Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dsp by
arm_correlate_q7.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_correlate_q7.c 00009 * 00010 * Description: Correlation of Q7 sequences. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup Corr 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Correlation of Q7 sequences. 00054 * @param[in] *pSrcA points to the first input sequence. 00055 * @param[in] srcALen length of the first input sequence. 00056 * @param[in] *pSrcB points to the second input sequence. 00057 * @param[in] srcBLen length of the second input sequence. 00058 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. 00059 * @return none. 00060 * 00061 * @details 00062 * <b>Scaling and Overflow Behavior:</b> 00063 * 00064 * \par 00065 * The function is implemented using a 32-bit internal accumulator. 00066 * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result. 00067 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format. 00068 * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>. 00069 * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and saturated to 1.7 format. 00070 * 00071 * \par 00072 * Refer the function <code>arm_correlate_opt_q7()</code> for a faster implementation of this function. 00073 * 00074 */ 00075 00076 void arm_correlate_q7( 00077 q7_t * pSrcA, 00078 uint32_t srcALen, 00079 q7_t * pSrcB, 00080 uint32_t srcBLen, 00081 q7_t * pDst) 00082 { 00083 00084 00085 #ifndef ARM_MATH_CM0_FAMILY 00086 00087 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00088 00089 q7_t *pIn1; /* inputA pointer */ 00090 q7_t *pIn2; /* inputB pointer */ 00091 q7_t *pOut = pDst; /* output pointer */ 00092 q7_t *px; /* Intermediate inputA pointer */ 00093 q7_t *py; /* Intermediate inputB pointer */ 00094 q7_t *pSrc1; /* Intermediate pointers */ 00095 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ 00096 q31_t input1, input2; /* temporary variables */ 00097 q15_t in1, in2; /* temporary variables */ 00098 q7_t x0, x1, x2, x3, c0, c1; /* temporary variables for holding input and coefficient values */ 00099 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */ 00100 int32_t inc = 1; 00101 00102 00103 /* The algorithm implementation is based on the lengths of the inputs. */ 00104 /* srcB is always made to slide across srcA. */ 00105 /* So srcBLen is always considered as shorter or equal to srcALen */ 00106 /* But CORR(x, y) is reverse of CORR(y, x) */ 00107 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ 00108 /* and the destination pointer modifier, inc is set to -1 */ 00109 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ 00110 /* But to improve the performance, 00111 * we include zeroes in the output instead of zero padding either of the the inputs*/ 00112 /* If srcALen > srcBLen, 00113 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ 00114 /* If srcALen < srcBLen, 00115 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ 00116 if(srcALen >= srcBLen) 00117 { 00118 /* Initialization of inputA pointer */ 00119 pIn1 = (pSrcA); 00120 00121 /* Initialization of inputB pointer */ 00122 pIn2 = (pSrcB); 00123 00124 /* Number of output samples is calculated */ 00125 outBlockSize = (2u * srcALen) - 1u; 00126 00127 /* When srcALen > srcBLen, zero padding is done to srcB 00128 * to make their lengths equal. 