Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dsp by
arm_correlate_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_correlate_q15.c 00009 * 00010 * Description: Correlation of Q15 sequences. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup Corr 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Correlation of Q15 sequences. 00054 * @param[in] *pSrcA points to the first input sequence. 00055 * @param[in] srcALen length of the first input sequence. 00056 * @param[in] *pSrcB points to the second input sequence. 00057 * @param[in] srcBLen length of the second input sequence. 00058 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. 00059 * @return none. 00060 * 00061 * @details 00062 * <b>Scaling and Overflow Behavior:</b> 00063 * 00064 * \par 00065 * The function is implemented using a 64-bit internal accumulator. 00066 * Both inputs are in 1.15 format and multiplications yield a 2.30 result. 00067 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. 00068 * This approach provides 33 guard bits and there is no risk of overflow. 00069 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format. 00070 * 00071 * \par 00072 * Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. 00073 * 00074 * \par 00075 * Refer the function <code>arm_correlate_opt_q15()</code> for a faster implementation of this function using scratch buffers. 00076 * 00077 */ 00078 00079 void arm_correlate_q15( 00080 q15_t * pSrcA, 00081 uint32_t srcALen, 00082 q15_t * pSrcB, 00083 uint32_t srcBLen, 00084 q15_t * pDst) 00085 { 00086 00087 #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) 00088 00089 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00090 00091 q15_t *pIn1; /* inputA pointer */ 00092 q15_t *pIn2; /* inputB pointer */ 00093 q15_t *pOut = pDst; /* output pointer */ 00094 q63_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ 00095 q15_t *px; /* Intermediate inputA pointer */ 00096 q15_t *py; /* Intermediate inputB pointer */ 00097 q15_t *pSrc1; /* Intermediate pointers */ 00098 q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */ 00099 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */ 00100 int32_t inc = 1; /* Destination address modifier */ 00101 00102 00103 /* The algorithm implementation is based on the lengths of the inputs. */ 00104 /* srcB is always made to slide across srcA. */ 00105 /* So srcBLen is always considered as shorter or equal to srcALen */ 00106 /* But CORR(x, y) is reverse of CORR(y, x) */ 00107 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ 00108 /* and the destination pointer modifier, inc is set to -1 */ 00109 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ 00110 /* But to improve the performance, 00111 * we include zeroes in the output instead of zero padding either of the the inputs*/ 00112 /* If srcALen > srcBLen, 00113 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ 00114 /* If srcALen < srcBLen, 00115 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ 00116 if(srcALen >= srcBLen) 00117 { 00118 /* Initialization of inputA pointer */ 00119 pIn1 = (pSrcA); 00120 00121 /* Initialization of inputB pointer */ 00122 pIn2 = (pSrcB); 00123 00124 /* Number of output samples is calculated */ 00125 outBlockSize = (2u * srcALen) - 1u; 00126 00127 /* When srcALen > srcBLen, zero padding is done to srcB 00128 * to make their lengths equal. 00129 * Instead, (outBlockSize - (srcALen + srcBLen - 1)) 00130 * number of output samples are made zero */ 00131 j = outBlockSize - (srcALen + (srcBLen - 1u)); 00132 00133 /* Updating the pointer position to non zero value */ 00134 pOut += j; 00135 00136 } 00137 else 00138 { 00139 /* Initialization of inputA pointer */ 00140 pIn1 = (pSrcB); 00141 00142 /* Initialization of inputB pointer */ 00143 pIn2 = (pSrcA); 00144 00145 /* srcBLen is always considered as shorter or equal to srcALen */ 00146 j = srcBLen; 00147 srcBLen = srcALen; 00148 srcALen = j; 00149 00150 /* CORR(x, y) = Reverse order(CORR(y, x)) */ 00151 /* Hence set the destination pointer to point to the last output sample */ 00152 pOut = pDst + ((srcALen + srcBLen) - 2u); 00153 00154 /* Destination address modifier is set to -1 */ 00155 inc = -1; 00156 00157 } 00158 00159 /* The function is internally 00160 * divided into three parts according to the number of multiplications that has to be 00161 * taken place between inputA samples and inputB samples. In the first part of the 00162 * algorithm, the multiplications increase by one for every iteration. 