Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
features/mbedtls/src/rsa_internal.c@0:38ceb79fef03, 2018-11-28 (annotated)
- Committer:
- kevman
- Date:
- Wed Nov 28 15:10:15 2018 +0000
- Revision:
- 0:38ceb79fef03
RTC modified
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
kevman | 0:38ceb79fef03 | 1 | /* |
kevman | 0:38ceb79fef03 | 2 | * Helper functions for the RSA module |
kevman | 0:38ceb79fef03 | 3 | * |
kevman | 0:38ceb79fef03 | 4 | * Copyright (C) 2006-2017, ARM Limited, All Rights Reserved |
kevman | 0:38ceb79fef03 | 5 | * SPDX-License-Identifier: Apache-2.0 |
kevman | 0:38ceb79fef03 | 6 | * |
kevman | 0:38ceb79fef03 | 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
kevman | 0:38ceb79fef03 | 8 | * not use this file except in compliance with the License. |
kevman | 0:38ceb79fef03 | 9 | * You may obtain a copy of the License at |
kevman | 0:38ceb79fef03 | 10 | * |
kevman | 0:38ceb79fef03 | 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
kevman | 0:38ceb79fef03 | 12 | * |
kevman | 0:38ceb79fef03 | 13 | * Unless required by applicable law or agreed to in writing, software |
kevman | 0:38ceb79fef03 | 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
kevman | 0:38ceb79fef03 | 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
kevman | 0:38ceb79fef03 | 16 | * See the License for the specific language governing permissions and |
kevman | 0:38ceb79fef03 | 17 | * limitations under the License. |
kevman | 0:38ceb79fef03 | 18 | * |
kevman | 0:38ceb79fef03 | 19 | * This file is part of mbed TLS (https://tls.mbed.org) |
kevman | 0:38ceb79fef03 | 20 | * |
kevman | 0:38ceb79fef03 | 21 | */ |
kevman | 0:38ceb79fef03 | 22 | |
kevman | 0:38ceb79fef03 | 23 | #if !defined(MBEDTLS_CONFIG_FILE) |
kevman | 0:38ceb79fef03 | 24 | #include "mbedtls/config.h" |
kevman | 0:38ceb79fef03 | 25 | #else |
kevman | 0:38ceb79fef03 | 26 | #include MBEDTLS_CONFIG_FILE |
kevman | 0:38ceb79fef03 | 27 | #endif |
kevman | 0:38ceb79fef03 | 28 | |
kevman | 0:38ceb79fef03 | 29 | #if defined(MBEDTLS_RSA_C) |
kevman | 0:38ceb79fef03 | 30 | |
kevman | 0:38ceb79fef03 | 31 | #include "mbedtls/rsa.h" |
kevman | 0:38ceb79fef03 | 32 | #include "mbedtls/bignum.h" |
kevman | 0:38ceb79fef03 | 33 | #include "mbedtls/rsa_internal.h" |
kevman | 0:38ceb79fef03 | 34 | |
kevman | 0:38ceb79fef03 | 35 | /* |
kevman | 0:38ceb79fef03 | 36 | * Compute RSA prime factors from public and private exponents |
kevman | 0:38ceb79fef03 | 37 | * |
kevman | 0:38ceb79fef03 | 38 | * Summary of algorithm: |
kevman | 0:38ceb79fef03 | 39 | * Setting F := lcm(P-1,Q-1), the idea is as follows: |
kevman | 0:38ceb79fef03 | 40 | * |
kevman | 0:38ceb79fef03 | 41 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
kevman | 0:38ceb79fef03 | 42 | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
kevman | 0:38ceb79fef03 | 43 | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
kevman | 0:38ceb79fef03 | 44 | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
kevman | 0:38ceb79fef03 | 45 | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
kevman | 0:38ceb79fef03 | 46 | * factors of N. |
kevman | 0:38ceb79fef03 | 47 | * |
kevman | 0:38ceb79fef03 | 48 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
kevman | 0:38ceb79fef03 | 49 | * construction still applies since (-)^K is the identity on the set of |
kevman | 0:38ceb79fef03 | 50 | * roots of 1 in Z/NZ. |
kevman | 0:38ceb79fef03 | 51 | * |
kevman | 0:38ceb79fef03 | 52 | * The public and private key primitives (-)^E and (-)^D are mutually inverse |
