louis VERZELLESI / LSM9DS1

Dependents:   bibliotheques

Files at this revision

API Documentation at this revision

Comitter:
louisverzellesi
Date:
Sun Nov 18 14:46:26 2018 +0000
Parent:
1:0e76f237c23d
Commit message:
1;

Changed in this revision

LSM9DS1.cpp Show diff for this revision Revisions of this file
--- a/LSM9DS1.cpp	Mon Oct 19 13:56:52 2015 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,401 +0,0 @@
-#include "LSM9DS1.h"
-
-LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl)
-{
-    // xgAddress and mAddress will store the 7-bit I2C address, if using I2C.
-    xgAddress = xgAddr;
-    mAddress = mAddr;
-}
-
-uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, 
-                        gyro_odr gODR, accel_odr aODR, mag_odr mODR)
-{
-    // Store the given scales in class variables. These scale variables
-    // are used throughout to calculate the actual g's, DPS,and Gs's.
-    gScale = gScl;
-    aScale = aScl;
-    mScale = mScl;
-    
-    // Once we have the scale values, we can calculate the resolution
-    // of each sensor. That's what these functions are for. One for each sensor
-    calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
-    calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
-    calcaRes(); // Calculate g / ADC tick, stored in aRes variable
-    
-    
-    // To verify communication, we can read from the WHO_AM_I register of
-    // each device. Store those in a variable so we can return them.
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        WHO_AM_I_XG,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(xgAddress, cmd+1, 1);
-    uint8_t xgTest = cmd[1];                    // Read the accel/gyro WHO_AM_I
-    
-    // Reset to the address of the mag who am i
-    cmd[1] = WHO_AM_I_M;
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(mAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(mAddress, cmd+1, 1);
-    uint8_t mTest = cmd[1];      // Read the mag WHO_AM_I
-    
-    // Gyro initialization stuff:
-    initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
-    setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
-    setGyroScale(gScale); // Set the gyro range
-    
-    // Accelerometer initialization stuff:
-    initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
-    setAccelODR(aODR); // Set the accel data rate.
-    setAccelScale(aScale); // Set the accel range.
-    
-    // Magnetometer initialization stuff:
-    initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
-    setMagODR(mODR); // Set the magnetometer output data rate.
-    setMagScale(mScale); // Set the magnetometer's range.
-    
-    // Once everything is initialized, return the WHO_AM_I registers we read:
-    return (xgTest << 8) | mTest;
-}
-
-void LSM9DS1::initGyro()
-{
-    char cmd[4] = {
-        CTRL_REG1_G,
-        gScale | G_ODR_119_BW_14,
-        0,          // Default data out and int out
-        0           // Default power mode and high pass settings
-    };
-
-    // Write the data to the gyro control registers
-    i2c.write(xgAddress, cmd, 4);
-}
-
-void LSM9DS1::initAccel()
-{
-    char cmd[4] = {
-        CTRL_REG5_XL,
-        0x38,       // Enable all axis and don't decimate data in out Registers
-        (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE),   // 119 Hz ODR, set scale, and auto BW
-        0           // Default resolution mode and filtering settings
-    };
-
-    // Write the data to the accel control registers
-    i2c.write(xgAddress, cmd, 4);
-}
-
-void LSM9DS1::initMag()
-{   
-    char cmd[4] = {
-        CTRL_REG1_M,
-        0x10,       // Default data rate, xy axes mode, and temp comp
-        mScale << 5, // Set mag scale
-        0           // Enable I2C, write only SPI, not LP mode, Continuous conversion mode