00163 * In the second part of the algorithm, srcBLen number of multiplications are done. 00164 * In the third part of the algorithm, the multiplications decrease by one 00165 * for every iteration.*/ 00166 /* The algorithm is implemented in three stages. 00167 * The loop counters of each stage is initiated here. */ 00168 blockSize1 = srcBLen - 1u; 00169 blockSize2 = srcALen - (srcBLen - 1u); 00170 blockSize3 = blockSize1; 00171 00172 /* -------------------------- 00173 * Initializations of stage1 00174 * -------------------------*/ 00175 00176 /* sum = x[0] * y[srcBlen - 1] 00177 * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1] 00178 * .... 00179 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] 00180 */ 00181 00182 /* In this stage the MAC operations are increased by 1 for every iteration. 00183 The count variable holds the number of MAC operations performed */ 00184 count = 1u; 00185 00186 /* Working pointer of inputA */ 00187 px = pIn1; 00188 00189 /* Working pointer of inputB */ 00190 pSrc1 = pIn2 + (srcBLen - 1u); 00191 py = pSrc1; 00192 00193 /* ------------------------ 00194 * Stage1 process 00195 * ----------------------*/ 00196 00197 /* The first loop starts here */ 00198 while(blockSize1 > 0u) 00199 { 00200 /* Accumulator is made zero for every iteration */ 00201 sum = 0; 00202 00203 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00204 k = count >> 2; 00205 00206 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00207 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00208 while(k > 0u) 00209 { 00210 /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */ 00211 sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum); 00212 /* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */ 00213 sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum); 00214 00215 /* Decrement the loop counter */ 00216 k--; 00217 } 00218 00219 /* If the count is not a multiple of 4, compute any remaining MACs here. 00220 ** No loop unrolling is used. */ 00221 k = count % 0x4u; 00222 00223 while(k > 0u) 00224 { 00225 /* Perform the multiply-accumulates */ 00226 /* x[0] * y[srcBLen - 1] */ 00227 sum = __SMLALD(*px++, *py++, sum); 00228 00229 /* Decrement the loop counter */ 00230 k--; 00231 } 00232 00233 /* Store the result in the accumulator in the destination buffer. */ 00234 *pOut = (q15_t) (__SSAT((sum >> 15), 16)); 00235 /* Destination pointer is updated according to the address modifier, inc */ 00236 pOut += inc; 00237 00238 /* Update the inputA and inputB pointers for next MAC calculation */ 00239 py = pSrc1 - count; 00240 px = pIn1; 00241 00242 /* Increment the MAC count */ 00243 count++; 00244 00245 /* Decrement the loop counter */ 00246 blockSize1--; 00247 } 00248 00249 /* -------------------------- 00250 * Initializations of stage2 00251 * ------------------------*/ 00252 00253 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] 00254 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] 00255 * .... 00256 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00257 */ 00258 00259 /* Working pointer of inputA */ 00260 px = pIn1; 00261 00262 /* Working pointer of inputB */ 00263 py = pIn2; 00264 00265 /* count is index by which the pointer pIn1 to be incremented */ 00266 count = 0u; 00267 00268 /* ------------------- 00269 * Stage2 process 00270 * ------------------*/ 00271 00272 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. 