kevman | 0:38ceb79fef03 | 53 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
kevman | 0:38ceb79fef03 | 54 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
kevman | 0:38ceb79fef03 | 55 | * Splitting L = 2^t * K with K odd, we have |
kevman | 0:38ceb79fef03 | 56 | * |
kevman | 0:38ceb79fef03 | 57 | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
kevman | 0:38ceb79fef03 | 58 | * |
kevman | 0:38ceb79fef03 | 59 | * so (F / 2) * K is among the numbers |
kevman | 0:38ceb79fef03 | 60 | * |
kevman | 0:38ceb79fef03 | 61 | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
kevman | 0:38ceb79fef03 | 62 | * |
kevman | 0:38ceb79fef03 | 63 | * where ord is the order of 2 in (DE - 1). |
kevman | 0:38ceb79fef03 | 64 | * We can therefore iterate through these numbers apply the construction |
kevman | 0:38ceb79fef03 | 65 | * of (a) and (b) above to attempt to factor N. |
kevman | 0:38ceb79fef03 | 66 | * |
kevman | 0:38ceb79fef03 | 67 | */ |
kevman | 0:38ceb79fef03 | 68 | int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, |
kevman | 0:38ceb79fef03 | 69 | mbedtls_mpi const *E, mbedtls_mpi const *D, |
kevman | 0:38ceb79fef03 | 70 | mbedtls_mpi *P, mbedtls_mpi *Q ) |
kevman | 0:38ceb79fef03 | 71 | { |
kevman | 0:38ceb79fef03 | 72 | int ret = 0; |
kevman | 0:38ceb79fef03 | 73 | |
kevman | 0:38ceb79fef03 | 74 | uint16_t attempt; /* Number of current attempt */ |
kevman | 0:38ceb79fef03 | 75 | uint16_t iter; /* Number of squares computed in the current attempt */ |
kevman | 0:38ceb79fef03 | 76 | |
kevman | 0:38ceb79fef03 | 77 | uint16_t order; /* Order of 2 in DE - 1 */ |
kevman | 0:38ceb79fef03 | 78 | |
kevman | 0:38ceb79fef03 | 79 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
kevman | 0:38ceb79fef03 | 80 | mbedtls_mpi K; /* Temporary holding the current candidate */ |
kevman | 0:38ceb79fef03 | 81 | |
kevman | 0:38ceb79fef03 | 82 | const unsigned char primes[] = { 2, |
kevman | 0:38ceb79fef03 | 83 | 3, 5, 7, 11, 13, 17, 19, 23, |
kevman | 0:38ceb79fef03 | 84 | 29, 31, 37, 41, 43, 47, 53, 59, |
kevman | 0:38ceb79fef03 | 85 | 61, 67, 71, 73, 79, 83, 89, 97, |
kevman | 0:38ceb79fef03 | 86 | 101, 103, 107, 109, 113, 127, 131, 137, |
kevman | 0:38ceb79fef03 | 87 | 139, 149, 151, 157, 163, 167, 173, 179, |
kevman | 0:38ceb79fef03 | 88 | 181, 191, 193, 197, 199, 211, 223, 227, |
kevman | 0:38ceb79fef03 | 89 | 229, 233, 239, 241, 251 |
kevman | 0:38ceb79fef03 | 90 | }; |
kevman | 0:38ceb79fef03 | 91 | |
kevman | 0:38ceb79fef03 | 92 | const size_t num_primes = sizeof( primes ) / sizeof( *primes ); |
kevman | 0:38ceb79fef03 | 93 | |
kevman | 0:38ceb79fef03 | 94 | if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) |
kevman | 0:38ceb79fef03 | 95 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kevman | 0:38ceb79fef03 | 96 | |
kevman | 0:38ceb79fef03 | 97 | if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || |
kevman | 0:38ceb79fef03 | 98 | mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 99 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
kevman | 0:38ceb79fef03 | 100 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 101 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
kevman | 0:38ceb79fef03 | 102 | { |
kevman | 0:38ceb79fef03 | 103 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kevman | 0:38ceb79fef03 | 104 | } |
kevman | 0:38ceb79fef03 | 105 | |
kevman | 0:38ceb79fef03 | 106 | /* |
kevman | 0:38ceb79fef03 | 107 | * Initializations and temporary changes |
