aaaaaaaaa

Dependencies:   mbed QEI

System/Process/Process.cpp

Committer:
kishibekairohan
Date:
2018-10-01
Revision:
5:3ae504b88679
Parent:
3:e10d8736fd22

File content as of revision 5:3ae504b88679:

#include "mbed.h"
#include "Process.h"

#include "../../Communication/RS485/ActuatorHub/ActuatorHub.h"
#include "../../Communication/Controller/Controller.h"
#include "../../Input/ExternalInt/ExternalInt.h"
#include "../../Input/Switch/Switch.h"
#include "../../Input/ColorSensor/ColorSensor.h"
#include "../../Input/AccelerationSensor/AccelerationSensor.h"
#include "../../Input/Potentiometer/Potentiometer.h"
#include "../../Input/Rotaryencoder/Rotaryencoder.h"
#include "../../LED/LED.h"
#include "../../Safty/Safty.h"
#include "../Using.h"
#include "../../Communication/PID/PID.h"


using namespace SWITCH;
using namespace COLORSENSOR;
using namespace ACCELERATIONSENSOR;
using namespace PID_SPACE;
using namespace ROTARYENCODER;

static CONTROLLER::ControllerData *controller;
ACTUATORHUB::MOTOR::MotorStatus motor[MOUNTING_MOTOR_NUM];
ACTUATORHUB::SOLENOID::SolenoidStatus solenoid;

static bool lock;
static bool processChangeComp;
static int current;

static void AllActuatorReset();

#ifdef USE_SUBPROCESS
static void (*Process[USE_PROCESS_NUM])(void);
#endif

#pragma region USER-DEFINED_VARIABLES_AND_PROTOTYPE

/*Replace here with the definition code of your variables.*/

Serial pc(USBTX, USBRX);

unsigned long ColorIn(int index)
{
	int result = 0;
	bool rtn = false;
    for(int i=0; i<12; i++)
    {
        CK[index] = 1;
        rtn = DOUT[index];
        CK[index] = 0;
        if(rtn)
        {
           result|=(1 << i);
        }
    }
    return result;
}

#define TIRE_FR 0 //足回り前右
#define TIRE_FL 1 //足回り前左
#define TIRE_BR 2 //足回り後右
#define TIRE_BL 3 //足回り後左

#define Angle_R 4 //角度調節右
#define Angle_L 5 //角度調節左

#define Lim_AR 3 //角度調節右
#define Lim_AL 4 //角度調節左
#define Lim_R  0 //センター右
#define Lim_L  1 //センター左

//************メカナム********************

const int mecanum[15][15]=
{
	{   0,    5,     21,     47,     83,    130,    187,    255,    255,    255,    255,    255,    255,    255,    255},
	{  -5,    0,      5,     21,     47,     83,    130,    187,    193,    208,    234,    255,    255,    255,    255},
	{ -21,   -5,      0,      5,     21,     47,     83,    130,    135,    151,    177,    213,    255,    255,    255},
	{ -47,   -21,     5,      0,      5,     21,     47,     83,     88,    104,    130,    167,    213,    255,    255},
	{ -83,   -47,    -21,     5,      0,      5,     21,     47,     52,     68,     94,    130,    177,    234,    255},
	{-130,   -83,    -47,    -21,     5,      0,      5,     21,     26,     42,     68,    104,    151,    208,    255},
	{-187,  -130,    -83,    -47,    -21,    -5,      0,      5,     10,     26,     52,     88,    135,    193,    255},
	{-255,  -187,   -130,    -83,    -47,    -21,    -5,      0,      5,     21,     47,     83,    130,    187,    255},
	{-255,  -193,   -135,    -88,    -52,    -26,    -10,    -5,      0,      5,     21,     47,     83,    130,    187},
	{-255,  -208,   -151,   -104,    -68,    -42,    -26,    -21,    -5,      0,      5,     21,     47,     83,    130},
	{-255,  -234,   -177,   -130,    -94,    -68,    -52,    -47,    -21,    -7,      0,      7,     21,     47,     83},
	{-255,  -255,   -213,   -167,   -130,   -104,    -88,    -83,    -47,    -21,    -5,      0,      5,     21,     47},
	{-255,  -255,   -255,   -213,   -177,   -151,   -135,   -130,    -83,    -47,    -21,    -5,      0,      5,     21},
	{-255,  -255,   -255,   -255,   -234,   -208,   -193,   -187,   -130,    -83,    -47,    -21,    -5,      0,      5},
	{-255,  -255,   -255,   -255,   -255,   -255,   -255,   -255,   -187,   -130,    -83,    -47,   -21,     -5,      0}
};