00273 * So, to loop unroll over blockSize2, 00274 * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */ 00275 if(srcBLen >= 4u) 00276 { 00277 /* Loop unroll over blockSize2, by 4 */ 00278 blkCnt = blockSize2 >> 2u; 00279 00280 while(blkCnt > 0u) 00281 { 00282 /* Set all accumulators to zero */ 00283 acc0 = 0; 00284 acc1 = 0; 00285 acc2 = 0; 00286 acc3 = 0; 00287 00288 /* read x[0], x[1] samples */ 00289 x0 = *__SIMD32(px); 00290 /* read x[1], x[2] samples */ 00291 x1 = _SIMD32_OFFSET(px + 1); 00292 px += 2u; 00293 00294 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00295 k = srcBLen >> 2u; 00296 00297 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00298 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00299 do 00300 { 00301 /* Read the first two inputB samples using SIMD: 00302 * y[0] and y[1] */ 00303 c0 = *__SIMD32(py)++; 00304 00305 /* acc0 += x[0] * y[0] + x[1] * y[1] */ 00306 acc0 = __SMLALD(x0, c0, acc0); 00307 00308 /* acc1 += x[1] * y[0] + x[2] * y[1] */ 00309 acc1 = __SMLALD(x1, c0, acc1); 00310 00311 /* Read x[2], x[3] */ 00312 x2 = *__SIMD32(px); 00313 00314 /* Read x[3], x[4] */ 00315 x3 = _SIMD32_OFFSET(px + 1); 00316 00317 /* acc2 += x[2] * y[0] + x[3] * y[1] */ 00318 acc2 = __SMLALD(x2, c0, acc2); 00319 00320 /* acc3 += x[3] * y[0] + x[4] * y[1] */ 00321 acc3 = __SMLALD(x3, c0, acc3); 00322 00323 /* Read y[2] and y[3] */ 00324 c0 = *__SIMD32(py)++; 00325 00326 /* acc0 += x[2] * y[2] + x[3] * y[3] */ 00327 acc0 = __SMLALD(x2, c0, acc0); 00328 00329 /* acc1 += x[3] * y[2] + x[4] * y[3] */ 00330 acc1 = __SMLALD(x3, c0, acc1); 00331 00332 /* Read x[4], x[5] */ 00333 x0 = _SIMD32_OFFSET(px + 2); 00334 00335 /* Read x[5], x[6] */ 00336 x1 = _SIMD32_OFFSET(px + 3); 00337 00338 px += 4u; 00339 00340 /* acc2 += x[4] * y[2] + x[5] * y[3] */ 00341 acc2 = __SMLALD(x0, c0, acc2); 00342 00343 /* acc3 += x[5] * y[2] + x[6] * y[3] */ 00344 acc3 = __SMLALD(x1, c0, acc3); 00345 00346 } while(--k); 00347 00348 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00349 ** No loop unrolling is used. */ 00350 k = srcBLen % 0x4u; 00351 00352 if(k == 1u) 00353 { 00354 /* Read y[4] */ 00355 c0 = *py; 00356 #ifdef ARM_MATH_BIG_ENDIAN 00357 00358 c0 = c0 << 16u; 00359 00360 #else 00361 00362 c0 = c0 & 0x0000FFFF; 00363 00364 #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ 00365 /* Read x[7] */ 00366 x3 = *__SIMD32(px); 00367 px++; 00368 00369 /* Perform the multiply-accumulates */ 00370 acc0 = __SMLALD(x0, c0, acc0); 00371 acc1 = __SMLALD(x1, c0, acc1); 00372 acc2 = __SMLALDX(x1, c0, acc2); 00373 acc3 = __SMLALDX(x3, c0, acc3); 00374 } 00375 00376 if(k == 2u) 00377 { 00378 /* Read y[4], y[5] */ 00379 c0 = *__SIMD32(py); 00380 00381 /* Read x[7], x[8] */ 00382 x3 = *__SIMD32(px); 00383 00384 /* Read x[9] */ 00385 x2 = _SIMD32_OFFSET(px + 1); 00386 px += 2u; 00387 00388 /* Perform the multiply-accumulates */ 00389 acc0 = __SMLALD(x0, c0, acc0); 00390 acc1 = __SMLALD(x1, c0, acc1); 00391 acc2 = __SMLALD(x3, c0, acc2); 00392 acc3 = __SMLALD(x2, c0, acc3); 00393 } 00394 00395 if(k == 3u) 00396 { 00397 /* Read y[4], y[5] */ 00398 c0 = *__SIMD32(py)++; 00399 00400 /* Read x[7], x[8] */ 00401 x3 = *__SIMD32(px); 00402 00403 /* Read x[9] */ 00404 x2 = _SIMD32_OFFSET(px + 1); 00405 00406 /* Perform the multiply-accumulates */ 00407 acc0 = __SMLALD(x0, c0, acc0); 00408 acc1 = __SMLALD(x1, c0, acc1); 00409 acc2 = __SMLALD(x3, c0, acc2); 00410 acc3 = __SMLALD(x2, c0, acc3); 00411 00412 c0 = (*py); 00413 00414 /* Read y[6] */ 00415 #ifdef ARM_MATH_BIG_ENDIAN 00416 00417 c0 = c0 << 16u; 00418 #else 00419 00420 c0 = c0 & 0x0000FFFF; 00421 #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ 00422 /* Read x[10] */ 00423 x3 = _SIMD32_OFFSET(px + 2); 00424 px += 3u; 00425 00426 /* Perform the multiply-accumulates */ 00427 acc0 = __SMLALDX(x1, c0, acc0); 00428 acc1 = __SMLALD(x2, c0, acc1); 00429 acc2 = __SMLALDX(x2, c0, acc2); 00430 acc3 = __SMLALDX(x3, c0, acc3); 00431 } 00432 00433 /* Store the result in the accumulator in the destination buffer. */ 00434 *pOut = (q15_t) (__SSAT(acc0 >> 15, 16)); 00435 /* Destination pointer is updated according to the address modifier, inc */ 00436 pOut += inc; 00437 00438 *pOut = (q15_t) (__SSAT(acc1 >> 15, 16)); 00439 pOut += inc; 00440 00441 *pOut = (q15_t) (__SSAT(acc2 >> 15, 16)); 00442 pOut += inc; 00443 00444 *pOut = (q15_t) (__SSAT(acc3 >> 15, 16)); 00445 pOut += inc; 00446 00447 /* Increment the count by 4 as 4 output values are computed */ 00448 count += 4u; 00449 00450 /* Update the inputA and inputB pointers for next MAC calculation */ 00451 px = pIn1 + count; 00452 py = pIn2; 00453 00454 /* Decrement the loop counter */ 00455 blkCnt--; 00456 } 00457 00458 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. 