kevman | 0:38ceb79fef03 | 108 | */ |
kevman | 0:38ceb79fef03 | 109 | |
kevman | 0:38ceb79fef03 | 110 | mbedtls_mpi_init( &K ); |
kevman | 0:38ceb79fef03 | 111 | mbedtls_mpi_init( &T ); |
kevman | 0:38ceb79fef03 | 112 | |
kevman | 0:38ceb79fef03 | 113 | /* T := DE - 1 */ |
kevman | 0:38ceb79fef03 | 114 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); |
kevman | 0:38ceb79fef03 | 115 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); |
kevman | 0:38ceb79fef03 | 116 | |
kevman | 0:38ceb79fef03 | 117 | if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) |
kevman | 0:38ceb79fef03 | 118 | { |
kevman | 0:38ceb79fef03 | 119 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
kevman | 0:38ceb79fef03 | 120 | goto cleanup; |
kevman | 0:38ceb79fef03 | 121 | } |
kevman | 0:38ceb79fef03 | 122 | |
kevman | 0:38ceb79fef03 | 123 | /* After this operation, T holds the largest odd divisor of DE - 1. */ |
kevman | 0:38ceb79fef03 | 124 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); |
kevman | 0:38ceb79fef03 | 125 | |
kevman | 0:38ceb79fef03 | 126 | /* |
kevman | 0:38ceb79fef03 | 127 | * Actual work |
kevman | 0:38ceb79fef03 | 128 | */ |
kevman | 0:38ceb79fef03 | 129 | |
kevman | 0:38ceb79fef03 | 130 | /* Skip trying 2 if N == 1 mod 8 */ |
kevman | 0:38ceb79fef03 | 131 | attempt = 0; |
kevman | 0:38ceb79fef03 | 132 | if( N->p[0] % 8 == 1 ) |
kevman | 0:38ceb79fef03 | 133 | attempt = 1; |
kevman | 0:38ceb79fef03 | 134 | |
kevman | 0:38ceb79fef03 | 135 | for( ; attempt < num_primes; ++attempt ) |
kevman | 0:38ceb79fef03 | 136 | { |
kevman | 0:38ceb79fef03 | 137 | mbedtls_mpi_lset( &K, primes[attempt] ); |
kevman | 0:38ceb79fef03 | 138 | |
kevman | 0:38ceb79fef03 | 139 | /* Check if gcd(K,N) = 1 */ |
kevman | 0:38ceb79fef03 | 140 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
kevman | 0:38ceb79fef03 | 141 | if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) |
kevman | 0:38ceb79fef03 | 142 | continue; |
kevman | 0:38ceb79fef03 | 143 | |
kevman | 0:38ceb79fef03 | 144 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
kevman | 0:38ceb79fef03 | 145 | * and check whether they have nontrivial GCD with N. */ |
kevman | 0:38ceb79fef03 | 146 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, |
kevman | 0:38ceb79fef03 | 147 | Q /* temporarily use Q for storing Montgomery |
kevman | 0:38ceb79fef03 | 148 | * multiplication helper values */ ) ); |
kevman | 0:38ceb79fef03 | 149 | |
kevman | 0:38ceb79fef03 | 150 | for( iter = 1; iter <= order; ++iter ) |
kevman | 0:38ceb79fef03 | 151 | { |
kevman | 0:38ceb79fef03 | 152 | /* If we reach 1 prematurely, there's no point |
kevman | 0:38ceb79fef03 | 153 | * in continuing to square K */ |
kevman | 0:38ceb79fef03 | 154 | if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) |
kevman | 0:38ceb79fef03 | 155 | break; |
kevman | 0:38ceb79fef03 | 156 | |
kevman | 0:38ceb79fef03 | 157 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); |
kevman | 0:38ceb79fef03 | 158 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
kevman | 0:38ceb79fef03 | 159 | |
kevman | 0:38ceb79fef03 | 160 | if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && |
kevman | 0:38ceb79fef03 | 161 | mbedtls_mpi_cmp_mpi( P, N ) == -1 ) |
kevman | 0:38ceb79fef03 | 162 | { |
kevman | 0:38ceb79fef03 | 163 | /* |
kevman | 0:38ceb79fef03 | 164 | * Have found a nontrivial divisor P of N. |
kevman | 0:38ceb79fef03 | 165 | * Set Q := N / P. |
kevman | 0:38ceb79fef03 | 166 | */ |
