Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dsp by
cmsis_dsp/TransformFunctions/arm_cfft_radix2_f32.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cfft_radix2_f32.c
*
* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Floating point processing function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.3 2010/11/29
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupTransforms
*/
/**
* @defgroup Radix2_CFFT_CIFFT Radix-2 Complex FFT Functions
*
* \par
* Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT).
* Computational complexity of CFFT reduces drastically when compared to DFT.
* \par
* This set of functions implements CFFT/CIFFT
* for Q15, Q31, and floating-point data types. The functions operates on in-place buffer which uses same buffer for input and output.
* Complex input is stored in input buffer in an interleaved fashion.
*
* \par
* The functions operate on blocks of input and output data and each call to the function processes
* <code>2*fftLen</code> samples through the transform. <code>pSrc</code> points to In-place arrays containing <code>2*fftLen</code> values.
* \par
* The <code>pSrc</code> points to the array of in-place buffer of size <code>2*fftLen</code> and inputs and outputs are stored in an interleaved fashion as shown below.
* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
*
* \par Lengths supported by the transform:
* \par
* Internally, the function utilize a radix-2 decimation in frequency(DIF) algorithm
* and the size of the FFT supported are of the lengths [16, 32, 64, 128, 256, 512, 1024, 2048, 4096].
*
*
* \par Algorithm:
*
* <b>Complex Fast Fourier Transform:</b>
* \par
* Input real and imaginary data:
* <pre>
* x(n) = xa + j * ya
* x(n+N/2 ) = xb + j * yb
* </pre>
* where N is length of FFT
* \par
* Output real and imaginary data:
* <pre>
* X(2r) = xa'+ j * ya'
* X(2r+1) = xb'+ j * yb'
* </pre>
* \par
* Twiddle factors for radix-2 FFT:
* <pre>
* Wn = cosVal + j * (- sinVal)
* </pre>
*
* \par
* \image html CFFT_Radix2.gif "Radix-2 Decimation-in Frequency Complex Fast Fourier Transform"
*
* \par
* Output from Radix-2 CFFT Results in Digit reversal order. Interchange middle two branches of every butterfly results in Bit reversed output.
* \par
* <b> Butterfly CFFT equations:</b>
* <pre>
* xa' = xa + xb
* ya' = ya + yb
* xb' = (xa-xb)* cosVal + (ya-yb) * sinVal
* yb' = (ya-yb)* cosVal - (xa-xb) * sinVal
* </pre>
*
*
* <b>Complex Inverse Fast Fourier Transform:</b>
* \par
* CIFFT uses same twiddle factor table as CFFT with modifications in the design equation as shown below.
*
* \par
* <b> Modified Butterfly CIFFT equations:</b>
* <pre>
* xa' = xa + xb
* ya' = ya + yb
* xb' = (xa-xb)* cosVal - (ya-yb) * sinVal
* yb' = (ya-yb)* cosVal + (xa-xb) * sinVal
* </pre>
*
* \par Instance Structure
* A separate instance structure must be defined for each Instance but the twiddle factors and bit reversal tables can be reused.
* There are separate instance structure declarations for each of the 3 supported data types.
*
* \par Initialization Functions
* There is also an associated initialization function for each data type.
* The initialization function performs the following operations:
* - Sets the values of the internal structure fields.
* - Initializes twiddle factor table and bit reversal table pointers
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Manually initialize the instance structure as follows:
* <pre>
*arm_cfft_radix2_instance_f32 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor, onebyfftLen};
*arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};
*arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};
* </pre>
* \par
* where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for selection of CFFT or CIFFT(Set ifftFlag to calculate CIFFT otherwise calculates CFFT);
* <code>bitReverseFlag</code> Flag for selection of output order(Set bitReverseFlag to output in normal order otherwise output in bit reversed order);
* <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the array of bit reversal table.
* <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table;
* <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table.
