Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
fully_connected.h
00001 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. 00002 00003 Licensed under the Apache License, Version 2.0 (the "License"); 00004 you may not use this file except in compliance with the License. 00005 You may obtain a copy of the License at 00006 00007 http://www.apache.org/licenses/LICENSE-2.0 00008 00009 Unless required by applicable law or agreed to in writing, software 00010 distributed under the License is distributed on an "AS IS" BASIS, 00011 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00012 See the License for the specific language governing permissions and 00013 limitations under the License. 00014 ==============================================================================*/ 00015 #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_ 00016 #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_ 00017 00018 #include "tensorflow/lite/kernels/internal/common.h" 00019 00020 namespace tflite { 00021 namespace reference_integer_ops { 00022 00023 inline void FullyConnected( 00024 const FullyConnectedParams& params, const RuntimeShape& input_shape, 00025 const int8_t* input_data, const RuntimeShape& filter_shape, 00026 const int8_t* filter_data, const RuntimeShape& bias_shape, 00027 const int32* bias_data, const RuntimeShape& output_shape, 00028 int8_t* output_data) { 00029 const int32 input_offset = params.input_offset; 00030 const int32 filter_offset = params.weights_offset; 00031 const int32 output_offset = params.output_offset; 00032 const int32 output_multiplier = params.output_multiplier; 00033 const int output_shift = params.output_shift; 00034 const int32 output_activation_min = params.quantized_activation_min; 00035 const int32 output_activation_max = params.quantized_activation_max; 00036 TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2); 00037 TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2); 00038 00039 TFLITE_DCHECK_LE(output_activation_min, output_activation_max); 00040 const int filter_dim_count = filter_shape.DimensionsCount(); 00041 const int batches = output_shape.Dims(0); 00042 const int output_depth = output_shape.Dims(1); 00043 TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2)); 00044 const int accum_depth = filter_shape.Dims(filter_dim_count - 1); 00045 for (int b = 0; b < batches; ++b) { 00046 for (int out_c = 0; out_c < output_depth; ++out_c) { 00047 int32 acc = 0; 00048 for (int d = 0; d < accum_depth; ++d) { 00049 int32 input_val = input_data[b * accum_depth + d]; 00050 int32 filter_val = filter_data[out_c * accum_depth + d]; 00051 acc += (filter_val + filter_offset) * (input_val + input_offset); 00052 } 00053 if (bias_data) { 00054 acc += bias_data[out_c]; 00055 } 00056 acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift); 00057 acc += output_offset; 00058 acc = std::max(acc, output_activation_min); 00059 acc = std::min(acc, output_activation_max); 00060 output_data[out_c + output_depth * b] = static_cast<int8_t>(acc); 00061 } 00062 } 00063 } 00064 00065 } // namespace reference_integer_ops 00066 } // namespace tflite 00067 00068 #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_
Generated on Wed Jul 13 2022 16:03:35 by