kevman | 0:38ceb79fef03 | 167 | |
kevman | 0:38ceb79fef03 | 168 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); |
kevman | 0:38ceb79fef03 | 169 | goto cleanup; |
kevman | 0:38ceb79fef03 | 170 | } |
kevman | 0:38ceb79fef03 | 171 | |
kevman | 0:38ceb79fef03 | 172 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kevman | 0:38ceb79fef03 | 173 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); |
kevman | 0:38ceb79fef03 | 174 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); |
kevman | 0:38ceb79fef03 | 175 | } |
kevman | 0:38ceb79fef03 | 176 | |
kevman | 0:38ceb79fef03 | 177 | /* |
kevman | 0:38ceb79fef03 | 178 | * If we get here, then either we prematurely aborted the loop because |
kevman | 0:38ceb79fef03 | 179 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
kevman | 0:38ceb79fef03 | 180 | * be 1 if D,E,N were consistent. |
kevman | 0:38ceb79fef03 | 181 | * Check if that's the case and abort if not, to avoid very long, |
kevman | 0:38ceb79fef03 | 182 | * yet eventually failing, computations if N,D,E were not sane. |
kevman | 0:38ceb79fef03 | 183 | */ |
kevman | 0:38ceb79fef03 | 184 | if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) |
kevman | 0:38ceb79fef03 | 185 | { |
kevman | 0:38ceb79fef03 | 186 | break; |
kevman | 0:38ceb79fef03 | 187 | } |
kevman | 0:38ceb79fef03 | 188 | } |
kevman | 0:38ceb79fef03 | 189 | |
kevman | 0:38ceb79fef03 | 190 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
kevman | 0:38ceb79fef03 | 191 | |
kevman | 0:38ceb79fef03 | 192 | cleanup: |
kevman | 0:38ceb79fef03 | 193 | |
kevman | 0:38ceb79fef03 | 194 | mbedtls_mpi_free( &K ); |
kevman | 0:38ceb79fef03 | 195 | mbedtls_mpi_free( &T ); |
kevman | 0:38ceb79fef03 | 196 | return( ret ); |
kevman | 0:38ceb79fef03 | 197 | } |
kevman | 0:38ceb79fef03 | 198 | |
kevman | 0:38ceb79fef03 | 199 | /* |
kevman | 0:38ceb79fef03 | 200 | * Given P, Q and the public exponent E, deduce D. |
kevman | 0:38ceb79fef03 | 201 | * This is essentially a modular inversion. |
kevman | 0:38ceb79fef03 | 202 | */ |
kevman | 0:38ceb79fef03 | 203 | int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, |
kevman | 0:38ceb79fef03 | 204 | mbedtls_mpi const *Q, |
kevman | 0:38ceb79fef03 | 205 | mbedtls_mpi const *E, |
kevman | 0:38ceb79fef03 | 206 | mbedtls_mpi *D ) |
kevman | 0:38ceb79fef03 | 207 | { |
kevman | 0:38ceb79fef03 | 208 | int ret = 0; |
kevman | 0:38ceb79fef03 | 209 | mbedtls_mpi K, L; |
kevman | 0:38ceb79fef03 | 210 | |
kevman | 0:38ceb79fef03 | 211 | if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 212 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kevman | 0:38ceb79fef03 | 213 | |
kevman | 0:38ceb79fef03 | 214 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 215 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 216 | mbedtls_mpi_cmp_int( E, 0 ) == 0 ) |
kevman | 0:38ceb79fef03 | 217 | { |
kevman | 0:38ceb79fef03 | 218 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kevman | 0:38ceb79fef03 | 219 | } |
kevman | 0:38ceb79fef03 | 220 | |
kevman | 0:38ceb79fef03 | 221 | mbedtls_mpi_init( &K ); |
kevman | 0:38ceb79fef03 | 222 | mbedtls_mpi_init( &L ); |
kevman | 0:38ceb79fef03 | 223 | |
kevman | 0:38ceb79fef03 | 224 | /* Temporarily put K := P-1 and L := Q-1 */ |
kevman | 0:38ceb79fef03 | 225 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kevman | 0:38ceb79fef03 | 226 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
kevman | 0:38ceb79fef03 | 227 | |
kevman | 0:38ceb79fef03 | 228 | /* Temporarily put D := gcd(P-1, Q-1) */ |