-    };
-
-    // Write the data to the mag control registers
-    i2c.write(mAddress, cmd, 4);
-}
-
-void LSM9DS1::readAccel()
-{
-    // The data we are going to read from the accel
-    char data[6];
-
-    // The start of the addresses we want to read from
-    char subAddress = OUT_X_L_XL;
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, &subAddress, 1, true);
-    // Read in all 8 bit registers containing the axes data
-    i2c.read(xgAddress, data, 6);
-
-    // Reassemble the data and convert to g
-    ax_raw = data[0] | (data[1] << 8);
-    ay_raw = data[2] | (data[3] << 8);
-    az_raw = data[4] | (data[5] << 8);
-    ax = ax_raw * aRes;
-    ay = ay_raw * aRes;
-    az = az_raw * aRes;
-}
-
-void LSM9DS1::readMag()
-{
-    // The data we are going to read from the mag
-    char data[6];
-
-    // The start of the addresses we want to read from
-    char subAddress = OUT_X_L_M;
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(mAddress, &subAddress, 1, true);
-    // Read in all 8 bit registers containing the axes data
-    i2c.read(mAddress, data, 6);
-
-    // Reassemble the data and convert to degrees
-    mx_raw = data[0] | (data[1] << 8);
-    my_raw = data[2] | (data[3] << 8);
-    mz_raw = data[4] | (data[5] << 8);
-    mx = mx_raw * mRes;
-    my = my_raw * mRes;
-    mz = mz_raw * mRes;
-}
-
-void LSM9DS1::readTemp()
-{
-    // The data we are going to read from the temp
-    char data[2];
-
-    // The start of the addresses we want to read from
-    char subAddress = OUT_TEMP_L;
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, &subAddress, 1, true);
-    // Read in all 8 bit registers containing the axes data
-    i2c.read(xgAddress, data, 2);
-
-    // Temperature is a 12-bit signed integer   
-    temperature_raw = data[0] | (data[1] << 8);
-
-    temperature_c = (float)temperature_raw / 8.0 + 25;
-    temperature_f = temperature_c * 1.8 + 32;
-}
-
-
-void LSM9DS1::readGyro()
-{
-    // The data we are going to read from the gyro
-    char data[6];
-
-    // The start of the addresses we want to read from
-    char subAddress = OUT_X_L_G;
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, &subAddress, 1, true);
-    // Read in all 8 bit registers containing the axes data
-    i2c.read(xgAddress, data, 6);
-
-    // Reassemble the data and convert to degrees/sec
-    gx_raw = data[0] | (data[1] << 8);
-    gy_raw = data[2] | (data[3] << 8);
-    gz_raw = data[4] | (data[5] << 8);
-    gx = gx_raw * gRes;
-    gy = gy_raw * gRes;
-    gz = gz_raw * gRes;
-}
-
-void LSM9DS1::setGyroScale(gyro_scale gScl)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG1_G,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(xgAddress, cmd+1, 1);
-
-    // Then mask out the gyro scale bits:
-    cmd[1] &= 0xFF^(0x3 << 3);
-    // Then shift in our new scale bits:
-    cmd[1] |= gScl << 3;
-
-    // Write the gyroscale out to the gyro
-    i2c.write(xgAddress, cmd, 2);
-    
-    // We've updated the sensor, but we also need to update our class variables
-    // First update gScale:
-    gScale = gScl;
-    // Then calculate a new gRes, which relies on gScale being set correctly:
-    calcgRes();
-}
-
-void LSM9DS1::setAccelScale(accel_scale aScl)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG6_XL,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(xgAddress, cmd+1, 1);
-
-    // Then mask out the accel scale bits:
-    cmd[1] &= 0xFF^(0x3 << 3);
-    // Then shift in our new scale bits:
-    cmd[1] |= aScl << 3;
-
-    // Write the accelscale out to the accel
-    i2c.write(xgAddress, cmd, 2);
-    
-    // We've updated the sensor, but we also need to update our class variables
-    // First update aScale:
-    aScale = aScl;
