_t KeySize)
+{  
+  uint32_t keyaddr = (uint32_t)Input;
+  
+  if (KeySize == CRYP_KEYSIZE_256B)
+  {
+    hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;      
+  }  
+  
+    hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4U;
+    hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));    
+}
+
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing suspension, read the Control Register.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Output Pointer to the buffer containing the saved Control Register.
+  * @note   This values has to be stored for reuse by writing back the AES_CR register
+  *         as soon as the interrupted processing has to be resumed.          
+  * @retval None
+  */
+void HAL_CRYPEx_Read_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+  *(uint32_t*)(Output) = hcryp->Instance->CR;    
+}
+
+/**
+  * @brief  In case of message GCM/GMAC or CMAC processing resumption, rewrite the Control
+  *         Registers in the AES_CR register.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.   
+  * @param  Input Pointer to the buffer containing the saved Control Register to
+  *         write back in the CRYP hardware block.   
+  * @retval None
+  */
+void HAL_CRYPEx_Write_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{  
+  hcryp->Instance->CR = *(uint32_t*)(Input);
+  /* At the same time, set handle state back to READY to be able to resume the AES calculations 
+     without the processing APIs returning HAL_BUSY when called. */
+  hcryp->State        = HAL_CRYP_STATE_READY;
+}
+
+/**
+  * @brief  Request CRYP processing suspension when in polling or interruption mode.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module. 
+  * @note   Set the handle field SuspendRequest to the appropriate value so that 
+  *         the on-going CRYP processing is suspended as soon as the required 
+  *         conditions are met.
+  * @note   It is advised not to suspend the CRYP processing when the DMA controller 
+  *         is managing the data transfer     
+  * @retval None
+  */
+void HAL_CRYPEx_ProcessSuspend(CRYP_HandleTypeDef *hcryp)  
+{
+  /* Set Handle Suspend Request field */
+  hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/** @addtogroup CRYPEx_Private_Functions
+  * @{
+  */
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @note   Specific setting of hcryp fields are required only
+  *         in the case of header phase where no output data DMA
+  *         transfer is on-going (only input data transfer is enabled
+  *         in such a case).      
+  * @param  hdma DMA handle.
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  uint32_t difflength = 0U;
+  
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for input request  */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+  if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+  { 
+  
+    if (hcryp->CrypInCount != 0U)
+    {
+      /* Last block is now entered in polling mode, no actual gain in resorting to DMA */
+      difflength = hcryp->CrypInCount;
+      hcryp->CrypInCount = 0U;
+      
+      CRYP_Padding(hcryp, difflength, CRYP_POLLING_OFF);      
+    }
+    hcryp->State = HAL_CRYP_STATE_READY;   
+    /* Mark that the header phase is over */
+    hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+  }
+  /* CCF flag indicating header phase AES processing completion 
+     will be checked at the start of the next phase:
+     - payload phase (GCM or CCM when applicable)
+     - final phase (GMAC or CMAC).
+    This allows to avoid the Wait on Flag within the IRQ handling.  */
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @note   This callback is called only in the payload phase.  
+  * @param  hdma DMA handle.
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+  uint32_t difflength = 0U;
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for output request */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+  
+  /* Initiate additional transfer to wrap-up data feeding to the IP */
+  if (hcryp->CrypInCount != 0U)
+  {
+    /* Last block is now entered in polling mode, no actual gain in resorting to DMA */
+    difflength = hcryp->CrypInCount;
+    hcryp->CrypInCount = 0U;
+    
+    CRYP_Padding(hcryp, difflength, CRYP_POLLING_ON); 
+  }  
+  
+  /* Change the CRYP state to ready */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  /* Mark that the payload phase is over */
+  hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER; 
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback
+  *         for GCM, GMAC or CMAC chainging modes.
+  * @param  hdma DMA handle
+  * @retval None
+  */
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  hcryp->State= HAL_CRYP_STATE_ERROR;
+  hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
+  HAL_CRYP_ErrorCallback(hcryp);
+  /* Clear Error Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+/** 
+  * @brief  Handle CRYP block input/output data handling under interruption
+  *         for GCM, GMAC or CMAC chaining modes.  
