Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
quantize.h
00001 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. 00002 00003 Licensed under the Apache License, Version 2.0 (the "License"); 00004 you may not use this file except in compliance with the License. 00005 You may obtain a copy of the License at 00006 00007 http://www.apache.org/licenses/LICENSE-2.0 00008 00009 Unless required by applicable law or agreed to in writing, software 00010 distributed under the License is distributed on an "AS IS" BASIS, 00011 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00012 See the License for the specific language governing permissions and 00013 limitations under the License. 00014 ==============================================================================*/ 00015 #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_ 00016 #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_ 00017 00018 #include "tensorflow/lite/kernels/internal/common.h" 00019 #include "tensorflow/lite/kernels/internal/round.h" 00020 #include "tensorflow/lite/kernels/internal/types.h" 00021 00022 namespace tflite { 00023 00024 namespace reference_ops { 00025 00026 template <typename T> 00027 inline void AffineQuantize(const tflite::QuantizationParams& op_params, 00028 const RuntimeShape& input_shape, 00029 const float* input_data, 00030 const RuntimeShape& output_shape, T* output_data) { 00031 const int32 zero_point = op_params.zero_point; 00032 const double scale = static_cast<double>(op_params.scale); 00033 const int flat_size = MatchingFlatSize(input_shape, output_shape); 00034 static constexpr int32 min_val = std::numeric_limits<T>::min(); 00035 static constexpr int32 max_val = std::numeric_limits<T>::max(); 00036 00037 for (int i = 0; i < flat_size; i++) { 00038 const float val = input_data[i]; 00039 int32 unclamped = static_cast<int32>(TfLiteRound(val / scale)) + zero_point; 00040 int32 clamped = std::min(std::max(unclamped, min_val), max_val); 00041 output_data[i] = clamped; 00042 } 00043 } 00044 00045 } // namespace reference_ops 00046 00047 } // namespace tflite 00048 #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
Generated on Wed Jul 13 2022 16:03:35 by
