Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dsp by
cmsis_dsp/TransformFunctions/arm_cfft_radix2_q31.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_cfft_radix2_q31.c * * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupTransforms */ /** * @defgroup Radix2_CFFT_CIFFT Radix-2 Complex FFT Functions * * \par * Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT). * Computational complexity of CFFT reduces drastically when compared to DFT. */ /** * @addtogroup Radix2_CFFT_CIFFT * @{ */ /** * @details * @brief Processing function for the fixed-point CFFT/CIFFT. * @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. * @return none. */ void arm_cfft_radix2_q31( const arm_cfft_radix2_instance_q31 * S, q31_t * pSrc) { if(S->ifftFlag == 1u) { arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } else { arm_radix2_butterfly_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } /** * @} end of Radix2_CFFT_CIFFT group */ void arm_radix2_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { int i, j, k, l; int n1, n2, ia; q31_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) + ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) - ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // groups loop end twidCoefModifier = twidCoefModifier << 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) + ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) - ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end } void arm_radix2_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { int i, j, k, l; int n1, n2, ia; q31_t xt, yt, cosVal, sinVal; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) - ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) + ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // groups loop end twidCoefModifier = twidCoefModifier << 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; pSrc[2u * l] = (((int32_t) (((q63_t) xt * cosVal) >> 32)) - ((int32_t) (((q63_t) yt * sinVal) >> 32))); pSrc[2u * l + 1u] = (((int32_t) (((q63_t) yt * cosVal) >> 32)) + ((int32_t) (((q63_t) xt * sinVal) >> 32))); } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end }