+  * @note   The function is called under interruption only, once
+  *         interruptions have been enabled by HAL_CRYPEx_AES_Auth_IT().  
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module
+  * @retval HAL status
+  */
+HAL_StatusTypeDef CRYP_AES_Auth_IT(CRYP_HandleTypeDef *hcryp)
+{
+  uint32_t inputaddr   = 0x0U;
+  uint32_t outputaddr  = 0x0U; 
+  uint32_t index       = 0x0U;
+  uint32_t addhoc_process = 0U; 
+  uint32_t difflength     = 0U;
+  uint32_t difflengthmod4 = 0U;
+  uint32_t mask[3]        = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};
+  uint32_t intermediate_data[4U] = {0U};        
+  
+  if(hcryp->State == HAL_CRYP_STATE_BUSY)
+  {
+    /*===========================*/
+    /* GCM/GMAC(/CCM) init phase */
+    /*===========================*/  
+    if (hcryp->Init.GCMCMACPhase == CRYP_INIT_PHASE)
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      /* Disable Computation Complete Flag and Errors Interrupts */
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    
+      /* Mark that the initialization phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+          
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Call computation complete callback */
+      HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      return HAL_OK;
+    }
+    /*=====================================*/
+    /* GCM/GMAC or (CCM/)CMAC header phase */
+    /*=====================================*/   
+    else if (hcryp->Init.GCMCMACPhase == CRYP_HEADER_PHASE)
+    {
+      /* Check if all input header data have been entered */
+      if (hcryp->CrypInCount == 0U)
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_READY;
+       /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        /* Call computation complete callback */
+        HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      
+        return HAL_OK;
+      }
+      /* If suspension flag has been raised, suspend processing */
+      else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+      {
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+       
+        /* reset SuspendRequest */
+        hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+        /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        return HAL_OK;
+      }      
+      else /* Carry on feeding input data to the CRYP hardware block */
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+        /* Get the last Input data address */
+        inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+        /* Increment/decrement instance pointer/counter */
+        if (hcryp->CrypInCount < 16U)
+        {
+          difflength = hcryp->CrypInCount;        
+          hcryp->CrypInCount = 0U;
+          addhoc_process = 1U;  
+          difflengthmod4 = difflength%4U;              
+        }
+        else
+        {
+          hcryp->pCrypInBuffPtr += 16U;
+          hcryp->CrypInCount -= 16U;
+        }        
+        
+#if defined(AES_CR_NPBLB)    
+        if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CCM_CMAC)
+#else     
+        if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+#endif         
+        { 
+          if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+          {
+            /* All B blocks will have been entered after the next
+              four DINR writing, so point at header buffer for
+              the next iteration */
+            hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+          }
+        }           
+      
+        /* Write the Input block in the Data Input register */
+        if (addhoc_process == 0U)
+        {         
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+        }
+        else
+        {
+          /* Header remainder has size less than 128 bits */ 
+          /* Enter complete words when possible */
+          for(index=0U; index < (difflength/4U); index ++)
+          {
+            /* Write the Input block in the Data Input register */
+            hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+            inputaddr+=4U;
+          }
+          /* Enter incomplete word padded with zeroes if applicable 
+            (case of header length not a multiple of 32-bits) */
+          if (difflengthmod4 != 0U)
+          {         
+            hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1]);
+          }         
+          /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
+          for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)         
+          {
+            hcryp->Instance->DINR = 0U;
+          }          
+        }
+      
+        return HAL_OK;      
+      }
+    }
+    /*=======================*/
+    /* GCM/CCM payload phase */
+    /*=======================*/    
+    else if (hcryp->Init.GCMCMACPhase == CRYP_PAYLOAD_PHASE)
+    {
+      /* Get the last output data address */
+      outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+      
+     /* Specific handling to manage payload size less than 128 bits
+        when GCM (or CCM when applicable) encryption or decryption is selected.