kevman | 0:38ceb79fef03 | 229 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); |
kevman | 0:38ceb79fef03 | 230 | |
kevman | 0:38ceb79fef03 | 231 | /* K := LCM(P-1, Q-1) */ |
kevman | 0:38ceb79fef03 | 232 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); |
kevman | 0:38ceb79fef03 | 233 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); |
kevman | 0:38ceb79fef03 | 234 | |
kevman | 0:38ceb79fef03 | 235 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
kevman | 0:38ceb79fef03 | 236 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); |
kevman | 0:38ceb79fef03 | 237 | |
kevman | 0:38ceb79fef03 | 238 | cleanup: |
kevman | 0:38ceb79fef03 | 239 | |
kevman | 0:38ceb79fef03 | 240 | mbedtls_mpi_free( &K ); |
kevman | 0:38ceb79fef03 | 241 | mbedtls_mpi_free( &L ); |
kevman | 0:38ceb79fef03 | 242 | |
kevman | 0:38ceb79fef03 | 243 | return( ret ); |
kevman | 0:38ceb79fef03 | 244 | } |
kevman | 0:38ceb79fef03 | 245 | |
kevman | 0:38ceb79fef03 | 246 | /* |
kevman | 0:38ceb79fef03 | 247 | * Check that RSA CRT parameters are in accordance with core parameters. |
kevman | 0:38ceb79fef03 | 248 | */ |
kevman | 0:38ceb79fef03 | 249 | int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
kevman | 0:38ceb79fef03 | 250 | const mbedtls_mpi *D, const mbedtls_mpi *DP, |
kevman | 0:38ceb79fef03 | 251 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) |
kevman | 0:38ceb79fef03 | 252 | { |
kevman | 0:38ceb79fef03 | 253 | int ret = 0; |
kevman | 0:38ceb79fef03 | 254 | |
kevman | 0:38ceb79fef03 | 255 | mbedtls_mpi K, L; |
kevman | 0:38ceb79fef03 | 256 | mbedtls_mpi_init( &K ); |
kevman | 0:38ceb79fef03 | 257 | mbedtls_mpi_init( &L ); |
kevman | 0:38ceb79fef03 | 258 | |
kevman | 0:38ceb79fef03 | 259 | /* Check that DP - D == 0 mod P - 1 */ |
kevman | 0:38ceb79fef03 | 260 | if( DP != NULL ) |
kevman | 0:38ceb79fef03 | 261 | { |
kevman | 0:38ceb79fef03 | 262 | if( P == NULL ) |
kevman | 0:38ceb79fef03 | 263 | { |
kevman | 0:38ceb79fef03 | 264 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kevman | 0:38ceb79fef03 | 265 | goto cleanup; |
kevman | 0:38ceb79fef03 | 266 | } |
kevman | 0:38ceb79fef03 | 267 | |
kevman | 0:38ceb79fef03 | 268 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kevman | 0:38ceb79fef03 | 269 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); |
kevman | 0:38ceb79fef03 | 270 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
kevman | 0:38ceb79fef03 | 271 | |
kevman | 0:38ceb79fef03 | 272 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 273 | { |
kevman | 0:38ceb79fef03 | 274 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 275 | goto cleanup; |
kevman | 0:38ceb79fef03 | 276 | } |
kevman | 0:38ceb79fef03 | 277 | } |
kevman | 0:38ceb79fef03 | 278 | |
kevman | 0:38ceb79fef03 | 279 | /* Check that DQ - D == 0 mod Q - 1 */ |
kevman | 0:38ceb79fef03 | 280 | if( DQ != NULL ) |
kevman | 0:38ceb79fef03 | 281 | { |
kevman | 0:38ceb79fef03 | 282 | if( Q == NULL ) |
kevman | 0:38ceb79fef03 | 283 | { |
kevman | 0:38ceb79fef03 | 284 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kevman | 0:38ceb79fef03 | 285 | goto cleanup; |
kevman | 0:38ceb79fef03 | 286 | } |
kevman | 0:38ceb79fef03 | 287 | |
kevman | 0:38ceb79fef03 | 288 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
kevman | 0:38ceb79fef03 | 289 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); |
kevman | 0:38ceb79fef03 | 290 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
kevman | 0:38ceb79fef03 | 291 | |