00129 * Instead, (outBlockSize - (srcALen + srcBLen - 1)) 00130 * number of output samples are made zero */ 00131 j = outBlockSize - (srcALen + (srcBLen - 1u)); 00132 00133 /* Updating the pointer position to non zero value */ 00134 pOut += j; 00135 00136 } 00137 else 00138 { 00139 /* Initialization of inputA pointer */ 00140 pIn1 = (pSrcB); 00141 00142 /* Initialization of inputB pointer */ 00143 pIn2 = (pSrcA); 00144 00145 /* srcBLen is always considered as shorter or equal to srcALen */ 00146 j = srcBLen; 00147 srcBLen = srcALen; 00148 srcALen = j; 00149 00150 /* CORR(x, y) = Reverse order(CORR(y, x)) */ 00151 /* Hence set the destination pointer to point to the last output sample */ 00152 pOut = pDst + ((srcALen + srcBLen) - 2u); 00153 00154 /* Destination address modifier is set to -1 */ 00155 inc = -1; 00156 00157 } 00158 00159 /* The function is internally 00160 * divided into three parts according to the number of multiplications that has to be 00161 * taken place between inputA samples and inputB samples. In the first part of the 00162 * algorithm, the multiplications increase by one for every iteration. 00163 * In the second part of the algorithm, srcBLen number of multiplications are done. 00164 * In the third part of the algorithm, the multiplications decrease by one 00165 * for every iteration.*/ 00166 /* The algorithm is implemented in three stages. 00167 * The loop counters of each stage is initiated here. */ 00168 blockSize1 = srcBLen - 1u; 00169 blockSize2 = srcALen - (srcBLen - 1u); 00170 blockSize3 = blockSize1; 00171 00172 /* -------------------------- 00173 * Initializations of stage1 00174 * -------------------------*/ 00175 00176 /* sum = x[0] * y[srcBlen - 1] 00177 * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1] 00178 * .... 00179 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] 00180 */ 00181 00182 /* In this stage the MAC operations are increased by 1 for every iteration. 00183 The count variable holds the number of MAC operations performed */ 00184 count = 1u; 00185 00186 /* Working pointer of inputA */ 00187 px = pIn1; 00188 00189 /* Working pointer of inputB */ 00190 pSrc1 = pIn2 + (srcBLen - 1u); 00191 py = pSrc1; 00192 00193 /* ------------------------ 00194 * Stage1 process 00195 * ----------------------*/ 00196 00197 /* The first stage starts here */ 00198 while(blockSize1 > 0u) 00199 { 00200 /* Accumulator is made zero for every iteration */ 00201 sum = 0; 00202 00203 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00204 k = count >> 2; 00205 00206 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00207 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00208 while(k > 0u) 00209 { 00210 /* x[0] , x[1] */ 00211 in1 = (q15_t) * px++; 00212 in2 = (q15_t) * px++; 00213 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00214 00215 /* y[srcBLen - 4] , y[srcBLen - 3] */ 00216 in1 = (q15_t) * py++; 00217 in2 = (q15_t) * py++; 00218 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00219 00220 /* x[0] * y[srcBLen - 4] */ 00221 /* x[1] * y[srcBLen - 3] */ 00222 sum = __SMLAD(input1, input2, sum); 00223 00224 /* x[2] , x[3] */ 00225 in1 = (q15_t) * px++; 00226 in2 = (q15_t) * px++; 00227 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00228 00229 /* y[srcBLen - 2] , y[srcBLen - 1] */ 00230 in1 = (q15_t) * py++; 00231 in2 = (q15_t) * py++; 00232 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00233 00234 /* x[2] * y[srcBLen - 2] */ 00235 /* x[3] * y[srcBLen - 1] */ 00236 sum = __SMLAD(input1, input2, sum); 00237 00238 00239 /* Decrement the loop counter */ 00240 k--; 00241 } 00242 00243 /* If the count is not a multiple of 4, compute any remaining MACs here. 00244 ** No loop unrolling is used. */ 00245 k = count % 0x4u; 00246 00247 while(k > 0u) 00248 { 00249 /* Perform the multiply-accumulates */ 00250 /* x[0] * y[srcBLen - 1] */ 00251 sum += (q31_t) ((q15_t) * px++ * *py++); 00252 00253 /* Decrement the loop counter */ 00254 k--; 00255 } 00256 00257 /* Store the result in the accumulator in the destination buffer. */ 00258 *pOut = (q7_t) (__SSAT(sum >> 7, 8)); 00259 /* Destination pointer is updated according to the address modifier, inc */ 00260 pOut += inc; 00261 00262 /* Update the inputA and inputB pointers for next MAC calculation */ 00263 py = pSrc1 - count; 00264 px = pIn1; 00265 00266 /* Increment the MAC count */ 00267 count++; 00268 00269 /* Decrement the loop counter */ 00270 blockSize1--; 00271 } 00272 00273 /* -------------------------- 00274 * Initializations of stage2 00275 * ------------------------*/ 00276 00277 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] 00278 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] 00279 * .... 