const int curve[15] = {-204, -150, -104, -66, -38, -17, -4, 0, 4, 17, 38, 66, 104, 150, 204};
uint8_t SetStatus(int);
uint8_t SetStatus(int pwmVal){
	if(pwmVal < 0) return BACK;
	else if(pwmVal > 0) return FOR;
	else if(pwmVal == 0) return BRAKE;
	else return BRAKE;
}
uint8_t SetPWM(int);
uint8_t SetPWM(int pwmVal){
	if(pwmVal == 0 || pwmVal >  255 || pwmVal < -255) return 255;
	else return abs(pwmVal);
}

//************メカナム********************

//************カラーセンサ変数********************
int Color_A[3]; //[赤,緑,青]
int Color_B[3];
int Color_C[3];
int Color_D[3];         
int intergration = 50;
/*int averageR_A;
int averageG_A;
int averageB_A;
int averageR_B;
int averageG_B;
int averageB_B;
int averageR_C;
int averageG_C;
int averageB_C;
int averageR_D;
int averageG_D;
int averageB_D;*/

void ColorDetection();

/*DigitalIn www(RT11_PIN);
DigitalIn mmm(RT12_PIN);

int pp = 0;
int bb = 0;

*/


//************カラーセンサ変数********************

//************ライントレース変数*******************
int Point[3] = {234, 466, 590};//赤,緑,青
int colorSN;
int startP = 35;
int downP = 5;

bool Goal_flag = false;
PID goal = PID(0.03,-255,255,0,0,0);	
void GoalArrival();
//************ライントレース変数*******************

//************ジャイロ*******************
//void AngleDetection();
//void AngleControl();
float AngleY;
PID gyro = PID(0.03, -150 , 150 , 8 , 0.03, 0);
bool Angle_flag = false;
float rotateY;
int AngletargetX = 50;
int AngletargetY = -50;
int Angle_I;
//************ジャイロ*******************

//************ロタコン*******************
int MemoRt;
int Rt0;
int Rt1;
int Rt_A;
int Rt_B;
int PresentRt;
//************ロタコン*******************
#pragma endregion USER-DEFINED_VARIABLES_AND_PROTOTYPE

#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0(void);
#endif
#if USE_PROCESS_NUM>1
static void Process1(void);
#endif
#if USE_PROCESS_NUM>2
static void Process2(void);
#endif
#if USE_PROCESS_NUM>3
static void Process3(void);
#endif
#if USE_PROCESS_NUM>4
static void Process4(void);
#endif
#if USE_PROCESS_NUM>5
static void Process5(void);
#endif
#if USE_PROCESS_NUM>6
static void Process6(void);
#endif
#if USE_PROCESS_NUM>7
static void Process7(void);
#endif
#if USE_PROCESS_NUM>8
static void Process8(void);
#endif
#if USE_PROCESS_NUM>9
static void Process9(void);
#endif
#endif

void SystemProcessInitialize()
{
	#pragma region USER-DEFINED_VARIABLE_INIT
	
	/*Replace here with the initialization code of your variables.*/
	#pragma endregion USER-DEFINED_VARIABLE_INIT

	lock = true;
	processChangeComp = true;
	current = DEFAULT_PROCESS;