kevman | 0:38ceb79fef03 | 292 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 293 | { |
kevman | 0:38ceb79fef03 | 294 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 295 | goto cleanup; |
kevman | 0:38ceb79fef03 | 296 | } |
kevman | 0:38ceb79fef03 | 297 | } |
kevman | 0:38ceb79fef03 | 298 | |
kevman | 0:38ceb79fef03 | 299 | /* Check that QP * Q - 1 == 0 mod P */ |
kevman | 0:38ceb79fef03 | 300 | if( QP != NULL ) |
kevman | 0:38ceb79fef03 | 301 | { |
kevman | 0:38ceb79fef03 | 302 | if( P == NULL || Q == NULL ) |
kevman | 0:38ceb79fef03 | 303 | { |
kevman | 0:38ceb79fef03 | 304 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kevman | 0:38ceb79fef03 | 305 | goto cleanup; |
kevman | 0:38ceb79fef03 | 306 | } |
kevman | 0:38ceb79fef03 | 307 | |
kevman | 0:38ceb79fef03 | 308 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); |
kevman | 0:38ceb79fef03 | 309 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kevman | 0:38ceb79fef03 | 310 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); |
kevman | 0:38ceb79fef03 | 311 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 312 | { |
kevman | 0:38ceb79fef03 | 313 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 314 | goto cleanup; |
kevman | 0:38ceb79fef03 | 315 | } |
kevman | 0:38ceb79fef03 | 316 | } |
kevman | 0:38ceb79fef03 | 317 | |
kevman | 0:38ceb79fef03 | 318 | cleanup: |
kevman | 0:38ceb79fef03 | 319 | |
kevman | 0:38ceb79fef03 | 320 | /* Wrap MPI error codes by RSA check failure error code */ |
kevman | 0:38ceb79fef03 | 321 | if( ret != 0 && |
kevman | 0:38ceb79fef03 | 322 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
kevman | 0:38ceb79fef03 | 323 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) |
kevman | 0:38ceb79fef03 | 324 | { |
kevman | 0:38ceb79fef03 | 325 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 326 | } |
kevman | 0:38ceb79fef03 | 327 | |
kevman | 0:38ceb79fef03 | 328 | mbedtls_mpi_free( &K ); |
kevman | 0:38ceb79fef03 | 329 | mbedtls_mpi_free( &L ); |
kevman | 0:38ceb79fef03 | 330 | |
kevman | 0:38ceb79fef03 | 331 | return( ret ); |
kevman | 0:38ceb79fef03 | 332 | } |
kevman | 0:38ceb79fef03 | 333 | |
kevman | 0:38ceb79fef03 | 334 | /* |
kevman | 0:38ceb79fef03 | 335 | * Check that core RSA parameters are sane. |
kevman | 0:38ceb79fef03 | 336 | */ |
kevman | 0:38ceb79fef03 | 337 | int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, |
kevman | 0:38ceb79fef03 | 338 | const mbedtls_mpi *Q, const mbedtls_mpi *D, |
kevman | 0:38ceb79fef03 | 339 | const mbedtls_mpi *E, |
kevman | 0:38ceb79fef03 | 340 | int (*f_rng)(void *, unsigned char *, size_t), |
kevman | 0:38ceb79fef03 | 341 | void *p_rng ) |
kevman | 0:38ceb79fef03 | 342 | { |
kevman | 0:38ceb79fef03 | 343 | int ret = 0; |
kevman | 0:38ceb79fef03 | 344 | mbedtls_mpi K, L; |
kevman | 0:38ceb79fef03 | 345 | |
kevman | 0:38ceb79fef03 | 346 | mbedtls_mpi_init( &K ); |
kevman | 0:38ceb79fef03 | 347 | mbedtls_mpi_init( &L ); |
kevman | 0:38ceb79fef03 | 348 | |
kevman | 0:38ceb79fef03 | 349 | /* |
kevman | 0:38ceb79fef03 | 350 | * Step 1: If PRNG provided, check that P and Q are prime |
kevman | 0:38ceb79fef03 | 351 | */ |
kevman | 0:38ceb79fef03 | 352 | |
kevman | 0:38ceb79fef03 | 353 | #if defined(MBEDTLS_GENPRIME) |
kevman | 0:38ceb79fef03 | 354 | if( f_rng != NULL && P != NULL && |
kevman | 0:38ceb79fef03 | 355 | ( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 ) |
kevman | 0:38ceb79fef03 | 356 | { |