00280 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00281 */ 00282 00283 /* Working pointer of inputA */ 00284 px = pIn1; 00285 00286 /* Working pointer of inputB */ 00287 py = pIn2; 00288 00289 /* count is index by which the pointer pIn1 to be incremented */ 00290 count = 0u; 00291 00292 /* ------------------- 00293 * Stage2 process 00294 * ------------------*/ 00295 00296 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. 00297 * So, to loop unroll over blockSize2, 00298 * srcBLen should be greater than or equal to 4 */ 00299 if(srcBLen >= 4u) 00300 { 00301 /* Loop unroll over blockSize2, by 4 */ 00302 blkCnt = blockSize2 >> 2u; 00303 00304 while(blkCnt > 0u) 00305 { 00306 /* Set all accumulators to zero */ 00307 acc0 = 0; 00308 acc1 = 0; 00309 acc2 = 0; 00310 acc3 = 0; 00311 00312 /* read x[0], x[1], x[2] samples */ 00313 x0 = *px++; 00314 x1 = *px++; 00315 x2 = *px++; 00316 00317 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00318 k = srcBLen >> 2u; 00319 00320 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00321 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00322 do 00323 { 00324 /* Read y[0] sample */ 00325 c0 = *py++; 00326 /* Read y[1] sample */ 00327 c1 = *py++; 00328 00329 /* Read x[3] sample */ 00330 x3 = *px++; 00331 00332 /* x[0] and x[1] are packed */ 00333 in1 = (q15_t) x0; 00334 in2 = (q15_t) x1; 00335 00336 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00337 00338 /* y[0] and y[1] are packed */ 00339 in1 = (q15_t) c0; 00340 in2 = (q15_t) c1; 00341 00342 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00343 00344 /* acc0 += x[0] * y[0] + x[1] * y[1] */ 00345 acc0 = __SMLAD(input1, input2, acc0); 00346 00347 /* x[1] and x[2] are packed */ 00348 in1 = (q15_t) x1; 00349 in2 = (q15_t) x2; 00350 00351 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00352 00353 /* acc1 += x[1] * y[0] + x[2] * y[1] */ 00354 acc1 = __SMLAD(input1, input2, acc1); 00355 00356 /* x[2] and x[3] are packed */ 00357 in1 = (q15_t) x2; 00358 in2 = (q15_t) x3; 00359 00360 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00361 00362 /* acc2 += x[2] * y[0] + x[3] * y[1] */ 00363 acc2 = __SMLAD(input1, input2, acc2); 00364 00365 /* Read x[4] sample */ 00366 x0 = *(px++); 00367 00368 /* x[3] and x[4] are packed */ 00369 in1 = (q15_t) x3; 00370 in2 = (q15_t) x0; 00371 00372 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00373 00374 /* acc3 += x[3] * y[0] + x[4] * y[1] */ 00375 acc3 = __SMLAD(input1, input2, acc3); 00376 00377 /* Read y[2] sample */ 00378 c0 = *py++; 00379 /* Read y[3] sample */ 00380 c1 = *py++; 00381 00382 /* Read x[5] sample */ 00383 x1 = *px++; 00384 00385 /* x[2] and x[3] are packed */ 00386 in1 = (q15_t) x2; 00387 in2 = (q15_t) x3; 00388 00389 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00390 00391 /* y[2] and y[3] are packed */ 00392 in1 = (q15_t) c0; 00393 in2 = (q15_t) c1; 00394 00395 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00396 00397 /* acc0 += x[2] * y[2] + x[3] * y[3] */ 00398 acc0 = __SMLAD(input1, input2, acc0); 00399 00400 /* x[3] and x[4] are packed */ 00401 in1 = (q15_t) x3; 00402 in2 = (q15_t) x0; 00403 00404 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00405 00406 /* acc1 += x[3] * y[2] + x[4] * y[3] */ 00407 