+        Check here if the last block output data are read */
+#if defined(AES_CR_NPBLB)  
+      if ((hcryp->CrypOutCount < 16U)                                && \
+          (hcryp->CrypOutCount > 0U))
+#else    
+      if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC) && \
+          (hcryp->CrypOutCount < 16U)                                && \
+          (hcryp->CrypOutCount > 0U))
+#endif          
+      {
+        addhoc_process = 1U;
+        difflength = hcryp->CrypOutCount;
+        difflengthmod4 = difflength%4U; 
+        hcryp->CrypOutCount = 0U;   /* mark that no more output data will be needed */       
+        /* Retrieve intermediate data */
+        for(index=0U; index < 4U; index ++)
+        {
+          intermediate_data[index] = hcryp->Instance->DOUTR;                 
+        } 
+        /* Retrieve last words of cyphered data */
+        /* First, retrieve complete output words */
+        for(index=0U; index < (difflength/4U); index ++)
+        {
+          *(uint32_t*)(outputaddr) = intermediate_data[index];
+          outputaddr+=4U; 
+        } 
+        /* Next, retrieve partial output word if applicable;
+           at the same time, start masking intermediate data 
+           with a mask of zeros of same size than the padding
+           applied to the last block of payload */ 
+        if (difflengthmod4 != 0U)
+        {
+          intermediate_data[difflength/4U] &= mask[difflengthmod4-1U];
+          *(uint32_t*)(outputaddr) = intermediate_data[difflength/4U];            
+        }           
+   
+#if !defined(AES_CR_NPBLB)       
+        if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+        { 
+          /* Change again CHMOD configuration to GCM mode */
+          __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_GCM_GMAC); 
+        
+          /* Select FINAL phase */
+          MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);  
+        
+          /* Before inserting the intermediate data, carry on masking operation
+             with a mask of zeros of same size than the padding applied to the last block of payload */
+          for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)        
+          {
+            intermediate_data[(difflength+3U)/4U+index] = 0U;
+          }  
+        
+          /* Insert intermediate data to trigger an additional DOUTR reading round */
+          /* Clear Computation Complete Flag before entering new block */
+          __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+          for(index=0U; index < 4U; index ++)
+          {
+            hcryp->Instance->DINR = intermediate_data[index];          
+          }
+        }
+        else
+#endif        
+        {
+          /* Payload phase is now over */
+          /* Clear Computation Complete Flag */
+          __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);        
+          /* Disable Computation Complete Flag and Errors Interrupts */
+          __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_READY;
+          /* Mark that the payload phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+      
+          /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+      
+          /* Call computation complete callback */
+          HAL_CRYPEx_ComputationCpltCallback(hcryp);
+        }
+        return HAL_OK;
+      }
+      else  
+      { 
+        if (hcryp->CrypOutCount != 0U)
+        { 
+          /* Usual case (different than GCM/CCM last block < 128 bits ciphering) */ 
+          /* Retrieve the last block available from the CRYP hardware block:
+            read the output block from the Data Output Register */
+          *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+          outputaddr+=4U;
+          *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+          outputaddr+=4U;
+          *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+          outputaddr+=4U;
+          *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+          
+          /* Increment/decrement instance pointer/counter */
+          hcryp->pCrypOutBuffPtr += 16U;
+          hcryp->CrypOutCount -= 16U;                    
+        }
+#if !defined(AES_CR_NPBLB)          
+        else
+        {          
+          /* Software work-around: additional DOUTR reading round to discard the data */
+          for(index=0U; index < 4U; index ++)
+          {
+            intermediate_data[index] = hcryp->Instance->DOUTR;                 
+          }          
+        }
+#endif         
+      }            
+      
+      /* Check if all output text has been retrieved */
+      if (hcryp->CrypOutCount == 0U)
+      {
+#if !defined(AES_CR_NPBLB)       
+        /* Make sure that software-work around is not running before disabling
+          the interruptions (indeed, if software work-around is running, the 
+          interruptions must not be disabled to allow the additional DOUTR 
+          reading round */
+        if (addhoc_process == 0U)
+#endif        
+        {
+          /* Clear Computation Complete Flag */
+          __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);        
+          /* Disable Computation Complete Flag and Errors Interrupts */
+          __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+          /* Change the CRYP state */
+          hcryp->State = HAL_CRYP_STATE_READY;
+         /* Mark that the payload phase is over */
+          hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+      
+         /* Process Unlocked */
+          __HAL_UNLOCK(hcryp);
+      