	#ifdef USE_SUBPROCESS
	#if USE_PROCESS_NUM>0
	Process[0] = Process0;
	#endif
	#if USE_PROCESS_NUM>1
	Process[1] = Process1;
	#endif
	#if USE_PROCESS_NUM>2
	Process[2] = Process2;
	#endif
	#if USE_PROCESS_NUM>3
	Process[3] = Process3;
	#endif
	#if USE_PROCESS_NUM>4
	Process[4] = Process4;
	#endif
	#if USE_PROCESS_NUM>5
	Process[5] = Process5;
	#endif
	#if USE_PROCESS_NUM>6
	Process[6] = Process6;
	#endif
	#if USE_PROCESS_NUM>7
	Process[7] = Process7;
	#endif
	#if USE_PROCESS_NUM>8
	Process[8] = Process8;
	#endif
	#if USE_PROCESS_NUM>9
	Process[9] = Process9;
	#endif
	#endif
}

static void SystemProcessUpdate()
{
	#ifdef USE_SUBPROCESS
	if(controller->Button.HOME) lock = false;
	
	if(controller->Button.START && processChangeComp)
	{
		current++;
		if (USE_PROCESS_NUM < current) current = USE_PROCESS_NUM;
		processChangeComp = false;
	}
	else if(controller->Button.SELECT && processChangeComp)
	{
		current--;
		if (current < 0) current = 0;
		processChangeComp = false;
	}
	else if(!controller->Button.SELECT && !controller->Button.START) processChangeComp = true;
	#endif
	
	#ifdef USE_MOTOR
	ACTUATORHUB::MOTOR::Motor::Update(motor);
	#endif
	
	#ifdef USE_SOLENOID
	ACTUATORHUB::SOLENOID::Solenoid::Update(solenoid);
	#endif

	#ifdef USE_RS485
	ACTUATORHUB::ActuatorHub::Update();
	#endif
	
}



void SystemProcess()
{
	SystemProcessInitialize();

	while(1)
	{
	    
		#ifdef USE_MU
		controller = CONTROLLER::Controller::GetData();
		#endif

		#ifdef USE_ERRORCHECK
		if(SAFTY::ErrorCheck::Check() & SAFTY::Error::ControllerLost)
		{
			CONTROLLER::Controller::DataReset();
			AllActuatorReset();
			lock = true;
		}
		else
		#endif
		{

			#ifdef USE_SUBPROCESS
			if(!lock)
			{
				Process[current]();
			}
			else
			#endif
			{
				//ロック時の処理
			}
		}
		
		SystemProcessUpdate();
	}
}


	

#pragma region PROCESS
#ifdef USE_SUBPROCESS
#if USE_PROCESS_NUM>0
static void Process0()
{
	
	if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}	
	for(int i = 0;i<20;i++){
		float y = 0;
		y = acc[1]*1000;
		float rotateY = (y - 305)/2.21 - 90;
		AngleY += rotateY;
	}
	AngleY = AngleY /20;
	int gyropwm = gyro.SetPV(AngleY,Angle_I);
	
	if(controller->Button.A){
		Angle_flag = true;
	}/*
	if(controller->Button.Y){
		Angle_flag = true;
	}*/
	if (Angle_flag){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(Angle_I - 2 < AngleY && AngleY < Angle_I + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flag = false;
		}
	}
}
#endif

#if USE_PROCESS_NUM>1
static void Process1()
{
    motor[TIRE_FR].dir = SetStatus(-mecanum[controller->AnalogL.Y][14-controller->AnalogL.X]     + curve[controller->AnalogR.X]);
    motor[TIRE_FL].dir = SetStatus(mecanum[controller->AnalogL.Y][controller->AnalogL.X]         + curve[controller->AnalogR.X]);
    motor[TIRE_BR].dir = SetStatus(-mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y]  + curve[controller->AnalogR.X]); 
    motor[TIRE_BL].dir = SetStatus(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y]      + curve[controller->AnalogR.X]);
         
    motor[TIRE_FR].pwm = SetPWM(mecanum[controller->AnalogL.Y][14-controller->AnalogL.X]);
   	motor[TIRE_FL].pwm = SetPWM(mecanum[controller->AnalogL.Y][controller->AnalogL.X]);
    motor[TIRE_BR].pwm = SetPWM(mecanum[14-controller->AnalogL.X][14-controller->AnalogL.Y]);
    motor[TIRE_BL].pwm = SetPWM(mecanum[controller->AnalogL.X][14-controller->AnalogL.Y]);
                  
    if (abs(controller->AnalogL.X-7) <= 4 && controller->AnalogL.X!=7 && controller->AnalogL.Y!=7 && controller->AnalogR.X==7){
    motor[TIRE_FR].pwm = motor[0].pwm * 1.3;
    motor[TIRE_FL].pwm = motor[1].pwm * 1.3;
    }
}
#endif