acc1 = __SMLAD(input1, input2, acc1); 00408 00409 /* x[4] and x[5] are packed */ 00410 in1 = (q15_t) x0; 00411 in2 = (q15_t) x1; 00412 00413 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00414 00415 /* acc2 += x[4] * y[2] + x[5] * y[3] */ 00416 acc2 = __SMLAD(input1, input2, acc2); 00417 00418 /* Read x[6] sample */ 00419 x2 = *px++; 00420 00421 /* x[5] and x[6] are packed */ 00422 in1 = (q15_t) x1; 00423 in2 = (q15_t) x2; 00424 00425 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00426 00427 /* acc3 += x[5] * y[2] + x[6] * y[3] */ 00428 acc3 = __SMLAD(input1, input2, acc3); 00429 00430 } while(--k); 00431 00432 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00433 ** No loop unrolling is used. */ 00434 k = srcBLen % 0x4u; 00435 00436 while(k > 0u) 00437 { 00438 /* Read y[4] sample */ 00439 c0 = *py++; 00440 00441 /* Read x[7] sample */ 00442 x3 = *px++; 00443 00444 /* Perform the multiply-accumulates */ 00445 /* acc0 += x[4] * y[4] */ 00446 acc0 += ((q15_t) x0 * c0); 00447 /* acc1 += x[5] * y[4] */ 00448 acc1 += ((q15_t) x1 * c0); 00449 /* acc2 += x[6] * y[4] */ 00450 acc2 += ((q15_t) x2 * c0); 00451 /* acc3 += x[7] * y[4] */ 00452 acc3 += ((q15_t) x3 * c0); 00453 00454 /* Reuse the present samples for the next MAC */ 00455 x0 = x1; 00456 x1 = x2; 00457 x2 = x3; 00458 00459 /* Decrement the loop counter */ 00460 k--; 00461 } 00462 00463 /* Store the result in the accumulator in the destination buffer. */ 00464 *pOut = (q7_t) (__SSAT(acc0 >> 7, 8)); 00465 /* Destination pointer is updated according to the address modifier, inc */ 00466 pOut += inc; 00467 00468 *pOut = (q7_t) (__SSAT(acc1 >> 7, 8)); 00469 pOut += inc; 00470 00471 *pOut = (q7_t) (__SSAT(acc2 >> 7, 8)); 00472 pOut += inc; 00473 00474 *pOut = (q7_t) (__SSAT(acc3 >> 7, 8)); 00475 pOut += inc; 00476 00477 count += 4u; 00478 /* Update the inputA and inputB pointers for next MAC calculation */ 00479 px = pIn1 + count; 00480 py = pIn2; 00481 00482 /* Decrement the loop counter */ 00483 blkCnt--; 00484 } 00485 00486 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. 00487 ** No loop unrolling is used. */ 00488 blkCnt = blockSize2 % 0x4u; 00489 00490 while(blkCnt > 0u) 00491 { 00492 /* Accumulator is made zero for every iteration */ 00493 sum = 0; 00494 00495 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00496 k = srcBLen >> 2u; 00497 00498 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00499 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00500 while(k > 0u) 00501 { 00502 /* Reading two inputs of SrcA buffer and packing */ 00503 in1 = (q15_t) * px++; 00504 in2 = (q15_t) * px++; 00505 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00506 00507 /* Reading two inputs of SrcB buffer and packing */ 00508 in1 = (q15_t) * py++; 00509 in2 = (q15_t) * py++; 00510 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00511 00512 /* Perform the multiply-accumulates */ 00513 sum = __SMLAD(input1, input2, sum); 00514 00515 /* Reading two inputs of SrcA buffer and packing */ 00516 in1 = (q15_t) * px++; 00517 in2 = (q15_t) * px++; 00518 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00519 00520 /* Reading two inputs of SrcB buffer and packing */ 00521 in1 = (q15_t) * py++; 00522 in2 = (q15_t) * py++; 00523 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00524 00525 /* Perform the multiply-accumulates */ 00526 sum = __SMLAD(input1, input2, sum); 00527 00528 /* Decrement the loop counter */ 00529 k--; 00530 } 00531 00532 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00533 ** No loop unrolling is used. */ 00534 k = srcBLen % 0x4u; 00535 00536 while(k > 0u) 00537 { 00538 /* Perform the multiply-accumulates */ 00539 sum += ((q15_t) * px++ * *py++); 00540 00541 /* Decrement the loop counter */ 00542 