+          /* Call computation complete callback */
+          HAL_CRYPEx_ComputationCpltCallback(hcryp);
+        }
+      
+        return HAL_OK;
+      }
+      /* If suspension flag has been raised, suspend processing */
+      else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+      {     
+        /* Clear CCF Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+       
+        /* reset SuspendRequest */
+        hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+        /* Disable Computation Complete Flag and Errors Interrupts */
+        __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+        /* Change the CRYP state */
+        hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+        /* Mark that the header phase is over */
+        hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+      
+       /* Process Unlocked */
+        __HAL_UNLOCK(hcryp);
+      
+        return HAL_OK;
+      }            
+      else /* Output data are still expected, carry on feeding the CRYP
+               hardware block with input data */
+      {
+        /* Clear Computation Complete Flag */
+        __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);          
+        /* Get the last Input data address */
+        inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+      
+        /* Usual input data feeding case */
+        if (hcryp->CrypInCount < 16U)
+        {
+          difflength = (uint32_t) (hcryp->CrypInCount);
+          difflengthmod4 = difflength%4U;
+          hcryp->CrypInCount = 0U; 
+          
+#if defined(AES_CR_NPBLB)  
+          /* In case of GCM encryption or CCM decryption, specify the number of padding
+             bytes in last block of payload */
+               if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
+                    &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))   
+                ||  ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
+                    &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
+               {
+                 /* Set NPBLB field in writing the number of padding bytes 
+                    for the last block of payload */
+                 MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
+               }
+#else          
+          /* Software workaround applied to GCM encryption only */ 
+          if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+          {
+            /* Change the mode configured in CHMOD bits of CR register to select CTR mode */   
+            __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
+          }   
+#endif                   
+          
+          /*  Insert the last block (which size is inferior to 128 bits) padded with zeroes 
+              to have a complete block of 128 bits */
+          for(index=0U; index < (difflength/4U); index ++)
+          {
+            /* Write the Input block in the Data Input register */
+            hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+            inputaddr+=4U;
+          }
+          /* If required, manage input data size not multiple of 32 bits */
+          if (difflengthmod4 != 0U)
+          {         
+            hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1U]);
+          }         
+          /* Wrap-up in padding with zero-words if applicable */
+          for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)        
+          {
+            hcryp->Instance->DINR = 0U;
+          }                                                               
+        }
+        else
+        {
+          hcryp->pCrypInBuffPtr += 16U;
+          hcryp->CrypInCount -= 16U;
+          
+          /* Write the Input block in the Data Input register */
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+          inputaddr+=4U;
+          hcryp->Instance->DINR = *(uint32_t*)(inputaddr);            
+        }            
+
+        return HAL_OK;      
+      }
+    }
+    /*====================================*/
+    /* GCM/GMAC or (CCM/)CMAC final phase */
+    /*====================================*/  
+    else if (hcryp->Init.GCMCMACPhase == CRYP_FINAL_PHASE)
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);  
+            
+      /* Get the last output data address */
+      outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+      
+      /* Retrieve the last expected data from the CRYP hardware block:
+         read the output block from the Data Output Register */
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4U;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4U;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+      outputaddr+=4U;
+      *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+  
+      /* Disable Computation Complete Flag and Errors Interrupts */
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Mark that the header phase is over */
+      hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+      
+      /* Disable the Peripheral */
+      __HAL_CRYP_DISABLE();
+      /* Process Unlocked */
+       __HAL_UNLOCK(hcryp);
+      
+      /* Call computation complete callback */
+      HAL_CRYPEx_ComputationCpltCallback(hcryp);
+      
+      return HAL_OK;
+    }
+    else
+    {
+      /* Clear Computation Complete Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);       
+      hcryp->State = HAL_CRYP_STATE_ERROR; 
+      __HAL_UNLOCK(hcryp); 
+      return HAL_ERROR; 
+    }
+  }
+  else
+  {
+    return HAL_BUSY; 
+  }  
+}
+
+/** 
+  * @brief  Set the DMA configuration and start the DMA transfer
+  *         for GCM, GMAC or CMAC chainging modes.   