00459 ** No loop unrolling is used. */ 00460 blkCnt = blockSize2 % 0x4u; 00461 00462 while(blkCnt > 0u) 00463 { 00464 /* Accumulator is made zero for every iteration */ 00465 sum = 0; 00466 00467 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00468 k = srcBLen >> 2u; 00469 00470 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00471 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00472 while(k > 0u) 00473 { 00474 /* Perform the multiply-accumulates */ 00475 sum += ((q63_t) * px++ * *py++); 00476 sum += ((q63_t) * px++ * *py++); 00477 sum += ((q63_t) * px++ * *py++); 00478 sum += ((q63_t) * px++ * *py++); 00479 00480 /* Decrement the loop counter */ 00481 k--; 00482 } 00483 00484 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00485 ** No loop unrolling is used. */ 00486 k = srcBLen % 0x4u; 00487 00488 while(k > 0u) 00489 { 00490 /* Perform the multiply-accumulates */ 00491 sum += ((q63_t) * px++ * *py++); 00492 00493 /* Decrement the loop counter */ 00494 k--; 00495 } 00496 00497 /* Store the result in the accumulator in the destination buffer. */ 00498 *pOut = (q15_t) (__SSAT(sum >> 15, 16)); 00499 /* Destination pointer is updated according to the address modifier, inc */ 00500 pOut += inc; 00501 00502 /* Increment count by 1, as one output value is computed */ 00503 count++; 00504 00505 /* Update the inputA and inputB pointers for next MAC calculation */ 00506 px = pIn1 + count; 00507 py = pIn2; 00508 00509 /* Decrement the loop counter */ 00510 blkCnt--; 00511 } 00512 } 00513 else 00514 { 00515 /* If the srcBLen is not a multiple of 4, 00516 * the blockSize2 loop cannot be unrolled by 4 */ 00517 blkCnt = blockSize2; 00518 00519 while(blkCnt > 0u) 00520 { 00521 /* Accumulator is made zero for every iteration */ 00522 sum = 0; 00523 00524 /* Loop over srcBLen */ 00525 k = srcBLen; 00526 00527 while(k > 0u) 00528 { 00529 /* Perform the multiply-accumulate */ 00530 sum += ((q63_t) * px++ * *py++); 00531 00532 /* Decrement the loop counter */ 00533 k--; 00534 } 00535 00536 /* Store the result in the accumulator in the destination buffer. */ 00537 *pOut = (q15_t) (__SSAT(sum >> 15, 16)); 00538 /* Destination pointer is updated according to the address modifier, inc */ 00539 pOut += inc; 00540 00541 /* Increment the MAC count */ 00542 count++; 00543 00544 /* Update the inputA and inputB pointers for next MAC calculation */ 00545 px = pIn1 + count; 00546 py = pIn2; 00547 00548 /* Decrement the loop counter */ 00549 blkCnt--; 00550 } 00551 } 00552 00553 /* -------------------------- 00554 * Initializations of stage3 00555 * -------------------------*/ 00556 00557 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00558 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00559 * .... 00560 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] 00561 * sum += x[srcALen-1] * y[0] 00562 */ 00563 00564 /* In this stage the MAC operations are decreased by 1 for every iteration. 00565 The count variable holds the number of MAC operations performed */ 00566 count = srcBLen - 1u; 00567 00568 /* Working pointer of inputA */ 00569 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); 00570 px = pSrc1; 00571 00572 /* Working pointer of inputB */ 00573 py = pIn2; 00574 00575 /* ------------------- 00576 * Stage3 process 00577 * ------------------*/ 00578 00579 while(blockSize3 > 0u) 00580 { 00581 /* Accumulator is made zero for every iteration */ 00582 sum = 0; 00583 00584 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00585 k = count >> 2u; 00586 00587 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00588 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00589 while(k > 0u) 00590 { 00591 /* Perform the multiply-accumulates */ 00592 /* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */ 00593 sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum); 00594 /* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */ 00595 sum = __SMLALD(*__SIMD32(px)++, *__SIMD32(py)++, sum); 00596 00597 /* Decrement the loop counter */ 00598 k--; 00599 } 00600 00601 /* If the count is not a multiple of 4, compute any remaining MACs here. 00602 ** No loop unrolling is used. */ 00603 k = count % 0x4u; 00604 00605 while(k > 0u) 00606 { 00607 /* Perform the multiply-accumulates */ 00608 sum = __SMLALD(*px++, *py++, sum); 00609 00610 /* Decrement the loop counter */ 00611 k--; 00612 } 00613 00614 /* Store the result in the accumulator in the destination buffer. */ 00615 *pOut = (q15_t) (__SSAT((sum >> 15), 16)); 00616 /* Destination pointer is updated according to the address modifier, inc */ 00617 pOut += inc; 00618 00619 /* Update the inputA and inputB pointers for next MAC calculation */ 00620 px = ++pSrc1; 00621 py = pIn2; 00622 00623 /* Decrement the MAC count */ 00624 count--; 00625 00626 /* Decrement the loop counter */ 00627 blockSize3--; 00628 } 00629 00630 #else 00631 00632 /* Run the below code for Cortex-M0 */ 00633 00634 q15_t *pIn1 = pSrcA; /* inputA pointer */ 00635 q15_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */ 00636 q63_t sum; /* Accumulators */ 00637 uint32_t i = 0u, j; /* loop counters */ 00638 uint32_t inv = 0u; /* Reverse order flag */ 00639 uint32_t tot = 0u; /* Length */ 00640 00641 /* The algorithm implementation is based on the lengths of the inputs. */ 00642 /* srcB is always made to slide across srcA. */ 00643 /* So srcBLen is always considered as shorter or equal to srcALen */ 00644 /* But CORR(x, y) is reverse of CORR(y, x) */ 00645 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ 00646 /* and a varaible, inv is set to 1 */ 00647 /* If lengths are not equal then zero pad has to be done to make the two 00648 * inputs of same length. But to improve the performance, we include zeroes 00649 * in the output instead of zero padding either of the the inputs*/ 00650 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the 00651 * starting of the output buffer */ 00652 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the 00653 * ending of the output buffer */ 00654 /* Once the zero padding is done the remaining of the output is calcualted 00655 * using convolution but with the shorter signal time shifted. */ 00656 00657 /* Calculate the length of the remaining sequence */ 00658 tot = ((srcALen + srcBLen) - 2u); 00659 00660 if(srcALen > srcBLen) 00661 { 00662 /* Calculating the number of zeros to be padded to the output */ 00663 j = srcALen - srcBLen; 00664 00665 /* Initialise the pointer after zero padding */ 00666 pDst += j; 00667 } 00668 00669 else if(srcALen < srcBLen) 00670 { 00671 /* Initialization to inputB pointer */ 00672 pIn1 = pSrcB; 00673 00674 /* Initialization to the end of inputA pointer */ 00675 pIn2 = pSrcA + (srcALen - 1u); 00676 00677 /* Initialisation of the pointer after zero padding */ 00678 pDst = pDst + tot; 00679 00680 /* Swapping the lengths */ 00681 j = srcALen; 00682 srcALen = srcBLen; 00683 srcBLen = j; 00684 00685 /* Setting the reverse flag */ 00686 inv = 1; 00687 00688 } 00689 00690 /* Loop to calculate convolution for output length number of times */ 00691 for (i = 0u; i <= tot; i++) 00692 { 00693 /* Initialize sum with zero to carry on MAC operations */ 00694 sum = 0; 00695 00696 /* Loop to perform MAC operations according to convolution equation */ 00697 for (j = 0u; j <= i; j++) 00698 { 00699 /* Check the array limitations */ 00700 if((((i - j) < srcBLen) && (j < srcALen))) 00701 { 00702 /* z[i] += x[i-j] * y[j] */ 00703 sum += ((q31_t) pIn1[j] * pIn2[-((int32_t) i - j)]); 00704 } 00705 } 00706 /* Store the output in the destination buffer */ 00707 if(inv == 1) 00708 *pDst-- = (q15_t) __SSAT((sum >> 15u), 16u); 00709 else 00710 *pDst++ = (q15_t) __SSAT((sum >> 15u), 16u); 00711 } 00712 00713 #endif /*#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */ 00714 00715 } 00716 00717 /** 00718 * @} end of Corr group 00719 */
Generated on Tue Jul 12 2022 18:44:08 by