k--; 00543 } 00544 00545 /* Store the result in the accumulator in the destination buffer. */ 00546 *pOut = (q7_t) (__SSAT(sum >> 7, 8)); 00547 /* Destination pointer is updated according to the address modifier, inc */ 00548 pOut += inc; 00549 00550 /* Increment the pointer pIn1 index, count by 1 */ 00551 count++; 00552 00553 /* Update the inputA and inputB pointers for next MAC calculation */ 00554 px = pIn1 + count; 00555 py = pIn2; 00556 00557 /* Decrement the loop counter */ 00558 blkCnt--; 00559 } 00560 } 00561 else 00562 { 00563 /* If the srcBLen is not a multiple of 4, 00564 * the blockSize2 loop cannot be unrolled by 4 */ 00565 blkCnt = blockSize2; 00566 00567 while(blkCnt > 0u) 00568 { 00569 /* Accumulator is made zero for every iteration */ 00570 sum = 0; 00571 00572 /* Loop over srcBLen */ 00573 k = srcBLen; 00574 00575 while(k > 0u) 00576 { 00577 /* Perform the multiply-accumulate */ 00578 sum += ((q15_t) * px++ * *py++); 00579 00580 /* Decrement the loop counter */ 00581 k--; 00582 } 00583 00584 /* Store the result in the accumulator in the destination buffer. */ 00585 *pOut = (q7_t) (__SSAT(sum >> 7, 8)); 00586 /* Destination pointer is updated according to the address modifier, inc */ 00587 pOut += inc; 00588 00589 /* Increment the MAC count */ 00590 count++; 00591 00592 /* Update the inputA and inputB pointers for next MAC calculation */ 00593 px = pIn1 + count; 00594 py = pIn2; 00595 00596 00597 /* Decrement the loop counter */ 00598 blkCnt--; 00599 } 00600 } 00601 00602 /* -------------------------- 00603 * Initializations of stage3 00604 * -------------------------*/ 00605 00606 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00607 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00608 * .... 00609 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] 00610 * sum += x[srcALen-1] * y[0] 00611 */ 00612 00613 /* In this stage the MAC operations are decreased by 1 for every iteration. 00614 The count variable holds the number of MAC operations performed */ 00615 count = srcBLen - 1u; 00616 00617 /* Working pointer of inputA */ 00618 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u)); 00619 px = pSrc1; 00620 00621 /* Working pointer of inputB */ 00622 py = pIn2; 00623 00624 /* ------------------- 00625 * Stage3 process 00626 * ------------------*/ 00627 00628 while(blockSize3 > 0u) 00629 { 00630 /* Accumulator is made zero for every iteration */ 00631 sum = 0; 00632 00633 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00634 k = count >> 2u; 00635 00636 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00637 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00638 while(k > 0u) 00639 { 00640 /* x[srcALen - srcBLen + 1] , x[srcALen - srcBLen + 2] */ 00641 in1 = (q15_t) * px++; 00642 in2 = (q15_t) * px++; 00643 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00644 00645 /* y[0] , y[1] */ 00646 in1 = (q15_t) * py++; 00647 in2 = (q15_t) * py++; 00648 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00649 00650 /* sum += x[srcALen - srcBLen + 1] * y[0] */ 00651 /* sum += x[srcALen - srcBLen + 2] * y[1] */ 00652 sum = __SMLAD(input1, input2, sum); 00653 00654 /* x[srcALen - srcBLen + 3] , x[srcALen - srcBLen + 4] */ 00655 in1 = (q15_t) * px++; 00656 in2 = (q15_t) * px++; 00657 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00658 00659 /* y[2] , y[3] */ 00660 in1 = (q15_t) * py++; 00661 in2 = (q15_t) * py++; 00662 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16); 00663 00664 /* sum += x[srcALen - srcBLen + 3] * y[2] */ 00665 /* sum += x[srcALen - srcBLen + 4] * y[3] */ 00666 sum = __SMLAD(input1, input2, sum); 00667 00668 /* Decrement the loop counter */ 00669 k--; 00670 } 00671 00672 /* If the count is not a multiple of 4, compute any