Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: nRF51_Vdd TextLCD BME280
havege.c
00001 /** 00002 * \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion 00003 * 00004 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved 00005 * SPDX-License-Identifier: Apache-2.0 00006 * 00007 * Licensed under the Apache License, Version 2.0 (the "License"); you may 00008 * not use this file except in compliance with the License. 00009 * You may obtain a copy of the License at 00010 * 00011 * http://www.apache.org/licenses/LICENSE-2.0 00012 * 00013 * Unless required by applicable law or agreed to in writing, software 00014 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 00015 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00016 * See the License for the specific language governing permissions and 00017 * limitations under the License. 00018 * 00019 * This file is part of mbed TLS (https://tls.mbed.org) 00020 */ 00021 /* 00022 * The HAVEGE RNG was designed by Andre Seznec in 2002. 00023 * 00024 * http://www.irisa.fr/caps/projects/hipsor/publi.php 00025 * 00026 * Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr 00027 */ 00028 00029 #if !defined(MBEDTLS_CONFIG_FILE) 00030 #include "mbedtls/config.h" 00031 #else 00032 #include MBEDTLS_CONFIG_FILE 00033 #endif 00034 00035 #if defined(MBEDTLS_HAVEGE_C) 00036 00037 #include "mbedtls/havege.h" 00038 #include "mbedtls/timing.h" 00039 #include "mbedtls/platform_util.h" 00040 00041 #include <string.h> 00042 00043 /* ------------------------------------------------------------------------ 00044 * On average, one iteration accesses two 8-word blocks in the havege WALK 00045 * table, and generates 16 words in the RES array. 00046 * 00047 * The data read in the WALK table is updated and permuted after each use. 00048 * The result of the hardware clock counter read is used for this update. 00049 * 00050 * 25 conditional tests are present. The conditional tests are grouped in 00051 * two nested groups of 12 conditional tests and 1 test that controls the 00052 * permutation; on average, there should be 6 tests executed and 3 of them 00053 * should be mispredicted. 00054 * ------------------------------------------------------------------------ 00055 */ 00056 00057 #define SWAP(X,Y) { int *T = X; X = Y; Y = T; } 00058 00059 #define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1; 00060 #define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1; 00061 00062 #define TST1_LEAVE U1++; } 00063 #define TST2_LEAVE U2++; } 00064 00065 #define ONE_ITERATION \ 00066 \ 00067 PTEST = PT1 >> 20; \ 00068 \ 00069 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ 00070 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ 00071 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ 00072 \ 00073 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ 00074 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ 00075 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ 00076 \ 00077 PTX = (PT1 >> 18) & 7; \ 00078 PT1 &= 0x1FFF; \ 00079 PT2 &= 0x1FFF; \ 00080 CLK = (int) mbedtls_timing_hardclock(); \ 00081 \ 00082 i = 0; \ 00083 A = &WALK[PT1 ]; RES[i++] ^= *A; \ 00084 B = &WALK[PT2 ]; RES[i++] ^= *B; \ 00085 C = &WALK[PT1 ^ 1]; RES[i++] ^= *C; \ 00086 D = &WALK[PT2 ^ 4]; RES[i++] ^= *D; \ 00087 \ 00088 IN = (*A >> (1)) ^ (*A << (31)) ^ CLK; \ 00089 *A = (*B >> (2)) ^ (*B << (30)) ^ CLK; \ 00090 *B = IN ^ U1; \ 00091 *C = (*C >> (3)) ^ (*C << (29)) ^ CLK; \ 00092 *D = (*D >> (4)) ^ (*D << (28)) ^ CLK; \ 00093 \ 00094 A = &WALK[PT1 ^ 2]; RES[i++] ^= *A; \ 00095 B = &WALK[PT2 ^ 2]; RES[i++] ^= *B; \ 00096 C = &WALK[PT1 ^ 3]; RES[i++] ^= *C; \ 00097 D = &WALK[PT2 ^ 6]; RES[i++] ^= *D; \ 00098 \ 00099 if( PTEST & 1 ) SWAP( A, C ); \ 00100 \ 00101 IN = (*A >> (5)) ^ (*A << (27)) ^ CLK; \ 00102 *A = (*B >> (6)) ^ (*B << (26)) ^ CLK; \ 00103 *B = IN; CLK = (int) mbedtls_timing_hardclock(); \ 00104 *C = (*C >> (7)) ^ (*C << (25)) ^ CLK; \ 00105 *D = (*D >> (8)) ^ (*D << (24)) ^ CLK; \ 00106 \ 00107 A = &WALK[PT1 ^ 4]; \ 00108 B = &WALK[PT2 ^ 1]; \ 00109 \ 00110 PTEST = PT2 >> 1; \ 00111 \ 00112 PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]); \ 00113 PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8); \ 00114 PTY = (PT2 >> 10) & 7; \ 00115 \ 00116 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ 00117 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ 00118 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ 00119 \ 00120 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ 00121 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ 00122 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ 00123 \ 00124 C = &WALK[PT1 ^ 5]; \ 00125 D = &WALK[PT2 ^ 5]; \ 00126 \ 00127 RES[i++] ^= *A; \ 00128 RES[i++] ^= *B; \ 00129 RES[i++] ^= *C; \ 00130 RES[i++] ^= *D; \ 00131 \ 00132 IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK; \ 00133 *A = (*B >> (10)) ^ (*B << (22)) ^ CLK; \ 00134 *B = IN ^ U2; \ 00135 *C = (*C >> (11)) ^ (*C << (21)) ^ CLK; \ 00136 *D = (*D >> (12)) ^ (*D << (20)) ^ CLK; \ 00137 \ 00138 A = &WALK[PT1 ^ 6]; RES[i++] ^= *A; \ 00139 B = &WALK[PT2 ^ 3]; RES[i++] ^= *B; \ 00140 C = &WALK[PT1 ^ 7]; RES[i++] ^= *C; \ 00141 D = &WALK[PT2 ^ 7]; RES[i++] ^= *D; \ 00142 \ 00143 IN = (*A >> (13)) ^ (*A << (19)) ^ CLK; \ 00144 *A = (*B >> (14)) ^ (*B << (18)) ^ CLK; \ 00145 *B = IN; \ 00146 *C = (*C >> (15)) ^ (*C << (17)) ^ CLK; \ 00147 *D = (*D >> (16)) ^ (*D << (16)) ^ CLK; \ 00148 \ 00149 PT1 = ( RES[( i - 8 ) ^ PTX] ^ \ 00150 WALK[PT1 ^ PTX ^ 7] ) & (~1); \ 00151 PT1 ^= (PT2 ^ 0x10) & 0x10; \ 00152 \ 00153 for( n++, i = 0; i < 16; i++ ) \ 00154 hs->pool[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i]; 00155 00156 /* 00157 * Entropy gathering function 00158 */ 00159 static void havege_fill( mbedtls_havege_state *hs ) 00160 { 00161 int i, n = 0; 00162 int U1, U2, *A, *B, *C, *D; 00163 int PT1, PT2, *WALK, RES[16]; 00164 int PTX, PTY, CLK, PTEST, IN; 00165 00166 WALK = hs->WALK; 00167 PT1 = hs->PT1; 00168 PT2 = hs->PT2; 00169 00170 PTX = U1 = 0; 00171 PTY = U2 = 0; 00172 00173 (void)PTX; 00174 00175 memset( RES, 0, sizeof( RES ) ); 00176 00177 while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 ) 00178 { 00179 ONE_ITERATION 00180 ONE_ITERATION 00181 ONE_ITERATION 00182 ONE_ITERATION 00183 } 00184 00185 hs->PT1 = PT1; 00186 hs->PT2 = PT2; 00187 00188 hs->offset[0] = 0; 00189 hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2; 00190 } 00191 00192 /* 00193 * HAVEGE initialization 00194 */ 00195 void mbedtls_havege_init( mbedtls_havege_state *hs ) 00196 { 00197 memset( hs, 0, sizeof( mbedtls_havege_state ) ); 00198 00199 havege_fill( hs ); 00200 } 00201 00202 void mbedtls_havege_free( mbedtls_havege_state *hs ) 00203 { 00204 if( hs == NULL ) 00205 return; 00206 00207 mbedtls_platform_zeroize( hs, sizeof( mbedtls_havege_state ) ); 00208 } 00209 00210 /* 00211 * HAVEGE rand function 00212 */ 00213 int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len ) 00214 { 00215 int val; 00216 size_t use_len; 00217 mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng; 00218 unsigned char *p = buf; 00219 00220 while( len > 0 ) 00221 { 00222 use_len = len; 00223 if( use_len > sizeof(int) ) 00224 use_len = sizeof(int); 00225 00226 if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE ) 00227 havege_fill( hs ); 00228 00229 val = hs->pool[hs->offset[0]++]; 00230 val ^= hs->pool[hs->offset[1]++]; 00231 00232 memcpy( p, &val, use_len ); 00233 00234 len -= use_len; 00235 p += use_len; 00236 } 00237 00238 return( 0 ); 00239 } 00240 00241 #endif /* MBEDTLS_HAVEGE_C */
Generated on Tue Jul 12 2022 15:15:46 by