-    // Then calculate a new aRes, which relies on aScale being set correctly:
-    calcaRes();
-}
-
-void LSM9DS1::setMagScale(mag_scale mScl)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG2_M,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(mAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(mAddress, cmd+1, 1);
-
-    // Then mask out the mag scale bits:
-    cmd[1] &= 0xFF^(0x3 << 5);
-    // Then shift in our new scale bits:
-    cmd[1] |= mScl << 5;
-
-    // Write the magscale out to the mag
-    i2c.write(mAddress, cmd, 2);
-    
-    // We've updated the sensor, but we also need to update our class variables
-    // First update mScale:
-    mScale = mScl;
-    // Then calculate a new mRes, which relies on mScale being set correctly:
-    calcmRes();
-}
-
-void LSM9DS1::setGyroODR(gyro_odr gRate)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG1_G,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(xgAddress, cmd+1, 1);
-
-    // Then mask out the gyro odr bits:
-    cmd[1] &= (0x3 << 3);
-    // Then shift in our new odr bits:
-    cmd[1] |= gRate;
-
-    // Write the gyroodr out to the gyro
-    i2c.write(xgAddress, cmd, 2);
-}
-
-void LSM9DS1::setAccelODR(accel_odr aRate)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG6_XL,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(xgAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(xgAddress, cmd+1, 1);
-
-    // Then mask out the accel odr bits:
-    cmd[1] &= 0xFF^(0x7 << 5);
-    // Then shift in our new odr bits:
-    cmd[1] |= aRate << 5;
-
-    // Write the accelodr out to the accel
-    i2c.write(xgAddress, cmd, 2);
-}
-
-void LSM9DS1::setMagODR(mag_odr mRate)
-{
-    // The start of the addresses we want to read from
-    char cmd[2] = {
-        CTRL_REG1_M,
-        0
-    };
-
-    // Write the address we are going to read from and don't end the transaction
-    i2c.write(mAddress, cmd, 1, true);
-    // Read in all the 8 bits of data
-    i2c.read(mAddress, cmd+1, 1);
-
-    // Then mask out the mag odr bits:
-    cmd[1] &= 0xFF^(0x7 << 2);
-    // Then shift in our new odr bits:
-    cmd[1] |= mRate << 2;
-
-    // Write the magodr out to the mag
-    i2c.write(mAddress, cmd, 2);
-}
-
-void LSM9DS1::calcgRes()
-{
-    // Possible gyro scales (and their register bit settings) are:
-    // 245 DPS (00), 500 DPS (01), 2000 DPS (10).
-    switch (gScale)
-    {
-        case G_SCALE_245DPS:
-            gRes = 245.0 / 32768.0;
-            break;
-        case G_SCALE_500DPS:
-            gRes = 500.0 / 32768.0;
-            break;
-        case G_SCALE_2000DPS:
-            gRes = 2000.0 / 32768.0;
-            break;
-    }
-}
-
-void LSM9DS1::calcaRes()
-{
-    // Possible accelerometer scales (and their register bit settings) are:
-    // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100).
-    switch (aScale)
-    {
-        case A_SCALE_2G:
-            aRes = 2.0 / 32768.0;
-            break;
-        case A_SCALE_4G:
-            aRes = 4.0 / 32768.0;
-            break;
-        case A_SCALE_8G:
-            aRes = 8.0 / 32768.0;
-            break;
-        case A_SCALE_16G:
-            aRes = 16.0 / 32768.0;
-            break;
-    }
-}
-
-void LSM9DS1::calcmRes()
-{
-    // Possible magnetometer scales (and their register bit settings) are:
-    // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). 
-    switch (mScale)
-    {
-        case M_SCALE_4GS:
-            mRes = 4.0 / 32768.0;
-            break;
-        case M_SCALE_8GS:
-            mRes = 8.0 / 32768.0;
-            break;
-        case M_SCALE_12GS:
-            mRes = 12.0 / 32768.0;
-            break;
-        case M_SCALE_16GS:
-            mRes = 16.0 / 32768.0;
-            break;
-    }
-}
\ No newline at end of file