remaining MACs here. 00673 ** No loop unrolling is used. */ 00674 k = count % 0x4u; 00675 00676 while(k > 0u) 00677 { 00678 /* Perform the multiply-accumulates */ 00679 sum += ((q15_t) * px++ * *py++); 00680 00681 /* Decrement the loop counter */ 00682 k--; 00683 } 00684 00685 /* Store the result in the accumulator in the destination buffer. */ 00686 *pOut = (q7_t) (__SSAT(sum >> 7, 8)); 00687 /* Destination pointer is updated according to the address modifier, inc */ 00688 pOut += inc; 00689 00690 /* Update the inputA and inputB pointers for next MAC calculation */ 00691 px = ++pSrc1; 00692 py = pIn2; 00693 00694 /* Decrement the MAC count */ 00695 count--; 00696 00697 /* Decrement the loop counter */ 00698 blockSize3--; 00699 } 00700 00701 #else 00702 00703 /* Run the below code for Cortex-M0 */ 00704 00705 q7_t *pIn1 = pSrcA; /* inputA pointer */ 00706 q7_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */ 00707 q31_t sum; /* Accumulator */ 00708 uint32_t i = 0u, j; /* loop counters */ 00709 uint32_t inv = 0u; /* Reverse order flag */ 00710 uint32_t tot = 0u; /* Length */ 00711 00712 /* The algorithm implementation is based on the lengths of the inputs. */ 00713 /* srcB is always made to slide across srcA. */ 00714 /* So srcBLen is always considered as shorter or equal to srcALen */ 00715 /* But CORR(x, y) is reverse of CORR(y, x) */ 00716 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ 00717 /* and a varaible, inv is set to 1 */ 00718 /* If lengths are not equal then zero pad has to be done to make the two 00719 * inputs of same length. But to improve the performance, we include zeroes 00720 * in the output instead of zero padding either of the the inputs*/ 00721 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the 00722 * starting of the output buffer */ 00723 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the 00724 * ending of the output buffer */ 00725 /* Once the zero padding is done the remaining of the output is calcualted 00726 * using convolution but with the shorter signal time shifted. */ 00727 00728 /* Calculate the length of the remaining sequence */ 00729 tot = ((srcALen + srcBLen) - 2u); 00730 00731 if(srcALen > srcBLen) 00732 { 00733 /* Calculating the number of zeros to be padded to the output */ 00734 j = srcALen - srcBLen; 00735 00736 /* Initialise the pointer after zero padding */ 00737 pDst += j; 00738 } 00739 00740 else if(srcALen < srcBLen) 00741 { 00742 /* Initialization to inputB pointer */ 00743 pIn1 = pSrcB; 00744 00745 /* Initialization to the end of inputA pointer */ 00746 pIn2 = pSrcA + (srcALen - 1u); 00747 00748 /* Initialisation of the pointer after zero padding */ 00749 pDst = pDst + tot; 00750 00751 /* Swapping the lengths */ 00752 j = srcALen; 00753 srcALen = srcBLen; 00754 srcBLen = j; 00755 00756 /* Setting the reverse flag */ 00757 inv = 1; 00758 00759 } 00760 00761 /* Loop to calculate convolution for output length number of times */ 00762 for (i = 0u; i <= tot; i++) 00763 { 00764 /* Initialize sum with zero to carry on MAC operations */ 00765 sum = 0; 00766 00767 /* Loop to perform MAC operations according to convolution equation */ 00768 for (j = 0u; j <= i; j++) 00769 { 00770 /* Check the array limitations */ 00771 if((((i - j) < srcBLen) && (j < srcALen))) 00772 { 00773 /* z[i] += x[i-j] * y[j] */ 00774 sum += ((q15_t) pIn1[j] * pIn2[-((int32_t) i - j)]); 00775 } 00776 } 00777 /* Store the output in the destination buffer */ 00778 if(inv == 1) 00779 *pDst-- = (q7_t) __SSAT((sum >> 7u), 8u); 00780 else 00781 *pDst++ = (q7_t) __SSAT((sum >> 7u), 8u); 00782 } 00783 00784 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00785 00786 } 00787 00788 /** 00789 * @} end of Corr group 00790 */
Generated on Tue Jul 12 2022 18:44:08 by
1.7.2
