Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: nRF51_Vdd TextLCD BME280
UARTSerial.cpp
00001 /* mbed Microcontroller Library 00002 * Copyright (c) 2006-2017 ARM Limited 00003 * 00004 * Licensed under the Apache License, Version 2.0 (the "License"); 00005 * you may not use this file except in compliance with the License. 00006 * You may obtain a copy of the License at 00007 * 00008 * http://www.apache.org/licenses/LICENSE-2.0 00009 * 00010 * Unless required by applicable law or agreed to in writing, software 00011 * distributed under the License is distributed on an "AS IS" BASIS, 00012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00013 * See the License for the specific language governing permissions and 00014 * limitations under the License. 00015 */ 00016 #include "drivers/UARTSerial.h" 00017 00018 #if (DEVICE_SERIAL && DEVICE_INTERRUPTIN) 00019 00020 #include "platform/mbed_poll.h" 00021 00022 #if MBED_CONF_RTOS_PRESENT 00023 #include "rtos/Thread.h" 00024 #else 00025 #include "platform/mbed_wait_api.h" 00026 #endif 00027 00028 namespace mbed { 00029 00030 UARTSerial::UARTSerial(PinName tx, PinName rx, int baud) : 00031 SerialBase(tx, rx, baud), 00032 _blocking(true), 00033 _tx_irq_enabled(false), 00034 _rx_irq_enabled(true), 00035 _dcd_irq(NULL) 00036 { 00037 /* Attatch IRQ routines to the serial device. */ 00038 SerialBase::attach(callback(this, &UARTSerial::rx_irq), RxIrq); 00039 } 00040 00041 UARTSerial::~UARTSerial() 00042 { 00043 delete _dcd_irq; 00044 } 00045 00046 void UARTSerial::dcd_irq() 00047 { 00048 wake(); 00049 } 00050 00051 void UARTSerial::set_baud(int baud) 00052 { 00053 SerialBase::baud(baud); 00054 } 00055 00056 void UARTSerial::set_data_carrier_detect(PinName dcd_pin, bool active_high) 00057 { 00058 delete _dcd_irq; 00059 _dcd_irq = NULL; 00060 00061 if (dcd_pin != NC) { 00062 _dcd_irq = new InterruptIn(dcd_pin); 00063 if (active_high) { 00064 _dcd_irq->fall(callback(this, &UARTSerial::dcd_irq)); 00065 } else { 00066 _dcd_irq->rise(callback(this, &UARTSerial::dcd_irq)); 00067 } 00068 } 00069 } 00070 00071 void UARTSerial::set_format(int bits, Parity parity, int stop_bits) 00072 { 00073 api_lock(); 00074 SerialBase::format(bits, parity, stop_bits); 00075 api_unlock(); 00076 } 00077 00078 #if DEVICE_SERIAL_FC 00079 void UARTSerial::set_flow_control(Flow type, PinName flow1, PinName flow2) 00080 { 00081 api_lock(); 00082 SerialBase::set_flow_control(type, flow1, flow2); 00083 api_unlock(); 00084 } 00085 #endif 00086 00087 int UARTSerial::close() 00088 { 00089 /* Does not let us pass a file descriptor. So how to close ? 00090 * Also, does it make sense to close a device type file descriptor*/ 00091 return 0; 00092 } 00093 00094 int UARTSerial::isatty() 00095 { 00096 return 1; 00097 00098 } 00099 00100 off_t UARTSerial::seek(off_t offset, int whence) 00101 { 00102 /*XXX lseek can be done theoratically, but is it sane to mark positions on a dynamically growing/shrinking 00103 * buffer system (from an interrupt context) */ 00104 return -ESPIPE; 00105 } 00106 00107 int UARTSerial::sync() 00108 { 00109 api_lock(); 00110 00111 while (!_txbuf.empty()) { 00112 api_unlock(); 00113 // Doing better than wait would require TxIRQ to also do wake() when becoming empty. Worth it? 00114 wait_ms(1); 00115 api_lock(); 00116 } 00117 00118 api_unlock(); 00119 00120 return 0; 00121 } 00122 00123 void UARTSerial::sigio(Callback<void()> func) 00124 { 00125 core_util_critical_section_enter(); 00126 _sigio_cb = func; 00127 if (_sigio_cb) { 00128 short current_events = poll(0x7FFF); 00129 if (current_events) { 00130 _sigio_cb(); 00131 } 00132 } 00133 core_util_critical_section_exit(); 00134 } 00135 00136 ssize_t UARTSerial::write(const void *buffer, size_t length) 00137 { 00138 size_t data_written = 0; 00139 const char *buf_ptr = static_cast<const char *>(buffer); 00140 00141 if (length == 0) { 00142 return 0; 00143 } 00144 00145 api_lock(); 00146 00147 // Unlike read, we should write the whole thing if blocking. POSIX only 00148 // allows partial as a side-effect of signal handling; it normally tries to 00149 // write everything if blocking. Without signals we can always write all. 00150 while (data_written < length) { 00151 00152 if (_txbuf.full()) { 00153 if (!_blocking) { 00154 break; 00155 } 00156 do { 00157 api_unlock(); 00158 wait_ms(1); // XXX todo - proper wait, WFE for non-rtos ? 00159 api_lock(); 00160 } while (_txbuf.full()); 00161 } 00162 00163 while (data_written < length && !