#if USE_PROCESS_NUM>2
static void Process2()
{
	static bool color_flag = false;
	static bool traceon = false;
	
	static bool yokofla = false;
	
	static bool compA = false;
	static bool compB = false;
	static bool compC = false;
	static bool compD = false;
	
	static bool invationA = false;
	static bool invationB = false;
	static bool invationC = false;
	static bool invationD = false;
	
	ColorDetection();
	//
	if(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2] && !compA)//白
	{
	invationA ^= 1;//start false,over true
	compA = true;//on true,noon false
	}	
	else if(!(Color_A[0] > Point[0] && Color_A[1] > Point[1] && Color_A[2] > Point[2]))compA = false;//茶
	
	if(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2] && !compB)//白
	{
	invationB ^= 1;//start false,over true
	compB = true;//on true,noon false
	}	
	else if(!(Color_B[0] > Point[0] && Color_B[1] > Point[1] && Color_B[2] > Point[2]))compB = false;//茶
	//
	
	if(controller->Button.B && !color_flag)
	{
		traceon ^= 1;
		color_flag = true;
	}
	else if(!controller->Button.B)
	{
		color_flag = false;
	}
	
	if(traceon)
	{
		if(!invationA && !compA && !invationB && !compB){
			motor[TIRE_FR].dir = FOR;
			motor[TIRE_FL].dir = FOR;
			motor[TIRE_BR].dir = BACK;
			motor[TIRE_BL].dir = BACK;
		
			motor[TIRE_FR].pwm = startP;
			motor[TIRE_FL].pwm = startP;
			motor[TIRE_BR].pwm = startP;
			motor[TIRE_BL].pwm = startP;
		}
		else if(invationA && compA && !invationB && !compB){
			motor[TIRE_FR].dir = FOR;
		 	motor[TIRE_FL].dir = FOR;
			motor[TIRE_BR].dir = BACK;
		 	motor[TIRE_BL].dir = BACK;
		
			motor[TIRE_FR].pwm = startP - downP;
			motor[TIRE_FL].pwm = startP - downP;
			motor[TIRE_BR].pwm = startP - downP;
			motor[TIRE_BL].pwm = startP - downP;
		}
		else if(!invationA && !compA && !invationB && !compB){
			motor[TIRE_FR].dir = BRAKE;
		 	motor[TIRE_FL].dir = BRAKE;
			motor[TIRE_BR].dir = BRAKE;
			motor[TIRE_BL].dir = BRAKE;
		
			motor[0].pwm = 255;
			motor[1].pwm = 255;
			motor[2].pwm = 255;
			motor[3].pwm = 255;
		
			wait(5);
			yokofla = true;
		}
		else if(invationA && !compA && invationB && !compB && yokofla){
		    motor[TIRE_FR].dir = BACK;
		 	motor[TIRE_FL].dir = BACK;
	  		motor[TIRE_BR].dir = FOR;
		    motor[TIRE_BL].dir = FOR;
		
		    motor[TIRE_FR].pwm = startP - downP;
			motor[TIRE_FL].pwm = startP - downP;
			motor[TIRE_BR].pwm = startP - downP; 
			motor[TIRE_BL].pwm = startP - downP;
		} 
		else if(invationA && !compA && !invationB && !compB && yokofla){
			motor[TIRE_FR].dir = FOR;
			motor[TIRE_FL].dir = BACK;
			motor[TIRE_BR].dir = FOR;
			motor[TIRE_BL].dir = BACK;
		