* <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT;
*
* \par Fixed-Point Behavior
* Care must be taken when using the fixed-point versions of the CFFT/CIFFT function.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup Radix2_CFFT_CIFFT
* @{
*/
/**
* @details
* @brief Processing function for the floating-point Radix-2 CFFT/CIFFT.
* @param[in] *S points to an instance of the floating-point Radix-2 CFFT/CIFFT structure.
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
* @return none.
*/
void arm_cfft_radix2_f32(
const arm_cfft_radix2_instance_f32 * S,
float32_t * pSrc)
{
if(S->ifftFlag == 1u)
{
/* Complex IFFT radix-2 */
arm_radix2_butterfly_inverse_f32(pSrc, S->fftLen, S->pTwiddle,
S->twidCoefModifier, S->onebyfftLen);
}
else
{
/* Complex FFT radix-2 */
arm_radix2_butterfly_f32(pSrc, S->fftLen, S->pTwiddle,
S->twidCoefModifier);
}
if(S->bitReverseFlag == 1u)
{
/* Bit Reversal */
arm_bitreversal_f32(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
}
}
/**
* @} end of Radix2_CFFT_CIFFT group
*/
/* ----------------------------------------------------------------------
** Internal helper function used by the FFTs
** ------------------------------------------------------------------- */
/*
* @brief Core function for the floating-point CFFT butterfly process.
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
* @param[in] fftLen length of the FFT.
* @param[in] *pCoef points to the twiddle coefficient buffer.
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_radix2_butterfly_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier)
{
int i, j, k, l;
int n1, n2, ia;
float32_t xt, yt, cosVal, sinVal;
#ifndef ARM_MATH_CM0
/* Initializations for the first stage */
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (i = 0; i < n2; i++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
/* Twiddle coefficients index modifier */
ia = ia + twidCoefModifier;
/* index calculation for the input as, */
/* pSrc[i + 0], pSrc[i + fftLen/1] */
l = i + n2;
/* Butterfly implementation */
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2u * l] = xt * cosVal + yt * sinVal;
pSrc[2u * l + 1u] = yt * cosVal - xt * sinVal;
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2u * l] = xt * cosVal + yt * sinVal;
pSrc[2u * l + 1u] = yt * cosVal - xt * sinVal;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
pSrc[2u * l] = xt;
pSrc[2u * l + 1u] = yt;
} // groups loop end
#else
//N = fftLen;
n2 = fftLen;
// loop for stage
for (k = fftLen; k > 1; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2 * l] = (cosVal * xt + sinVal * yt); // >> 15;
pSrc[2 * l + 1] = (cosVal * yt - sinVal * xt); // >> 15;
}
}
twidCoefModifier = twidCoefModifier << 1u;
}
#endif // #ifndef ARM_MATH_CM0
}
void arm_radix2_butterfly_inverse_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen)
{
int i, j, k, l;
int n1, n2, ia;
float32_t xt, yt, cosVal, sinVal;
#ifndef ARM_MATH_CM0
//N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (i = 0; i < n2; i++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2u * l] = xt * cosVal - yt * sinVal;
pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2u * l] = xt * cosVal - yt * sinVal;
pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) * onebyfftLen;
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) * onebyfftLen;
pSrc[2u * l] = xt * onebyfftLen;
pSrc[2u * l + 1u] = yt * onebyfftLen;
} // butterfly loop end
#else
//N = fftLen;
n2 = fftLen;
// loop for stage
for (k = fftLen; k > 2; k = k >> 1)
{
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++)
{
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = pSrc[2 * i] + pSrc[2 * l];
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = pSrc[2 * l + 1] + pSrc[2 * i + 1];
pSrc[2u * l] = xt * cosVal - yt * sinVal;
pSrc[2u * l + 1u] = yt * cosVal + xt * sinVal;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = 0; i < fftLen; i += n1)
{
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) * onebyfftLen;
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) * onebyfftLen;
pSrc[2u * l] = xt * onebyfftLen;
pSrc[2u * l + 1u] = yt * onebyfftLen;
} // butterfly loop end
#endif // #ifndef ARM_MATH_CM0
}