kevman | 0:38ceb79fef03 | 357 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 358 | goto cleanup; |
kevman | 0:38ceb79fef03 | 359 | } |
kevman | 0:38ceb79fef03 | 360 | |
kevman | 0:38ceb79fef03 | 361 | if( f_rng != NULL && Q != NULL && |
kevman | 0:38ceb79fef03 | 362 | ( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 ) |
kevman | 0:38ceb79fef03 | 363 | { |
kevman | 0:38ceb79fef03 | 364 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 365 | goto cleanup; |
kevman | 0:38ceb79fef03 | 366 | } |
kevman | 0:38ceb79fef03 | 367 | #else |
kevman | 0:38ceb79fef03 | 368 | ((void) f_rng); |
kevman | 0:38ceb79fef03 | 369 | ((void) p_rng); |
kevman | 0:38ceb79fef03 | 370 | #endif /* MBEDTLS_GENPRIME */ |
kevman | 0:38ceb79fef03 | 371 | |
kevman | 0:38ceb79fef03 | 372 | /* |
kevman | 0:38ceb79fef03 | 373 | * Step 2: Check that 1 < N = P * Q |
kevman | 0:38ceb79fef03 | 374 | */ |
kevman | 0:38ceb79fef03 | 375 | |
kevman | 0:38ceb79fef03 | 376 | if( P != NULL && Q != NULL && N != NULL ) |
kevman | 0:38ceb79fef03 | 377 | { |
kevman | 0:38ceb79fef03 | 378 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); |
kevman | 0:38ceb79fef03 | 379 | if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 380 | mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) |
kevman | 0:38ceb79fef03 | 381 | { |
kevman | 0:38ceb79fef03 | 382 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 383 | goto cleanup; |
kevman | 0:38ceb79fef03 | 384 | } |
kevman | 0:38ceb79fef03 | 385 | } |
kevman | 0:38ceb79fef03 | 386 | |
kevman | 0:38ceb79fef03 | 387 | /* |
kevman | 0:38ceb79fef03 | 388 | * Step 3: Check and 1 < D, E < N if present. |
kevman | 0:38ceb79fef03 | 389 | */ |
kevman | 0:38ceb79fef03 | 390 | |
kevman | 0:38ceb79fef03 | 391 | if( N != NULL && D != NULL && E != NULL ) |
kevman | 0:38ceb79fef03 | 392 | { |
kevman | 0:38ceb79fef03 | 393 | if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 394 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 395 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
kevman | 0:38ceb79fef03 | 396 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
kevman | 0:38ceb79fef03 | 397 | { |
kevman | 0:38ceb79fef03 | 398 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 399 | goto cleanup; |
kevman | 0:38ceb79fef03 | 400 | } |
kevman | 0:38ceb79fef03 | 401 | } |
kevman | 0:38ceb79fef03 | 402 | |
kevman | 0:38ceb79fef03 | 403 | /* |
kevman | 0:38ceb79fef03 | 404 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
kevman | 0:38ceb79fef03 | 405 | */ |
kevman | 0:38ceb79fef03 | 406 | |
kevman | 0:38ceb79fef03 | 407 | if( P != NULL && Q != NULL && D != NULL && E != NULL ) |
kevman | 0:38ceb79fef03 | 408 | { |
kevman | 0:38ceb79fef03 | 409 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
kevman | 0:38ceb79fef03 | 410 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) |
kevman | 0:38ceb79fef03 | 411 | { |
kevman | 0:38ceb79fef03 | 412 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 413 | goto cleanup; |
kevman | 0:38ceb79fef03 | 414 | } |
kevman | 0:38ceb79fef03 | 415 | |
kevman | 0:38ceb79fef03 | 416 | /* Compute DE-1 mod P-1 */ |
kevman | 0:38ceb79fef03 | 417 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
kevman | 0:38ceb79fef03 | 418 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kevman | 0:38ceb79fef03 | 419 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); |
kevman | 0:38ceb79fef03 | 420 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
kevman | 0:38ceb79fef03 | 421 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 422 | { |