			motor[TIRE_FR].pwm = startP;
			motor[TIRE_FL].pwm = startP;
			motor[TIRE_BR].pwm = startP;
			motor[TIRE_BL].pwm = startP;
		}
		else if(LimitSw::IsPressed(3) && LimitSw::IsPressed(4) && invationA && !compA && !invationB && !compB && yokofla && traceon){
			motor[TIRE_FR].dir = BRAKE;
			motor[TIRE_FL].dir = BRAKE;
			motor[TIRE_BR].dir = BRAKE;
			motor[TIRE_BL].dir = BRAKE;
		
			motor[TIRE_FR].pwm = 255;
			motor[TIRE_FL].pwm = 255;
			motor[TIRE_BR].pwm = 255;
			motor[TIRE_BL].pwm = 255;
		}
		/*////
		motor[0].dir = BACK;
		motor[1].dir = BACK;
		motor[2].dir = FOR;
		motor[3].dir = FOR;
		
		motor[0].pwm = startP;
		motor[1].pwm = startP;
		motor[2].pwm = startP;
		motor[3].pwm = startP;
		else if()
		{
		motor[0].dir = BRAKE;
		motor[1].dir = BRAKE;
		motor[2].dir = BRAKE;
		motor[3].dir = BRAKE;
		
		motor[0].pwm = 255;
		motor[1].pwm = 255;
		motor[2].pwm = 255;
		motor[3].pwm = 255;
		}*//////
		else if(LimitSw::IsPressed(Lim_R) && LimitSw::IsPressed(Lim_L)){
			motor[TIRE_FR].dir = FOR;
			motor[TIRE_FL].dir = FOR;
			motor[TIRE_BR].dir = BACK;
			motor[TIRE_BL].dir = BACK;
			motor[TIRE_FR].pwm = 100;
			motor[TIRE_FL].pwm = 100;
			motor[TIRE_BR].pwm = 100;
			motor[TIRE_BL].pwm = 100;
		}else if(!LimitSw::IsPressed(3) && LimitSw::IsPressed(4)){
			motor[TIRE_FR].dir = FOR;
			motor[TIRE_BR].dir = FOR;
			motor[TIRE_FR].pwm = 20;
			motor[TIRE_BR].pwm = 20;
		}else if(LimitSw::IsPressed(3) && !LimitSw::IsPressed(4)){
			motor[TIRE_FL].dir = BACK;
			motor[TIRE_BL].dir = BACK;
			motor[TIRE_FL].pwm = 20;
			motor[TIRE_BL].pwm = 20;
		}
		 else if(!LimitSw::IsPressed(3) && !LimitSw::IsPressed(4)){
			Goal_flag = true;
			GoalArrival();			
		}else{
			motor[TIRE_FR].dir = BRAKE;
			motor[TIRE_FL].dir = BRAKE;
			motor[TIRE_BR].dir = BRAKE;
			motor[TIRE_BL].dir = BRAKE;
		}
	}
}
#endif

#if USE_PROCESS_NUM>3
static void Process3()
{
	if(controller->Button.R){
	    motor[Angle_R].dir = FOR;
	    motor[Angle_L].dir = BACK;
	    motor[Angle_R].pwm = 150;
	    motor[Angle_L].pwm = 150;
	}else if(controller->Button.L){
	    motor[Angle_R].dir = BACK;
	    motor[Angle_L].dir = FOR;
	    motor[Angle_R].pwm = 150;
	    motor[Angle_L].pwm = 150;
	}else{
		motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	}

	if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}
}
#endif

#if USE_PROCESS_NUM>4
static void Process4()
{
 /*   for(int i=0;i<10;i++)
    {
    	ColorDetection();
    	