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  inputaddr Address of the Input buffer.
+  * @param  Size Size of the Input buffer un bytes, must be a multiple of 16.
+  * @param  outputaddr Address of the Output buffer, null pointer when no output DMA stream
+  *         has to be configured.  
+  * @retval None
+  */
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+
+  /* Set the input CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYP_GCMCMAC_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+  
+  if (outputaddr != 0U) 
+  { 
+    /* Set the output CRYP DMA transfer complete callback */
+    hcryp->hdmaout->XferCpltCallback = CRYP_GCMCMAC_DMAOutCplt;
+    /* Set the DMA error callback */
+    hcryp->hdmaout->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+  }
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE();
+  
+  /* Enable the DMA input stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4U);
+  
+  /* Enable the DMA input request */
+  SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+  
+  if (outputaddr != 0U) 
+  {   
+    /* Enable the DMA output stream */
+    HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4U);
+  
+    /* Enable the DMA output request */
+    SET_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+  }
+}  
+
+/**
+  * @brief  Write/read input/output data in polling mode.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  Input Pointer to the Input buffer.
+  * @param  Ilength Length of the Input buffer in bytes, must be a multiple of 16.
+  * @param  Output Pointer to the returned buffer.
+  * @param  Timeout Specify Timeout value.  
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
+{
+  uint32_t index = 0U;
+  uint32_t inputaddr  = (uint32_t)Input;
+  uint32_t outputaddr = (uint32_t)Output;
+  
+
+  for(index=0U; (index < Ilength); index += 16U)
+  {
+    /* Write the Input block in the Data Input register */
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+    
+    /* Wait for CCF flag to be raised */
+    if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+    { 
+      hcryp->State = HAL_CRYP_STATE_READY;        
+      __HAL_UNLOCK(hcryp);
+      return HAL_TIMEOUT;
+    }
+      
+    /* Clear CCF Flag */
+    __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+    
+    /* Read the Output block from the Data Output Register */
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+    outputaddr+=4U;
+    
+    /* If the suspension flag has been raised and if the processing is not about
+       to end, suspend processing */
+    if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16U) < Ilength))
+    {
+      /* Reset SuspendRequest */
+      hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+      
+      /* Save current reading and writing locations of Input and Output buffers */
+      hcryp->pCrypOutBuffPtr =  (uint8_t *)outputaddr;
+      hcryp->pCrypInBuffPtr  =  (uint8_t *)inputaddr;
+      /* Save the number of bytes that remain to be processed at this point */
+      hcryp->CrypInCount     =  Ilength - (index+16U);
+      
+      /* Change the CRYP state */
+      hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+      
+      return HAL_OK;
+    }
+
+  }
+  /* Return function status */
+  return HAL_OK;
+
+}
+
+/**
+  * @brief  Read derivative key in polling mode when CRYP hardware block is set
+  *         in key derivation operating mode (mode 2).
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  Output Pointer to the returned buffer.
+  * @param  Timeout Specify Timeout value.  
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout)
+{
+  uint32_t outputaddr = (uint32_t)Output;
+  
+  /* Wait for CCF flag to be raised */  
+  if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)  
+  { 
+    hcryp->State = HAL_CRYP_STATE_READY;        
+    __HAL_UNLOCK(hcryp);
+    return HAL_TIMEOUT;
+  }
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG( CRYP_CCF_CLEAR);
+  
+    /* Read the derivative key from the AES_KEYRx registers */
+  if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
+  {   
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4);
+    outputaddr+=4U;
+  }
+  
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1);
+    outputaddr+=4U;
+    *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0);
+
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Set the DMA configuration and start the DMA transfer.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.