kevman | 0:38ceb79fef03 | 423 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 424 | goto cleanup; |
kevman | 0:38ceb79fef03 | 425 | } |
kevman | 0:38ceb79fef03 | 426 | |
kevman | 0:38ceb79fef03 | 427 | /* Compute DE-1 mod Q-1 */ |
kevman | 0:38ceb79fef03 | 428 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
kevman | 0:38ceb79fef03 | 429 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kevman | 0:38ceb79fef03 | 430 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
kevman | 0:38ceb79fef03 | 431 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
kevman | 0:38ceb79fef03 | 432 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kevman | 0:38ceb79fef03 | 433 | { |
kevman | 0:38ceb79fef03 | 434 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 435 | goto cleanup; |
kevman | 0:38ceb79fef03 | 436 | } |
kevman | 0:38ceb79fef03 | 437 | } |
kevman | 0:38ceb79fef03 | 438 | |
kevman | 0:38ceb79fef03 | 439 | cleanup: |
kevman | 0:38ceb79fef03 | 440 | |
kevman | 0:38ceb79fef03 | 441 | mbedtls_mpi_free( &K ); |
kevman | 0:38ceb79fef03 | 442 | mbedtls_mpi_free( &L ); |
kevman | 0:38ceb79fef03 | 443 | |
kevman | 0:38ceb79fef03 | 444 | /* Wrap MPI error codes by RSA check failure error code */ |
kevman | 0:38ceb79fef03 | 445 | if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) |
kevman | 0:38ceb79fef03 | 446 | { |
kevman | 0:38ceb79fef03 | 447 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kevman | 0:38ceb79fef03 | 448 | } |
kevman | 0:38ceb79fef03 | 449 | |
kevman | 0:38ceb79fef03 | 450 | return( ret ); |
kevman | 0:38ceb79fef03 | 451 | } |
kevman | 0:38ceb79fef03 | 452 | |
kevman | 0:38ceb79fef03 | 453 | int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
kevman | 0:38ceb79fef03 | 454 | const mbedtls_mpi *D, mbedtls_mpi *DP, |
kevman | 0:38ceb79fef03 | 455 | mbedtls_mpi *DQ, mbedtls_mpi *QP ) |
kevman | 0:38ceb79fef03 | 456 | { |
kevman | 0:38ceb79fef03 | 457 | int ret = 0; |
kevman | 0:38ceb79fef03 | 458 | mbedtls_mpi K; |
kevman | 0:38ceb79fef03 | 459 | mbedtls_mpi_init( &K ); |
kevman | 0:38ceb79fef03 | 460 | |
kevman | 0:38ceb79fef03 | 461 | /* DP = D mod P-1 */ |
kevman | 0:38ceb79fef03 | 462 | if( DP != NULL ) |
kevman | 0:38ceb79fef03 | 463 | { |
kevman | 0:38ceb79fef03 | 464 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kevman | 0:38ceb79fef03 | 465 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); |
kevman | 0:38ceb79fef03 | 466 | } |
kevman | 0:38ceb79fef03 | 467 | |
kevman | 0:38ceb79fef03 | 468 | /* DQ = D mod Q-1 */ |
kevman | 0:38ceb79fef03 | 469 | if( DQ != NULL ) |
kevman | 0:38ceb79fef03 | 470 | { |
kevman | 0:38ceb79fef03 | 471 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
kevman | 0:38ceb79fef03 | 472 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); |
kevman | 0:38ceb79fef03 | 473 | } |
kevman | 0:38ceb79fef03 | 474 | |
kevman | 0:38ceb79fef03 | 475 | /* QP = Q^{-1} mod P */ |
kevman | 0:38ceb79fef03 | 476 | if( QP != NULL ) |
kevman | 0:38ceb79fef03 | 477 | { |
kevman | 0:38ceb79fef03 | 478 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); |
kevman | 0:38ceb79fef03 | 479 | } |
kevman | 0:38ceb79fef03 | 480 | |
kevman | 0:38ceb79fef03 | 481 | cleanup: |
kevman | 0:38ceb79fef03 | 482 | mbedtls_mpi_free( &K ); |
kevman | 0:38ceb79fef03 | 483 | |
kevman | 0:38ceb79fef03 | 484 | return( ret ); |
kevman | 0:38ceb79fef03 | 485 | } |
kevman | 0:38ceb79fef03 | 486 | |
kevman | 0:38ceb79fef03 | 487 | #endif /* MBEDTLS_RSA_C */ |