    	averageR_A += Color_A[0];
    	averageG_A += Color_A[1];
    	averageB_A += Color_A[2];
    	averageR_B += Color_B[0];
    	averageG_B += Color_B[1];
    	averageB_B += Color_B[2];
    	averageR_C += Color_C[0];
    	averageG_C += Color_C[1];
    	averageB_C += Color_C[2];
    	averageR_D += Color_D[0];
    	averageG_D += Color_D[1];
    	averageB_D += Color_D[2];
    }
    pc.printf("AR_A:%d, AG_A:%d ,AB_A:%d \r\n",averageR_A / 10 ,averageG_A / 10, averageB_A / 10);
    pc.printf("AR_B:%d, AG_B:%d ,AB_B:%d \r\n",averageR_B / 10 ,averageG_B / 10, averageB_B / 10);
    pc.printf("AR_C:%d, AG_C:%d ,AB_C:%d \r\n",averageR_C / 10 ,averageG_C / 10, averageB_C / 10);
    pc.printf("AR_D:%d, AG_D:%d ,AB_D:%d \r\n",averageR_D / 10 ,averageG_D / 10, averageB_D / 10);
	
	averageR_A = 0;
    averageG_A = 0;
	averageB_A = 0;
	averageR_B = 0;
    averageG_B = 0;
	averageB_B = 0;
	averageR_C = 0;
    averageG_C = 0;
	averageB_C = 0;
	averageR_D = 0;
    averageG_D = 0;
	averageB_D = 0;*/
}
#endif

#if USE_PROCESS_NUM>5
static void Process5()
{	
	if(LimitSw::IsPressed(Lim_AR) && motor[4].dir == FOR && motor[5].dir == BACK){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}else if(LimitSw::IsPressed(Lim_AL) && motor[4].dir == BACK && motor[5].dir == FOR){
	    motor[Angle_R].dir = BRAKE;
	    motor[Angle_L].dir = BRAKE;
	    motor[Angle_R].pwm = 255;
	    motor[Angle_L].pwm = 255;
	}
	for(int i = 0;i<20;i++){
		float y = 0;
		y = acc[1]*1000;
		float rotateY = (y - 305)/2.21 - 90;
		AngleY += rotateY;
	}
	AngleY = AngleY /20;
	int gyropwm = gyro.SetPV(AngleY,AngletargetY);
	
	if(controller->Button.X){
		Angle_flag = true;
	}/*
	if(controller->Button.Y){
		Angle_flag = true;
	}*/
	if (Angle_flag){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(AngletargetY - 2 < AngleY && AngleY < AngletargetY + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flag = false;
		}
	}
	/*float y = 0;
    y = acc[1]*1000;
	float rotateY = (y - 305)/2.21 - 90;	
	int gyropwm = gyro.SetPV(rotateY , Angletarget);
	
	if(controller->Button.X){
		Angle_flag = true;
	}
	if (Angle_flag){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(Angletarget - 2 < rotateY && rotateY < Angletarget + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flag = false;
		}
	}*/
	else{
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
	}
}
#endif

#if USE_PROCESS_NUM>6
static void Process6()
{		
 //void Int::Initialize(BoardRtInt[0].fall(int2));
}
#endif

#if USE_PROCESS_NUM>7
static void Process7()
{

}
#endif

#if USE_PROCESS_NUM>8
static void Process8()
{

}
#endif

#if USE_PROCESS_NUM>9
static void Process9()
{

}
#endif
#endif
#pragma endregion PROCESS

static void AllActuatorReset()
{

	#ifdef USE_SOLENOID
	solenoid.all = ALL_SOLENOID_OFF;
	#endif

	#ifdef USE_MOTOR
	for (uint8_t i = 0; i < MOUNTING_MOTOR_NUM; i++)
	{
		motor[i].dir = FREE;
		motor[i].pwm = 0;
	}
	#endif
}

#pragma region USER-DEFINED-FUNCTIONS
void ColorDetection(){
	GATE = 0;
		   
	CK[0] = 0;
	CK[1] = 0;
	CK[2] = 0;
	CK[3] = 0;
        
    RANGE = 1;
        
    GATE = 1;
    wait_ms(intergration);
    GATE = 0;
    wait_us(4);
        
	Color_A[0] = ColorIn(0); //赤
    wait_us(3);
	Color_A[1] = ColorIn(0); //青
    wait_us(3);
    Color_A[2] = ColorIn(0); //緑
        