+  * @param  inputaddr Address of the Input buffer.
+  * @param  Size Size of the Input buffer in bytes, must be a multiple of 16.
+  * @param  outputaddr Address of the Output buffer.
+  * @retval None
+  */
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+  
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
+
+  /* Enable the DMA input stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4U);
+
+  /* Enable the DMA output stream */
+  HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4U);
+
+  /* Enable In and Out DMA requests */
+  SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE();
+}
+
+/**
+  * @brief  Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.      
+  * @param  Timeout Timeout duration.
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+  
+  /* Get timeout */
+  tickstart = HAL_GetTick();
+  
+  while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
+  {    
+    /* Check for the Timeout */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((HAL_GetTick() - tickstart ) > Timeout)
+      {    
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  return HAL_OK; 
+}
+
+/**
+  * @brief  Wait for Busy Flag to be reset during a GCM payload encryption process suspension. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.         
+  * @param  Timeout Timeout duration.
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+  uint32_t tickstart = 0U;
+  
+  /* Get timeout */
+  tickstart = HAL_GetTick();
+  
+  while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY))
+  {    
+    /* Check for the Timeout */
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((HAL_GetTick() - tickstart ) > Timeout)
+      {    
+        return HAL_TIMEOUT;
+      }
+    }
+  }
+  return HAL_OK; 
+}
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback.
+  * @param  hdma DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for input request  */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback.
+  * @param  hdma DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{  
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  /* Disable the DMA transfer for output request */
+  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+  /* Clear CCF Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+  
+  /* Disable CRYP */
+  __HAL_CRYP_DISABLE();
+  
+  /* Change the CRYP state to ready */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback. 
+  * @param  hdma DMA handle.
+  * @retval None
+  */
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+  
+  hcryp->State= HAL_CRYP_STATE_ERROR;
+  hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;  
+  HAL_CRYP_ErrorCallback(hcryp);
+  /* Clear Error Flag */
+  __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+/**
+  * @brief  Last header or payload block padding when size is not a multiple of 128 bits. 
+  * @param  hcryp pointer to a CRYP_HandleTypeDef structure that contains
+  *         the configuration information for CRYP module.         
+  * @param  difflength size remainder after having fed all complete 128-bit blocks.
+  * @param  polling specifies whether or not polling on CCF must be done after having
+  *                  entered a complete block.     
+  * @retval None
+  */
+static void CRYP_Padding(CRYP_HandleTypeDef *hcryp, uint32_t difflength, uint32_t polling)
+{
+  uint32_t index          = 0U;
+  uint32_t difflengthmod4 = difflength%4U;
+  uint32_t inputaddr      = (uint32_t)hcryp->pCrypInBuffPtr; 
+  uint32_t outputaddr     = (uint32_t)hcryp->pCrypOutBuffPtr;   
+  uint32_t mask[3U]       = {0x0FFU, 0x0FFFFU, 0x0FFFFFFU};  
+  uint32_t intermediate_data[4U] = {0U};
+  
+#if defined(AES_CR_NPBLB)  
+  /* In case of GCM encryption or CCM decryption, specify the number of padding
+     bytes in last block of payload */
+     if (READ_BIT(hcryp->Instance->CR,AES_CR_GCMPH) == CRYP_PAYLOAD_PHASE)
+     {
+       if (((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_GCM_GMAC)
+            &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_ENCRYPT))   
+        ||  ((READ_BIT(hcryp->Instance->CR, AES_CR_CHMOD) == CRYP_CHAINMODE_AES_CCM_CMAC)
+            &&  (READ_BIT(hcryp->Instance->CR, AES_CR_MODE) == CRYP_ALGOMODE_DECRYPT)))
+       {
+         /* Set NPBLB field in writing the number of padding bytes 
+            for the last block of payload */