_txbuf.full()) { 00164 _txbuf.push(*buf_ptr++); 00165 data_written++; 00166 } 00167 00168 core_util_critical_section_enter(); 00169 if (!_tx_irq_enabled) { 00170 UARTSerial::tx_irq(); // only write to hardware in one place 00171 if (!_txbuf.empty()) { 00172 SerialBase::attach(callback(this, &UARTSerial::tx_irq), TxIrq); 00173 _tx_irq_enabled = true; 00174 } 00175 } 00176 core_util_critical_section_exit(); 00177 } 00178 00179 api_unlock(); 00180 00181 return data_written != 0 ? (ssize_t) data_written : (ssize_t) - EAGAIN; 00182 } 00183 00184 ssize_t UARTSerial::read(void *buffer, size_t length) 00185 { 00186 size_t data_read = 0; 00187 00188 char *ptr = static_cast<char *>(buffer); 00189 00190 if (length == 0) { 00191 return 0; 00192 } 00193 00194 api_lock(); 00195 00196 while (_rxbuf.empty()) { 00197 if (!_blocking) { 00198 api_unlock(); 00199 return -EAGAIN; 00200 } 00201 api_unlock(); 00202 wait_ms(1); // XXX todo - proper wait, WFE for non-rtos ? 00203 api_lock(); 00204 } 00205 00206 while (data_read < length && !_rxbuf.empty()) { 00207 _rxbuf.pop(*ptr++); 00208 data_read++; 00209 } 00210 00211 core_util_critical_section_enter(); 00212 if (!_rx_irq_enabled) { 00213 UARTSerial::rx_irq(); // only read from hardware in one place 00214 if (!_rxbuf.full()) { 00215 SerialBase::attach(callback(this, &UARTSerial::rx_irq), RxIrq); 00216 _rx_irq_enabled = true; 00217 } 00218 } 00219 core_util_critical_section_exit(); 00220 00221 api_unlock(); 00222 00223 return data_read; 00224 } 00225 00226 bool UARTSerial::hup() const 00227 { 00228 return _dcd_irq && _dcd_irq->read() != 0; 00229 } 00230 00231 void UARTSerial::wake() 00232 { 00233 if (_sigio_cb) { 00234 _sigio_cb(); 00235 } 00236 } 00237 00238 short UARTSerial::poll(short events) const 00239 { 00240 00241 short revents = 0; 00242 /* Check the Circular Buffer if space available for writing out */ 00243 00244 00245 if (!_rxbuf.empty()) { 00246 revents |= POLLIN; 00247 } 00248 00249 /* POLLHUP and POLLOUT are mutually exclusive */ 00250 if (hup()) { 00251 revents |= POLLHUP; 00252 } else if (!_txbuf.full()) { 00253 revents |= POLLOUT; 00254 } 00255 00256 /*TODO Handle other event types */ 00257 00258 return revents; 00259 } 00260 00261 void UARTSerial::lock() 00262 { 00263 // This is the override for SerialBase. 00264 // No lock required as we only use SerialBase from interrupt or from 00265 // inside our own critical section. 00266 } 00267 00268 void UARTSerial::unlock() 00269 { 00270 // This is the override for SerialBase. 00271 } 00272 00273 void UARTSerial::api_lock(void) 00274 { 00275 _mutex.lock(); 00276 } 00277 00278 void UARTSerial::api_unlock(void) 00279 { 00280 _mutex.unlock(); 00281 } 00282 00283 void UARTSerial::rx_irq(void) 00284 { 00285 bool was_empty = _rxbuf.empty(); 00286 00287 /* Fill in the receive buffer if the peripheral is readable 00288 * and receive buffer is not full. */ 00289 while (!_rxbuf.full() && SerialBase::readable()) { 00290 char data = SerialBase::_base_getc(); 00291 _rxbuf.push(data); 00292 } 00293 00294 if (_rx_irq_enabled && _rxbuf.full()) { 00295 SerialBase::attach(NULL, RxIrq); 00296 _rx_irq_enabled = false; 00297 } 00298 00299 /* Report the File handler that data is ready to be read from the buffer. */ 00300 if (was_empty && !_rxbuf.empty()) { 00301 wake(); 00302 } 00303 } 00304 00305 // Also called from write to start transfer 00306 void UARTSerial::tx_irq(void) 00307 { 00308 bool was_full = _txbuf.full(); 00309 char data; 00310 00311 /* Write to the peripheral if there is something to write 00312 * and if the peripheral is available to write. */ 00313 while (SerialBase::writeable() && _txbuf.pop(data)) { 00314 SerialBase::_base_putc(data); 00315 } 00316 00317 if (_tx_irq_enabled && _txbuf.empty()) { 00318 SerialBase::attach(NULL, TxIrq); 00319 _tx_irq_enabled = false; 00320 } 00321 00322 /* Report the File handler that data can be written to peripheral. */ 00323 if (was_full && !_txbuf.full() && !hup()) { 00324 wake(); 00325 } 00326 } 00327 00328 void UARTSerial::wait_ms(uint32_t millisec) 00329 { 00330 /* wait_ms implementation for RTOS spins until exact microseconds - we 00331 * want to just sleep until next tick. 00332 */ 00333 #if MBED_CONF_RTOS_PRESENT 00334 rtos::Thread::wait(millisec); 00335 #else 00336 ::wait_ms(millisec); 00337 #endif 00338 } 00339 } //namespace mbed 00340 00341 #endif //(DEVICE_SERIAL && DEVICE_INTERRUPTIN)
Generated on Tue Jul 12 2022 15:16:03 by