    Color_B[0] = ColorIn(1);
    wait_us(3);
    Color_B[1] = ColorIn(1);
    wait_us(3);
    Color_B[2] = ColorIn(1);
         
    Color_C[0] = ColorIn(2);
    wait_us(3);
    Color_C[1] = ColorIn(2);
    wait_us(3);
    Color_C[2] = ColorIn(2);
        
    Color_D[0] = ColorIn(3);
    wait_us(3);
    Color_D[1] = ColorIn(3);
    wait_us(3);
    Color_D[2] = ColorIn(3);
}
/*void AngleDetection(){
	float x = 0, y= 0, z = 0;
	    
    //x = acc[0]*1000;
    y = acc[1]*1000;
	//z = acc[2]*1000;
	//pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n",x,y,z);
	//float rotateX = (x - 306)/2.22 - 90;
	float rotateY = (y - 305)/2.21 - 90;
	//float rotateZ = (z - 300)/1.18 - 90;
	//pc.printf("X:%3.1f , Y:%3.1f , Z:%3.1f \r\n" , rotateX , rotateY , rotateZ);
}*/
/*void AngleControl(){	
	int Angletarget = -50;
	float AnglevalueY = rotateY;  
	int gyropwm = gyro.SetPV(AnglevalueY , Angletarget);
			
	if (Angle_flag){
		motor[Angle_R].dir = SetStatus(gyropwm);
		motor[Angle_L].dir = SetStatus(-gyropwm);
		motor[Angle_R].pwm = SetPWM(gyropwm);
		motor[Angle_L].pwm = SetPWM(gyropwm);
		if(Angletarget - 2 < AnglevalueY && AnglevalueY < Angletarget + 2){
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
		Angle_flag = false;
		}
	}else{
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
	}	 
	//pc.printf("PWM:%d \r\n" , gyropwm);
}*/
void GoalArrival(){	
	int Goaltarget = 0;
	float Goalvalue = 0;  
	int goalpwm = goal.SetPV(Goalvalue,Goaltarget);
	
	if (Goal_flag){
		motor[TIRE_FR].dir = SetStatus(goalpwm);
		motor[TIRE_FL].dir = SetStatus(-goalpwm);
		motor[TIRE_BR].dir = SetStatus(goalpwm);
		motor[TIRE_BL].dir = SetStatus(-goalpwm);
		motor[TIRE_FR].pwm = SetPWM(goalpwm);
		motor[TIRE_FL].pwm = SetPWM(goalpwm);
		motor[TIRE_BR].pwm = SetPWM(goalpwm);
		motor[TIRE_BL].pwm = SetPWM(goalpwm);
		if(Goaltarget > Goalvalue - 10 && Goaltarget < Goalvalue+ 10){
		motor[TIRE_FR].dir = BRAKE;
		motor[TIRE_FL].dir = BRAKE;
		motor[TIRE_BR].dir = BRAKE;
		motor[TIRE_BL].dir = BRAKE;
		Goal_flag = false;
		}
	}else{
		motor[Angle_R].dir = BRAKE;
		motor[Angle_L].dir = BRAKE;
	}	 
}
/*
void RotaryD(uint8_t, uint8_t){
	uint8_t D;
	MemoRt = Rt1;
	Rt0 = Rt0 << 1;
	Rt0 = Rt0 & 3;
	Rt1 = Rt1 & 3;
	D = (Rt0 + Rt1) & 3;
	//return (D);
}
void GetRt(){
	uint8_t DJ;
	double rad = 0;
	PresentRt = 0x00;
	if(LimitSw::IsPressed(Rt_A))
		PresentRt = 0x02;
	if(LimitSw::IsPressed(Rt_B))
		PresentRt = 0x01;
	if(MemoRt != PresentRt)
		DJ = RotaryD(MemoRt,PresentRt);
	if(D>=2)rad = 360.0 /50.0;
	else rad = -(360.0/50.0);
	Rt = Rt + rad /360.0*20;
}*/

#pragma endregion