+         MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 16U - difflength);
+       }
+     }
+#else
+  /* Software workaround applied to GCM encryption only */
+  if ((hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE) &&		
+      (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT))
+  {
+    /* Change the mode configured in CHMOD bits of CR register to select CTR mode */   
+    __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_CTR);
+  }  
+#endif  
+  
+  /* Wrap-up entering header or payload data */
+  /* Enter complete words when possible */
+  for(index=0U; index < (difflength/4U); index ++)
+  {
+    /* Write the Input block in the Data Input register */
+    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+    inputaddr+=4U;
+  }
+  /* Enter incomplete word padded with zeroes if applicable 
+    (case of header length not a multiple of 32-bits) */
+  if (difflengthmod4 != 0U)
+  {         
+    hcryp->Instance->DINR = ((*(uint32_t*)(inputaddr)) & mask[difflengthmod4-1]);
+  }         
+  /* Pad with zero-words to reach 128-bit long block and wrap-up header feeding to the IP */
+  for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)         
+  {
+    hcryp->Instance->DINR = 0U;
+  } 
+		
+  if (polling == CRYP_POLLING_ON)
+  {
+		if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+    { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+       HAL_CRYP_ErrorCallback(hcryp);
+      } 
+
+    /* Clear CCF Flag */
+    __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+  }
+		
+	/* if payload */
+  if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+	{		
+       
+    /* Retrieve intermediate data */
+    for(index=0U; index < 4U; index ++)
+    {
+      intermediate_data[index] = hcryp->Instance->DOUTR;                 
+    }     
+    /* Retrieve last words of cyphered data */
+    /* First, retrieve complete output words */
+    for(index=0U; index < (difflength/4U); index ++)
+    {
+      *(uint32_t*)(outputaddr) = intermediate_data[index];
+      outputaddr+=4U; 
+    } 
+    /* Next, retrieve partial output word if applicable;
+       at the same time, start masking intermediate data 
+       with a mask of zeros of same size than the padding
+       applied to the last block of payload */ 
+    if (difflengthmod4 != 0U)
+    {
+      intermediate_data[difflength/4U] &= mask[difflengthmod4-1U];
+      *(uint32_t*)(outputaddr) = intermediate_data[difflength/4U];            
+    }
+
+#if !defined(AES_CR_NPBLB)      
+    /* Software workaround applied to GCM encryption only,
+       applicable for AES IP v2 version (where NPBLB is not defined) */           
+    if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+    {
+      /* Change again CHMOD configuration to GCM mode */
+      __HAL_CRYP_SET_CHAININGMODE(CRYP_CHAINMODE_AES_GCM_GMAC);  
+      
+      /* Select FINAL phase */
+      MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+      
+      /* Before inserting the intermediate data, carry on masking operation
+         with a mask of zeros of same size than the padding applied to the last block of payload */
+      for(index=0U; index < (4U - ((difflength+3U)/4U)); index ++)        
+      {
+        intermediate_data[(difflength+3U)/4U+index] = 0U;
+      }   
+      /* Insert intermediate data */
+      for(index=0U; index < 4U; index ++)
+      {
+        hcryp->Instance->DINR = intermediate_data[index];          
+      } 
+      
+      /*  Wait for completion, and read data on DOUT. This data is to discard. */ 
+      if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)  
+      { 
+        hcryp->State = HAL_CRYP_STATE_READY;        
+        __HAL_UNLOCK(hcryp);
+        HAL_CRYP_ErrorCallback(hcryp);
+      } 
+         
+      /* Read data to discard */ 
+      /* Clear CCF Flag */
+      __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+      for(index=0U; index < 4U; index ++)
+      {
+        intermediate_data[index] = hcryp->Instance->DOUTR;        
+      }  
+		
+	  } /* if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT) */
+#endif  /* !defined(AES_CR_NPBLB) */     
+	}   /* if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE) */
+		
+}
+
+/**
+  * @}
+  */
+
+#endif /* AES */
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/